Skip to main content

Advertisement

Log in

Management of HIV-Associated Cryptococcal Meningitis

  • Published:
Current Fungal Infection Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Cryptococcal meningitis remains a significant cause of mortality among people living with HIV. This review summarizes current practices and recent advances in the management of cryptococcal meningitis.

Recent Findings

Results from recent clinical trials have improved understanding of optimal induction therapy for cryptococcal meningitis, with the most recent data supporting the use of a single high dose of liposomal amphotericin B followed by two weeks of flucytosine and fluconazole. Studies have also demonstrated significantly reduced mortality with therapeutic lumbar punctures in patients with cryptococcal meningitis. Despite advances in management, long-term mortality remains high and may continue even after completion of antifungal therapy, emphasizing the importance of immune restoration in people living with HIV.

Summary

Cryptococcal disease remains prevalent among people living with HIV, especially in resource-limited settings. Advances in treatment strategies, as well as increased accessibility to antifungal drugs, screening tests, and antiretroviral therapy, are critical for reducing morbidity and mortality from cryptococcal meningitis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. • Rajasingham R, et al. The global burden of HIV-associated cryptococcal infection in adults in 2020: a modelling analysis. Lancet Infect Dis. https://doi.org/10.1016/S1473-3099(22)00499-6. A modeling analysis estimating the incidence of and mortality due to cryptococcal meningitis among PLWH in 2020 across multiple different geographical regions.

  2. Goldman DL, et al. Serologic evidence for Cryptococcus neoformans infection in early childhood. Pediatrics. 2001;107(5):E66. https://doi.org/10.1542/peds.107.5.e66.

    Article  CAS  PubMed  Google Scholar 

  3. Davis J, et al. Serologic evidence for regional differences in pediatric cryptococcal infection. Pediatr Infect Dis J. 2007;26(6):549–51. https://doi.org/10.1097/INF.0b013e318047e073.

    Article  PubMed  Google Scholar 

  4. Wang CY, Wu HD, Hsueh PR. Nosocomial transmission of cryptococcosis. N Engl J Med. 2005;352(12):1271–2. https://doi.org/10.1056/NEJM200503243521225.

    Article  CAS  PubMed  Google Scholar 

  5. Sirinavin S, Intusoma U, Tuntirungsee S. Mother-to-child transmission of cryptococcus neoformans. Pediatr Infect Dis J. 2004;23(3):278–9. https://doi.org/10.1097/01.inf.0000115639.43305.9b.

    Article  PubMed  Google Scholar 

  6. Singh N, et al. Donor-derived fungal infections in organ transplant recipients: guidelines of the American Society of Transplantation, infectious diseases community of practice. Am J Transplant. 2012;12(9):2414–28. https://doi.org/10.1111/j.1600-6143.2012.04100.x.

    Article  CAS  PubMed  Google Scholar 

  7. Jarvis JN, et al. Evaluation of a novel point-of-care cryptococcal antigen test on serum, plasma, and urine from patients with HIV-associated cryptococcal meningitis. Clin Infect Dis. 2011;53(10):1019–23. https://doi.org/10.1093/cid/cir613.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Temfack E, et al. Cryptococcal Antigen in Serum and Cerebrospinal Fluid for Detecting Cryptococcal Meningitis in Adults Living With Human Immunodeficiency Virus: Systematic Review and Meta-Analysis of Diagnostic Test Accuracy Studies. Clin Infect Dis. 2021;72(7):1268–78. https://doi.org/10.1093/cid/ciaa1243.

    Article  CAS  PubMed  Google Scholar 

  9. French N, et al. Cryptococcal infection in a cohort of HIV-1-infected Ugandan adults. AIDS. 2002;16(7):1031–8. https://doi.org/10.1097/00002030-200205030-00009.

    Article  PubMed  Google Scholar 

  10. Feldmesser M, Harris C, Reichberg S, Khan S, Casadevall A. Serum cryptococcal antigen in patients with AIDS. Clin Infect Dis. 1996;23(4):827–30. https://doi.org/10.1093/clinids/23.4.827.

    Article  CAS  PubMed  Google Scholar 

  11. Jarvis JN, Lawn SD, Vogt M, Bangani N, Wood R, Harrison TS. Screening for cryptococcal antigenemia in patients accessing an antiretroviral treatment program in South Africa. Clin Infect Dis. 2009;48(7):856–62. https://doi.org/10.1086/597262.

    Article  CAS  PubMed  Google Scholar 

  12. Meya DB, et al. "Cost-effectiveness of serum cryptococcal antigen screening to prevent deaths among HIV-infected persons with a CD4+ cell count < or = 100 cells/microL who start HIV therapy in resource-limited settings," (in English). Clin Infect Dis, Research Support, N.I.H., Extramural : Research Support, Non-U.S. Gov't vol. 51, no. 4, pp. 448–55, Aug 15 2010. https://doi.org/10.1086/655143.

  13. Levin AE, et al. Outpatient Cryptococcal Antigen Screening is Associated with Favorable Baseline Characteristics and Improved Survival in Persons with Cryptococcal Meningitis in Uganda. Clin Infect Dis. 2022. https://doi.org/10.1093/cid/ciac599.

  14. Hakim J, et al. Enhanced Prophylaxis plus Antiretroviral Therapy for Advanced HIV Infection in Africa. N Engl J Med. 2017;377(3):233–45. https://doi.org/10.1056/NEJMoa1615822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jarvis JN, Harrison TS, Lawn SD, Meintjes G, Wood R, Cleary S. Cost effectiveness of cryptococcal antigen screening as a strategy to prevent HIV-associated cryptococcal meningitis in South Africa. PLoS One. 2013;8(7):e69288. https://doi.org/10.1371/journal.pone.0069288.

  16. Sar B, Monchy D, Vann M, Keo C, Sarthou JL, Buisson Y. Increasing in vitro resistance to fluconazole in Cryptococcus neoformans Cambodian isolates: April 2000 to March 2002. J Antimicrob Chemother. 2004;54(2):563–5. https://doi.org/10.1093/jac/dkh361.

    Article  CAS  PubMed  Google Scholar 

  17. Chen YC, et al. Increasing trend of fluconazole-non-susceptible Cryptococcus neoformans in patients with invasive cryptococcosis: a 12-year longitudinal study. Bmc Infect Dis. 2015;15(1): 277. https://doi.org/10.1186/s12879-015-1023-8.

  18. Smith KD, et al. Increased Antifungal Drug Resistance in Clinical Isolates of Cryptococcus neoformans in Uganda. Antimicrob Agents Ch. 2015;59(12):7197–204. https://doi.org/10.1128/AAC.01299-15.

    Article  CAS  Google Scholar 

  19. Naicker SD, et al. Decreasing fluconazole susceptibility of clinical South African Cryptococcus neoformans isolates over a decade. PLoS Negl Trop Dis. 2020;14(3):e0008137. https://doi.org/10.1371/journal.pntd.0008137.

  20. Jarvis JN, et al. Determinants of mortality in a combined cohort of 501 patients with HIV-associated Cryptococcal meningitis: implications for improving outcomes. Clin Infect Dis. 2014;58(5):736–45. https://doi.org/10.1093/cid/cit794.

    Article  PubMed  Google Scholar 

  21. • Rolfes MA, et al. The effect of therapeutic lumbar punctures on acute mortality from cryptococcal meningitis. Clin Infect Dis. 2014;59(11):1607–14. https://doi.org/10.1093/cid/ciu596. (A study demonstrating significantly reduced short-term mortality in patients with cryptococcal meningitis receiving at least one therapeutic lumbar puncture compared with those receiving none.)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Abassi M, et al. Cerebrospinal Fluid Lactate as a Prognostic Marker of Disease Severity and Mortality in Cryptococcal Meningitis. Clin Infect Dis. 2021;73(9):e3077–82. https://doi.org/10.1093/cid/ciaa1749.

    Article  CAS  PubMed  Google Scholar 

  23. Tugume L, et al. Association of Hyponatremia on Mortality in Cryptococcal Meningitis: A Prospective Cohort. Open Forum Infect Dis. 2022;9(7):ofac301. https://doi.org/10.1093/ofid/ofac301.

  24. Chesdachai S, et al. Baseline Serum C-Reactive Protein Level Predicts Mortality in Cryptococcal Meningitis. Open Forum Infect Dis. 2020;7(12):ofaa530. https://doi.org/10.1093/ofid/ofaa530.

  25. Skipper C, et al. Cytomegalovirus Viremia Associated With Increased Mortality in Cryptococcal Meningitis in Sub-Saharan Africa. Clin Infect Dis. 2020;71(3):525–31. https://doi.org/10.1093/cid/ciz864.

    Article  PubMed  Google Scholar 

  26. O’Connor L, et al. Antifungal Susceptibility Does Not Correlate With Fungal Clearance or Survival in AIDS-Associated Cryptococcal Meningitis. Clin Infect Dis. 2021;73(7):e2338–41. https://doi.org/10.1093/cid/ciaa1544.

    Article  CAS  PubMed  Google Scholar 

  27. Salazar AS, et al. Potential missed opportunities for diagnosis of cryptococcosis and the association with mortality: A cohort study. EClinicalMedicine. 2020; 27:100563. https://doi.org/10.1016/j.eclinm.2020.100563.

  28. Spec A, Raval K, Powderly WG. End-Stage Liver Disease Is a Strong Predictor of Early Mortality in Cryptococcosis. Open Forum Infect Dis. 2016;3(1):ofv197. https://doi.org/10.1093/ofid/ofv197.

  29. Brizendine KD, Baddley JW, Pappas PG. Predictors of mortality and differences in clinical features among patients with Cryptococcosis according to immune status. PLoS One. 2013;8(3):e60431. https://doi.org/10.1371/journal.pone.0060431.

  30. Tenforde MW, et al. Mortality from HIV-associated meningitis in sub-Saharan Africa: a systematic review and meta-analysis. J Int AIDS Soc. 2020;23(1):e25416. https://doi.org/10.1002/jia2.25416.

  31. Molloy SF, et al. Antifungal Combinations for Treatment of Cryptococcal Meningitis in Africa. N Engl J Med. 2018;378(11):1004–17. https://doi.org/10.1056/NEJMoa1710922.

    Article  CAS  PubMed  Google Scholar 

  32. •• Jarvis JN, et al. Single-Dose Liposomal Amphotericin B Treatment for Cryptococcal Meningitis. N Engl J Med. 2022;386(12):1109–20. https://doi.org/10.1056/NEJMoa2111904. (A phase 3 trial across multiple African countries demonstrating non-inferiority, as well as reduced adverse effects, of a single high-dose of liposomal amphotericin B versus one week of amphotericin B deoxycholate for cryptococcal meningitis induction therapy.)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. van der Horst CM, et al. Treatment of cryptococcal meningitis associated with the acquired immunodeficiency syndrome. National Institute of Allergy and Infectious Diseases Mycoses Study Group and AIDS Clinical Trials Group. N Engl J Med. 1997;337(1):15–21. https://doi.org/10.1056/NEJM199707033370103.

    Article  PubMed  Google Scholar 

  34. Day JN, et al. Combination antifungal therapy for cryptococcal meningitis. N Engl J Med. 2013;368(14):1291–302. https://doi.org/10.1056/NEJMoa1110404.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hamill RJ, et al. Comparison of 2 doses of liposomal amphotericin B and conventional amphotericin B deoxycholate for treatment of AIDS-associated acute cryptococcal meningitis: a randomized, double-blind clinical trial of efficacy and safety. Clin Infect Dis. 2010;51(2):225–32. https://doi.org/10.1086/653606.

    Article  CAS  PubMed  Google Scholar 

  36. Mashau RC, et al. Outcomes of flucytosine-containing combination treatment for cryptococcal meningitis in a South African national access programme: a cross-sectional observational study. Lancet Infect Dis. 2022;22(9):1365–73. https://doi.org/10.1016/s1473-3099(22)00234-1.

    Article  CAS  PubMed  Google Scholar 

  37. Miot J, Leong T, Takuva S, Parrish A, Dawood H. Cost-effectiveness analysis of flucytosine as induction therapy in the treatment of cryptococcal meningitis in HIV-infected adults in South Africa. BMC Health Serv Res. 2021;21(1): 305. https://doi.org/10.1186/s12913-021-06268-9.

  38. Nussbaum JC, et al. Combination flucytosine and high-dose fluconazole compared with fluconazole monotherapy for the treatment of cryptococcal meningitis: a randomized trial in Malawi. Clin Infect Dis. 2010;50(3):338–44. https://doi.org/10.1086/649861.

    Article  CAS  PubMed  Google Scholar 

  39. Shiri T, et al. Addition of Flucytosine to Fluconazole for the Treatment of Cryptococcal Meningitis in Africa: A Multicountry Cost-effectiveness Analysis. Clin Infect Dis. 2020;70(1):26–9. https://doi.org/10.1093/cid/ciz163.

    Article  CAS  PubMed  Google Scholar 

  40. Chen T, et al. Healthcare Costs and Life-years Gained From Treatments Within the Advancing Cryptococcal Meningitis Treatment for Africa (ACTA) Trial on Cryptococcal Meningitis: A Comparison of Antifungal Induction Strategies in Sub-Saharan Africa. Clin Infect Dis. 2019;69(4):588–95. https://doi.org/10.1093/cid/ciy971.

    Article  PubMed  PubMed Central  Google Scholar 

  41. Longley N, et al. Dose response effect of high-dose fluconazole for HIV-associated cryptococcal meningitis in southwestern Uganda. Clin Infect Dis. 2008;47(12):1556–61. https://doi.org/10.1086/593194.

    Article  CAS  PubMed  Google Scholar 

  42. Rothe C, et al. "A prospective longitudinal study of the clinical outcomes from cryptococcal meningitis following treatment induction with 800 mg oral fluconazole in Blantyre, Malawi," (in English). PLoS One. 2013;8(6):e67311. https://doi.org/10.1371/journal.pone.0067311.

  43. Perfect JR, et al. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the infectious diseases society of america. Clin Infect Dis. 2010;50(3):291–322. https://doi.org/10.1086/649858.

    Article  PubMed  Google Scholar 

  44. Mussini C, et al. Discontinuation of maintenance therapy for cryptococcal meningitis in patients with AIDS treated with highly active antiretroviral therapy: an international observational study. Clin Infect Dis. 2004;38(4):565–71. https://doi.org/10.1086/381261.

    Article  PubMed  Google Scholar 

  45. Saag MS, et al. A comparison of itraconazole versus fluconazole as maintenance therapy for AIDS-associated cryptococcal meningitis. National Institute of Allergy and Infectious Diseases Mycoses Study Group. Clin Infect Dis. 1999;28(2):291–6. https://doi.org/10.1086/515110.

    Article  CAS  PubMed  Google Scholar 

  46. Yao Y, et al. “Voriconazole: a novel treatment option for cryptococcal meningitis,” (in eng). Infectious diseases (London, England). 2015;47(10):694–700. https://doi.org/10.3109/23744235.2015.1044260.

    Article  CAS  PubMed  Google Scholar 

  47. Thompson GR 3rd, et al. Isavuconazole Treatment of Cryptococcosis and Dimorphic Mycoses. Clin Infect Dis. 2016;63(3):356–62. https://doi.org/10.1093/cid/ciw305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Pitisuttithum P, et al. Activity of posaconazole in the treatment of central nervous system fungal infections. J Antimicrob Chemother. 2005;56(4):745–55. https://doi.org/10.1093/jac/dki288.

    Article  CAS  PubMed  Google Scholar 

  49. Nasri H, et al. Retrospective Study of Cryptococcal Meningitis With Elevated Minimum Inhibitory Concentration to Fluconazole in Immunocompromised Patients. Open Forum Infect Dis. 2016;3(2):ofw076. https://doi.org/10.1093/ofid/ofw076.

  50. Lewis RE. Current concepts in antifungal pharmacology. Mayo Clin Proc. 2011;86(8):805–17. https://doi.org/10.4065/mcp.2011.0247.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Molloy SF, et al. Fungal Burden and Raised Intracranial Pressure Are Independently Associated With Visual Loss in Human Immunodeficiency Virus-Associated Cryptococcal Meningitis. Open Forum Infect Dis. 2021;8(4):ofab066. https://doi.org/10.1093/ofid/ofab066.

  52. Manosuthi W, et al. Temporary external lumbar drainage for reducing elevated intracranial pressure in HIV-infected patients with cryptococcal meningitis. Int J STD AIDS. 2008;19(4):268–71. https://doi.org/10.1258/ijsa.2007.007286.

    Article  PubMed  Google Scholar 

  53. Liu L, Zhang R, Tang Y, Lu H. “The use of ventriculoperitoneal shunts for uncontrollable intracranial hypertension in patients with HIV-associated cryptococcal meningitis with or without hydrocephalus,” (in English). Biosci Trends, Article. 2014;8(6):327–32. https://doi.org/10.5582/bst.2014.01070.

    Article  CAS  Google Scholar 

  54. •• Kagimu E, et al. Therapeutic Lumbar Punctures in Human Immunodeficiency Virus-Associated Cryptococcal Meningitis: Should Opening Pressure Direct Management? Open Forum Infect Dis. 2022;9(9):ofac416. https://doi.org/10.1093/ofid/ofac416. An evaluation of serial lumbar punctures in the management of cryptococcal meningitis, demonstrating reduced 30-day mortality in patients with one or more therapeutic lumbar punctures compared with those receiving no therapeutc lumbar punctures, irrespective of baseline ICP.

  55. Mkoko P, Du Preez J, Naidoo S. Intracranial pressure management in patients with human immunodeficiency virus-associated cryptococcal meningitis in a resource-constrained setting. S Afr J HIV Med. 2020;21(1):1171. https://doi.org/10.4102/sajhivmed.v21i1.1171.

    Article  Google Scholar 

  56. Mansoor AE, Thompson J, Sarwari AR. Delays in lumbar puncture are independently associated with mortality in cryptococcal meningitis: a nationwide study. Infect Dis (London, England). 2021;53(5):361–9. https://doi.org/10.1080/23744235.2021.1889656.

    Article  Google Scholar 

  57. Newton PN, et al. A randomized, double-blind, placebo-controlled trial of acetazolamide for the treatment of elevated intracranial pressure in cryptococcal meningitis. Clin Infect Dis. 2002;35(6):769–72. https://doi.org/10.1086/342299.

    Article  CAS  PubMed  Google Scholar 

  58. Beardsley J, et al. “Adjunctive Dexamethasone in HIV-Associated Cryptococcal Meningitis,” (in English). N Engl J Med. 2016;374(6):542–54. https://doi.org/10.1056/NEJMoa1509024.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rhein J, et al. Adjunctive sertraline for HIV-associated cryptococcal meningitis: a randomised, placebo-controlled, double-blind phase 3 trial. Lancet Infect Dis. 2019;19(8):843–51. https://doi.org/10.1016/s1473-3099(19)30127-6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Katende A, et al. Short-course amphotericin B in addition to sertraline and fluconazole for treatment of HIV-associated cryptococcal meningitis in rural Tanzania. Mycoses. 2019;62(12):1127–32. https://doi.org/10.1111/myc.12995.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Ngan NTT, et al. An open label randomized controlled trial of tamoxifen combined with amphotericin B and fluconazole for cryptococcal meningitis. Elife. 2021;10. https://doi.org/10.7554/eLife.68929.

  62. Pappas PG, et al. Recombinant interferon- gamma 1b as adjunctive therapy for AIDS-related acute cryptococcal meningitis. J Infect Dis. 2004;189(12):2185–91. https://doi.org/10.1086/420829.

    Article  CAS  PubMed  Google Scholar 

  63. Jarvis JN, et al. Adjunctive interferon-gamma immunotherapy for the treatment of HIV-associated cryptococcal meningitis: a randomized controlled trial. AIDS. 2012;26(9):1105–13. https://doi.org/10.1097/QAD.0b013e3283536a93.

    Article  CAS  PubMed  Google Scholar 

  64. Shelburne ISAH, J R. "The immune reconstitution inflammatory syndrome," (in English). AIDS Rev. 2003;Review vol. 5(2):67–79. [Online]. Available: http://www.embase.com/search/results?subaction=viewrecord&from=export&id=L36880722.

  65. Bisson GP, et al. Early versus delayed antiretroviral therapy and cerebrospinal fluid fungal clearance in adults with HIV and cryptococcal meningitis. Clin Infect Dis. 2013;56(8):1165–73. https://doi.org/10.1093/cid/cit019.

    Article  CAS  PubMed  Google Scholar 

  66. Boulware DR, et al. “Timing of antiretroviral therapy after diagnosis of cryptococcal meningitis,” (in English). N Engl J Med. 2014;370(26):2487–98. https://doi.org/10.1056/NEJMoa1312884.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Boulware DR, et al. Clinical features and serum biomarkers in HIV immune reconstitution inflammatory syndrome after cryptococcal meningitis: a prospective cohort study. PLoS Med. 2010;7(12):e1000384. https://doi.org/10.1371/journal.pmed.1000384.

  68. Rhein J, et al. Detrimental Outcomes of Unmasking Cryptococcal Meningitis With Recent ART Initiation. Open Forum Infect Dis. 2018;5(8):ofy122. https://doi.org/10.1093/ofid/ofy122.

  69. Kalata N, et al. Short-term Mortality Outcomes of HIV-Associated Cryptococcal Meningitis in Antiretroviral Therapy-Naïve and -Experienced Patients in Sub-Saharan Africa. Open Forum Infect Dis. 2021;8(10):ofab397. https://doi.org/10.1093/ofid/ofab397.

  70. Bahr NC, et al. Recurrence of symptoms following cryptococcal meningitis - characterizing a diagnostic conundrum with multiple etiologies. Clin Infect Dis. 2022. https://doi.org/10.1093/cid/ciac853.

  71. • Hevey MA, et al. Mortality After Cryptococcal Infection in the Modern Antiretroviral Therapy Era. J Acquir Immune Defic Syndr. 2019;82(1):81–7. https://doi.org/10.1097/QAI.0000000000002095. (A retrospective study showing high ongoing long-term mortality after cryptococcosis in PLWH in the United States even after completion of antifungal treatment.)

    Article  PubMed  PubMed Central  Google Scholar 

  72. Butler EK, Boulware DR, Bohjanen PR, Meya DB. Long term 5-year survival of persons with cryptococcal meningitis or asymptomatic subclinical antigenemia in Uganda. PLoS One. 2012;7(12):e51291 Art no. e51291. https://doi.org/10.1371/journal.pone.0051291.

  73. Tsai ST, Lin FY, Chen PS, Chiang HY, Kuo CC. Three-year mortality in cryptococcal meningitis: Hyperglycemia predict unfavorable outcome. PLoS One. 2021;16(5):e0251749. https://doi.org/10.1371/journal.pone.0251749.

  74. Kitonsa J, et al. Determinants of two-year mortality among HIV positive patients with Cryptococcal meningitis initiating standard antifungal treatment with or without adjunctive dexamethasone in Uganda. PLoS Negl Trop Dis. 2020;14(11):e0008823. https://doi.org/10.1371/journal.pntd.0008823.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick B. Mazi.

Ethics declarations

Conflict of Interest

M.R.O. and P.B.M. declare that they have no conflicts of interest.

A.S. reports grants from Astellas and Mayne and consulting fees from F2G and Scynexis.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osborn, M.R., Spec, A. & Mazi, P.B. Management of HIV-Associated Cryptococcal Meningitis. Curr Fungal Infect Rep 17, 124–131 (2023). https://doi.org/10.1007/s12281-023-00458-0

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12281-023-00458-0

Keywords

Navigation