Skip to main content

Advertisement

Log in

Fungal Infections Associated with CD19-Targeted Chimeric Antigen Receptor T Cell Therapy

  • Published:
Current Fungal Infection Reports Aims and scope Submit manuscript

Abstract 

Purpose of Review

This review focuses on the epidemiology of fungal infections after CD19-targeted chimeric antigen receptor (CAR) T cell therapy and associated risk factors for their development and describes infectious disease screenings and antifungal prophylactic strategies.

Recent Findings

Epidemiologic studies characterizing fungal infections in patients with hematologic malignancies treated with CD19-targeted CAR T cell therapy are scarce. Fungal infections occur in approximately 2–13% of CAR T cell recipients, both early and late after infusion. Candida, Aspergillus, and Pneumocystis are the most common culprit pathogens. Invasive fungal infections seldom contribute to mortality. While various risk factors for the development of fungal infections have been proposed, all relate to dysregulation in innate and adaptive immunity. Exposure to areas where endemic fungi are known to be present in the environment may also be a risk factor. Infectious disease screenings and prophylactic strategies vary broadly across institutions.

Summary

Although data are limited, fungal infections occur in a small proportion of patients after CD19-targeted CAR T cell therapy. Additional studies are needed to better describe fungal infection epidemiology, individualize infectious disease screenings, and inform antifungal prophylaxis in this population.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References 

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Maude SL, Laetsch TW, Buechner J, Rives S, Boyer M, Bittencourt H, et al. Tisagenlecleucel in children and young adults with B-cell lymphoblastic leukemia. N Engl J Med. 2018;378(5):439–48. https://doi.org/10.1056/NEJMoa1709866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Schuster SJ, Bishop MR, Tam CS, Waller EK, Borchmann P, McGuirk JP, et al. Tisagenlecleucel in adult relapsed or refractory diffuse large B-cell lymphoma. N Engl J Med. 2019;380(1):45–56. https://doi.org/10.1056/NEJMoa1804980.

    Article  CAS  PubMed  Google Scholar 

  3. Neelapu SS, Locke FL, Bartlett NL, Lekakis LJ, Miklos DB, Jacobson CA, et al. Axicabtagene ciloleucel CAR T-cell therapy in refractory large B-cell lymphoma. N Engl J Med. 2017;377(26):2531–44. https://doi.org/10.1056/NEJMoa1707447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Abramson JS, Palomba ML, Gordon LI, Lunning MA, Wang M, Arnason J, et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): a multicentre seamless design study. Lancet. 2020;396(10254):839–52. https://doi.org/10.1016/S0140-6736(20)31366-0.

    Article  PubMed  Google Scholar 

  5. Wang M, Munoz J, Goy A, Locke FL, Jacobson CA, Hill BT, et al. KTE-X19 CAR T-cell therapy in relapsed or refractory mantle-cell lymphoma. N Engl J Med. 2020;382(14):1331–42. https://doi.org/10.1056/NEJMoa1914347.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Grigor EJM, Fergusson D, Kekre N, Montroy J, Atkins H, Seftel MD, et al. Risks and Benefits of Chimeric Antigen Receptor T-Cell (CAR-T) Therapy in cancer: a systematic review and meta-analysis. Transfus Med Rev. 2019;33(2):98–110. https://doi.org/10.1016/j.tmrv.2019.01.005.

    Article  PubMed  Google Scholar 

  7. Lee DW, Santomasso BD, Locke FL, Ghobadi A, Turtle CJ, Brudno JN, et al. ASTCT consensus grading for cytokine release syndrome and neurologic toxicity associated with immune effector cells. Biol Blood Marrow Transplant. 2019;25(4):625–38. https://doi.org/10.1016/j.bbmt.2018.12.758.

    Article  CAS  PubMed  Google Scholar 

  8. Nastoupil LJ, Jain MD, Feng L, Spiegel JY, Ghobadi A, Lin Y, et al. Standard-of-care axicabtagene ciloleucel for relapsed or refractory large B-cell lymphoma: results from the US lymphoma CAR T consortium. J Clin Oncol. 2020;38(27):3119–28. https://doi.org/10.1200/JCO.19.02104.

    Article  PubMed  PubMed Central  Google Scholar 

  9. Granroth G, Rosenthal A, McCallen M, Coughlin C, Benson H, Palmer J, et al. Supportive care for patients with lymphoma undergoing CAR-T-cell therapy: the advanced practice provider’ perspective. Curr Oncol Rep. 2022;24(12):1863–72. https://doi.org/10.1007/s11912-022-01330-z.

    Article  PubMed  PubMed Central  Google Scholar 

  10. Park JH, Romero FA, Taur Y, Sadelain M, Brentjens RJ, Hohl TM, et al. Cytokine release syndrome grade as a predictive marker for infections in patients with relapsed or refractory B-cell acute lymphoblastic leukemia treated with chimeric antigen receptor T cells. Clin Infect Dis. 2018;67(4):533–40. https://doi.org/10.1093/cid/ciy152.

    Article  CAS  PubMed  Google Scholar 

  11. Hill JA, Li D, Hay KA, Green ML, Cherian S, Chen X, et al. Infectious complications of CD19-targeted chimeric antigen receptor-modified T-cell immunotherapy. Blood. 2018;131(1):121–30. https://doi.org/10.1182/blood-2017-07-793760.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bernardes M, Hohl TM. Fungal infections associated with the use of novel immunotherapeutic agents. Curr Clin Microbiol Rep. 2020;7(4):142–9. https://doi.org/10.1007/s40588-020-00154-4.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Erwig LP, Gow NA. Interactions of fungal pathogens with phagocytes. Nat Rev Microbiol. 2016;14(3):163–76. https://doi.org/10.1038/nrmicro.2015.21.

    Article  CAS  PubMed  Google Scholar 

  14. Goodridge HS, Reyes CN, Becker CA, Katsumoto TR, Ma J, Wolf AJ, et al. Activation of the innate immune receptor Dectin-1 upon formation of a “phagocytic synapse.” Nature. 2011;472(7344):471–5. https://doi.org/10.1038/nature10071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jia XM, Tang B, Zhu LL, Liu YH, Zhao XQ, Gorjestani S, et al. CARD9 mediates Dectin-1-induced ERK activation by linking Ras-GRF1 to H-Ras for antifungal immunity. J Exp Med. 2014;211(11):2307–21. https://doi.org/10.1084/jem.20132349.

    Article  PubMed  PubMed Central  Google Scholar 

  16. LeibundGut-Landmann S, Gross O, Robinson MJ, Osorio F, Slack EC, Tsoni SV, et al. Syk- and CARD9-dependent coupling of innate immunity to the induction of T helper cells that produce interleukin 17. Nat Immunol. 2007;8(6):630–8. https://doi.org/10.1038/ni1460.

    Article  CAS  PubMed  Google Scholar 

  17. Lionakis MS, Iliev ID, Hohl TM. Immunity against fungi. JCI Insight. 2017;2(11):e93156. https://doi.org/10.1172/jci.insight.93156.

  18. Garner W, Samanta P, Haidar G. Invasive fungal infections after anti-CD19 chimeric antigen receptor-modified t-cell therapy: state of the evidence and future directions. J Fungi (Basel). 2021;7(2):156. https://doi.org/10.3390/jof7020156.

  19. Garner W, Samanta P, Dorritie K, Sehgal A, Winfield D, Agha M, et al. The burden of infections prior to chimeric antigen receptor (CAR) modified t-cell therapy predicts post-car t-cell infectious complications. Open Forum Infect Dis. 2020;7(SUPPL 1):S583.

    Article  PubMed Central  Google Scholar 

  20. • Little JS, Aleissa MM, Beluch K, Gonzalez-Bocco IH, Marty FM, Manne-Goehler J, et al. Low incidence of invasive fungal disease following CD19 chimeric antigen receptor T-cell therapy for non-Hodgkin lymphoma. Blood Adv. 2022;6(16):4821–30. https://doi.org/10.1182/bloodadvances.2022007474. (Largest study describing the incidence of fungal infections after CD19-targeted CAR T-cell therapy in the absence of routine prophylaxis.)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Logue JM, Zucchetti E, Bachmeier CA, Krivenko GS, Larson V, Ninh D, et al. Immune reconstitution and associated infections following axicabtagene ciloleucel in relapsed or refractory large B-cell lymphoma. Haematologica. 2021;106(4):978–86. https://doi.org/10.3324/haematol.2019.238634.

    Article  CAS  PubMed  Google Scholar 

  22. Fischer JW, Bhattarai N. CAR-T cell therapy: mechanism, management, and mitigation of inflammatory toxicities. Front Immunol. 2021;12:693016. https://doi.org/10.3389/fimmu.2021.693016.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Kang L, Tang X, Zhang J, Li M, Xu N, Qi W, et al. Interleukin-6-knockdown of chimeric antigen receptor-modified T cells significantly reduces IL-6 release from monocytes. Exp Hematol Oncol. 2020;9:11. https://doi.org/10.1186/s40164-020-00166-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Morris EC, Neelapu SS, Giavridis T, Sadelain M. Cytokine release syndrome and associated neurotoxicity in cancer immunotherapy. Nature Rev Immunol. 2022;22(2):85–96. https://doi.org/10.1038/s41577-021-00547-6.

    Article  CAS  Google Scholar 

  25. Wudhikarn K, Palomba ML, Pennisi M, Garcia-Recio M, Flynn JR, Devlin SM, et al. Infection during the first year in patients treated with CD19 CAR T cells for diffuse large B cell lymphoma. Blood Cancer J. 2020;10(8):79. https://doi.org/10.1038/s41408-020-00346-7.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Hay KA, Hanafi LA, Li D, Gust J, Liles WC, Wurfel MM, et al. Kinetics and biomarkers of severe cytokine release syndrome after CD19 chimeric antigen receptor-modified T-cell therapy. Blood. 2017;130(21):2295–306. https://doi.org/10.1182/blood-2017-06-793141.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Budde LE, Zaia JA. CD19 CAR-T therapy and sepsis: dancing with the devil. Blood. 2018;131(1):7–8. https://doi.org/10.1182/blood-2017-11-812982.

    Article  CAS  PubMed  Google Scholar 

  28. Munoz J, Hughes A, Guo Y. Mucormycosis-associated intracranial hemorrhage. Blood Coagul Fibrinolysis. 2013;24(1):100–1. https://doi.org/10.1097/MBC.0b013e32835a72df.

    Article  PubMed  Google Scholar 

  29. Oluwole OO, Bouabdallah K, Munoz J, De Guibert S, Vose JM, Bartlett NL, et al. Prophylactic corticosteroid use in patients receiving axicabtagene ciloleucel for large B-cell lymphoma. Br J Haematol. 2021;194(4):690–700. https://doi.org/10.1111/bjh.17527.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Fortin Ensign SP, Gaulin C, Hrachova M, Ruff M, Harahsheh E, Vicenti K, et al. Evaluating the patient with neurotoxicity after chimeric antigen receptor T-cell therapy. Curr Treat Options Oncol. 2022;23(12):1845–60. https://doi.org/10.1007/s11864-022-01035-2.

    Article  PubMed  Google Scholar 

  31. Wat J, Barmettler S. Hypogammaglobulinemia after chimeric antigen receptor (CAR) T-cell therapy: characteristics, management, and future directions. J Allergy Clin Immunol Pract. 2022;10(2):460–6. https://doi.org/10.1016/j.jaip.2021.10.037.

    Article  CAS  PubMed  Google Scholar 

  32. Sharma N, Reagan PM, Liesveld JL. Cytopenia after CAR-T cell therapy-a brief review of a complex problem. Cancers (Basel). 2022;14(6):1501. https://doi.org/10.3390/cancers14061501.

  33. Cordeiro A, Bezerra ED, Hirayama AV, Hill JA, Wu QV, Voutsinas J, et al. Late events after treatment with cd19-targeted chimeric antigen receptor modified T cells. Biol Blood Marrow Transplant. 2020;26(1):26–33. https://doi.org/10.1016/j.bbmt.2019.08.003.

    Article  CAS  PubMed  Google Scholar 

  34. Fried S, Avigdor A, Bielorai B, Meir A, Besser MJ, Schachter J, et al. Early and late hematologic toxicity following CD19 CAR-T cells. Bone Marrow Transplant. 2019;54(10):1643–50. https://doi.org/10.1038/s41409-019-0487-3.

    Article  CAS  PubMed  Google Scholar 

  35. Baird JH, Epstein DJ, Tamaresis JS, Ehlinger Z, Spiegel JY, Craig J, et al. Immune reconstitution and infectious complications following axicabtagene ciloleucel therapy for large B-cell lymphoma. Blood Adv. 2021;5(1):143–55. https://doi.org/10.1182/bloodadvances.2020002732.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Smith DJ, Williams SL, Benedict KM, Jackson BR, Toda M, EMSP Group, et al. Surveillance for coccidioidomycosis, histoplasmosis, and blastomycosis—United States, 2019. MMWR Surveillance Summaries. 2022;71(7):1–14.

    Article  PubMed Central  Google Scholar 

  37. Gaulin C, Ulrickson M, Husnain M, Iqbal M, Vergidis P, Rosenthal AC, et al. Low incidence of fungal infections after chimeric antigen receptor T-cell therapy for non-Hodgkin lymphoma in an endemic region for coccidioidomycosis. Blood. 2022;140(Supplement 1):12111–3. https://doi.org/10.1182/blood-2022-159744.

    Article  Google Scholar 

  38. Jacobson C, Chavez JC, Sehgal AR, William BM, Munoz J, Salles G, et al. Primary analysis of Zuma-5: a phase 2 study of axicabtagene ciloleucel (Axi-Cel) in patients with relapsed/refractory (R/R) indolent non-Hodgkin lymphoma (iNHL). Blood. 2020;136(Supplement 1):40–1. https://doi.org/10.1182/blood-2020-136834.

    Article  Google Scholar 

  39. Zahid U, Shaukat AA, Hassan N, Anwer F. Coccidioidomycosis, immunoglobulin deficiency: safety challenges with CAR T cells therapy for relapsed lymphoma. Immunotherapy. 2017;9(13):1061–6. https://doi.org/10.2217/imt-2017-0070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Kauffman CA, Freifeld AG, Andes DR, Baddley JW, Herwaldt L, Walker RC, et al. Endemic fungal infections in solid organ and hematopoietic cell transplant recipients enrolled in the Transplant-Associated Infection Surveillance Network (TRANSNET). Transpl Infect Dis. 2014;16(2):213–24. https://doi.org/10.1111/tid.12186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Grim SA, Proia L, Miller R, Alhyraba M, Costas-Chavarri A, Oberholzer J, et al. A multicenter study of histoplasmosis and blastomycosis after solid organ transplantation. Transpl Infect Dis. 2012;14(1):17–23. https://doi.org/10.1111/j.1399-3062.2011.00658.x.

    Article  CAS  PubMed  Google Scholar 

  42. Le Cacheux C, Sortais C, Gastinne T, Seguin A, Benguerfi S, Lacou-Agbakou M, Blonz G, Reignier J, Canet E. Clinical features and outcomes of chimeric antigen receptor T-cell patients admitted to the intensive care unit: a single center experience. Proceedings of Reanimation 2022, the French Intensive Care Society International Congress. Ann Intensive Care. 2022;12(Suppl 1):54. https://doi.org/10.1186/s13613-022-01016-6.

  43. Korell F, Schubert ML, Sauer T, Schmitt A, Derigs P, Weber TF, et al. Six-month follow-up for infectious complications after lymphodepletion and application of cd19-chimeric antigen receptor t (CAR-t) cell therapy. Blood. 2021;138(SUPPL 1):4835.

    Article  Google Scholar 

  44. Trottier C, Larsen C, Bindal P, Dodge LE, Elavalakanar P, Knudsen E, et al. Infectious complications following chimeric antigen receptor (CAR) T-cell therapy. Open Forum Infect Dis. 2021;8(SUPPL 1):S554–5.

    Article  PubMed Central  Google Scholar 

  45. Pernas B, Iacoboni G, Los-Arcos I, Catala E, Carpio C, Barba P, et al. Characterization of infections after chimeric antigen receptor T-cell therapy in patients with large B-cell lymphoma. Bone Marrow Transplant. 2021;56:196.

    Google Scholar 

  46. Neill L, Mackenzie SC, Marzolini MAV, Townsend W, Ardeshna KM, Cwynarski K, et al. Steroid use, advanced stage disease and ≥3 lines of prior chemotherapy are associated with a higher risk of infection following CD19 CAR T-cell therapy for B-NHL: real world data from a large UK center. Blood. 2020;136(Supplement 1):20–1. https://doi.org/10.1182/blood-2020-138865.

    Article  Google Scholar 

  47. Tran N, Eschenauer G, Scappaticci G, Frame D, Miceli MH, Patel TS. Infections in patients treated with chimeric antigen receptor T-cells (CART) therapy. Open Forum Infect Dis. 2020;7(SUPPL 1):S354.

    Article  PubMed Central  Google Scholar 

  48. Mercadal S, Gomez C, Lee C, Couriel D. Infectious complications following Car-T cell therapy for B cell non-hodgkin lymphoma: a single-center experience and review of the literature. Research Square; 2022. PREPRINT (Version 1). https://doi.org/10.21203/rs.3.rs-1995396/v1.

  49. Vora SB, Waghmare A, Englund JA, Qu P, Gardner RA, Hill JA. Infectious complications following CD19 chimeric antigen receptor T-cell therapy for children, adolescents, and young adults. Open Forum Infect Dis. 2020;7(5):ofaa121. https://doi.org/10.1093/ofid/ofaa121.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. de Tena PS, Bailen R, Oarbeascoa G, Gomez-Centurion I, Perez-Corral A, Carbonell D, et al. Allogeneic CD34-selected stem cell boost as salvage treatment of life-threatening infection and severe cytopenias after CAR-T cell therapy. Transfusion. 2022;62(10):2143–7. https://doi.org/10.1111/trf.17071.

    Article  CAS  PubMed  Google Scholar 

  51. Chesdachai S, Almeida NEC, Comba IY, Muppa P, Thoendel MJ. Fusarium rhinosinusitis post chimeric antigen receptor T-cell therapy. IDCases. 2021;24:e01088. https://doi.org/10.1016/j.idcr.2021.e01088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Rejeski K, Kunz WG, Rudelius M, Bucklein V, Blumenberg V, Schmidt C, et al. Severe Candida glabrata pancolitis and fatal Aspergillus fumigatus pulmonary infection in the setting of bone marrow aplasia after CD19-directed CAR T-cell therapy - a case report. BMC Infect Dis. 2021;21(1):121. https://doi.org/10.1186/s12879-020-05755-4.

    Article  PubMed  PubMed Central  Google Scholar 

  53. •• Hill JA, Seo SK. How I prevent infections in patients receiving CD19-targeted chimeric antigen receptor T cells for B-cell malignancies. Blood. 2020;136(8):925–35. https://doi.org/10.1182/blood.2019004000. (Overview of infectious disease prophylaxis in patients receiving CD19-targeted CAR T cell therapy.)

    Article  PubMed  PubMed Central  Google Scholar 

  54. •• Kansagra AJ, Frey NV, Bar M, Laetsch TW, Carpenter PA, Savani BN, et al. Clinical utilization of chimeric antigen receptor T-cells (CAR-T) in B-cell acute lymphoblastic leukemia (ALL)-an expert opinion from the European Society for Blood and Marrow Transplantation (EBMT) and the American Society for Blood and Marrow Transplantation (ASBMT). Bone Marrow Transplant. 2019;54(11):1868–80. https://doi.org/10.1038/s41409-019-0451-2. (Management guidelines from the European Society for Blood and Marrow Transplantation (EBMT) and the American Society for Blood and Marrow Transplantation (ASBMT) for CAR T cell recipients with B-ALL.)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. •• Yakoub-Agha I, Chabannon C, Bader P, Basak GW, Bonig H, Ciceri F, et al. Management of adults and children undergoing chimeric antigen receptor T-cell therapy: best practice recommendations of the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE). Haematologica. 2020;105(2):297–316. https://doi.org/10.3324/haematol.2019.229781. (Management guidelines from the European Society for Blood and Marrow Transplantation (EBMT) and the Joint Accreditation Committee of ISCT and EBMT (JACIE) for CAR T cell recipients.)

    Article  PubMed  PubMed Central  Google Scholar 

  56. Los-Arcos I, Iacoboni G, Aguilar-Guisado M, Alsina-Manrique L, Diaz de Heredia C, Fortuny-Guasch C, et al. Recommendations for screening, monitoring, prevention, and prophylaxis of infections in adult and pediatric patients receiving CAR T-cell therapy: a position paper. Infection. 2021;49(2):215–31. https://doi.org/10.1007/s15010-020-01521-5.

    Article  CAS  PubMed  Google Scholar 

  57. Haidar G, Dorritie K, Farah R, Bogdanovich T, Nguyen MH, Samanta P. Invasive mold infections after chimeric antigen receptor-modified T-cell therapy: a case series, review of the literature, and implications for prophylaxis. Clin Infect Dis. 2020;71(3):672–6. https://doi.org/10.1093/cid/ciz1127.

    Article  CAS  PubMed  Google Scholar 

  58. Lewis RE, Kontoyiannis DP. Chimeric antigen receptor T-cell immunotherapy and need for prophylaxis for invasive mold infections. Clin Infect Dis. 2020;71(7):1802–3. https://doi.org/10.1093/cid/ciaa031.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bishop MR, Dickinson M, Purtill D, Barba P, Santoro A, Hamad N, et al. Second-line tisagenlecleucel or standard care in aggressive B-cell lymphoma. N Engl J Med. 2022;386(7):629–39. https://doi.org/10.1056/NEJMoa2116596.

    Article  CAS  PubMed  Google Scholar 

  60. Locke FL, Miklos DB, Jacobson CA, Perales MA, Kersten MJ, Oluwole OO, et al. Axicabtagene ciloleucel as second-line therapy for large B-cell lymphoma. N Engl J Med. 2022;386(7):640–54. https://doi.org/10.1056/NEJMoa2116133.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Charles Gaulin.

Ethics declarations

Human and Animal Rights

This article does not contain any studies with human or animal subjects performed by any of the authors.

Conflicts of Interest 

Dr. Gaulin reports personal fees from DeciBio, outside the submitted work. Dr. Harris has nothing to disclose. Dr. Kodama has nothing to disclose. Dr. Shah has nothing to disclose. Dr. Blair has nothing to disclose. Dr. Wang reports grants and personal fees from lncyte, grants and personal fees from lnnoCare, grants and personal fees from Loxo Oncology, grants and personal fees from Eli Lilly, grants from MorphoSys, grants from Novartis, grants from Genentech, grants from Genmab, personal fees from TG Therapeutics, personal fees from Kite, personal fees from Jansen, and personal fees from BeiGene, outside the submitted work. Dr. Lin reports grants and personal fees from Kite/Gilead, grants and personal fees from Celgene/BMS, personal fees from Juno/BMS, grants and personal fees from bluebird bio, grants and personal fees from Janssen, grants and personal fees from Legend Biotech, personal fees from Gamida Cells, personal fees from Novartis, personal fees from Iovance, personal fees from Takeda, personal fees from Fosun Kite, personal fees and other from Pfizer, grants from Merck, grants from Boston Scientific, other from Sorrento, and other from NexImmune, outside the submitted work. Dr. Munoz reports grants and personal fees from Pharmacyclics/AbbVie, grants and personal fees from Bayer, grants and personal fees from Gilead/Kite Pharma, personal fees from Pfizer, grants and personal fees from Janssen, personal fees from Juno/Celgene, personal fees from BMS, personal fees from Kyowa, personal fees from Alexion, personal fees from Fosun Kite, personal fees from Innovent, grants and personal fees from Seattle Genetics, personal fees from Debiopharm, personal fees from Karyopharm, personal fees from Genmab, personal fees from ADC Therapeutics, personal fees from Epizyme, personal fees from BeiGene, personal fees from Servier, personal fees from Novartis, personal fees from MorphoSys/Incyte, personal fees from Secura Bio, personal fees from TG Therapeutics, personal fees from MEI, personal fees from Lilly/Loxo, grants from Celgene, grants from Merck, grants from Portola, grants from Incyte, grants from Genentech, grants from Millennium, personal fees from Targeted Oncology, personal fees from OncView, personal fees from Curio, personal fees from Physicians’ Education Resource, personal fees from Pharmacyclics/Janssen, personal fees from Acrotech/Aurobindo, personal fees from Pharmacyclics, personal fees from Verastem, personal fees from AstraZeneca, personal fees from Celgene/BMS, and personal fees from Genentech/Roche, outside the submitted work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gaulin, C., Harris, Z., Kodama, R. et al. Fungal Infections Associated with CD19-Targeted Chimeric Antigen Receptor T Cell Therapy. Curr Fungal Infect Rep 17, 87–97 (2023). https://doi.org/10.1007/s12281-023-00460-6

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12281-023-00460-6

Keywords

Navigation