Skip to main content

Advertisement

Log in

Management of Mucormycosis

  • Current Management of Fungal Infections (S Jacobs, Section Editor)
  • Published:
Current Fungal Infection Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

Mucormycosis is an aggressive disease with high (> 30–50%) mortality. Many attempts have been made to improve the outcome including global consensus guideline to manage mucormycosis. In this review, we discuss various aspects of the current management strategies of mucormycosis.

Recent Findings

New global consensus guideline not only addressed the management issues in developed countries but also recommended algorithm in a resource-limiting environment. Isavuconazole, a new water-soluble triazole with good pharmacokinetics and safety profile, has emerged as a promising agent with anti-Mucorales activity. The drug can be used even as first-line therapy with a moderate recommendation. New antifungal agents including Manogepix (MGX), VT-1161, and statins with anti-Mucorales activity are undergoing clinical trials. Different routes of antifungal administration for targeted delivery are being explored, viz., nebulization, topical treatment, intravitreal route.

Summary

Early diagnosis and prompt therapy remain the cornerstone of mucormycosis management. Few recent studies reemphasized the need for combined management with surgical debridement of necrotic tissue, antifungal therapy, and reversal of underlying disease for a better outcome. New drug isavuconazole covers some of the gaps in management of patients with renal and hepatic compromise. Combination antifungal therapy remains controversial and requires prospective randomized studies. Adjuvant therapies are also not supported strongly due to the lack of clinical trials. The low incidence of the disease in developed countries is the main barrier for randomized studies. However, the disease is not uncommon in developing countries. Planning prospective, multi-center studies in those countries may help to standardize the dosage and duration of antifungals for therapeutic or prophylactic use in mono/combination therapy. Simultaneous maintenance of national/regional clinical registries and the discovery of novel therapeutic targets and diagnostic biomarkers are essential for aiding disease management. Additional studies on therapeutic drug monitoring, antifungal susceptibility testing, and correlation with the clinical outcome are needed to establish clinical breakpoints which can help in guiding therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Chakrabarti A, Chatterjee SS, Das A, Panda N, Shivaprakash MR, Kaur A, et al. Invasive zygomycosis in India: experience in a tertiary care hospital. Postgrad Med J. 2009;85:573–81. https://doi.org/10.1136/pgmj.2008.076463.

    Article  CAS  PubMed  Google Scholar 

  2. Chakrabarti A, Kaur H, Savio J, Rudramurthy SM, Patel A, Shastri P, et al. Epidemiology and clinical outcomes of invasive mould infections in Indian intensive care units (FISF study). J Crit Care. 2019;51:64–70. https://doi.org/10.1016/j.jcrc.2019.02.005.

    Article  PubMed  Google Scholar 

  3. Celis-Aguilar E, Burgos-Páez A, Villanueva-Ramos N, Solórzano-Barrón J, De La Mora-Fernández A, Manjarrez-Velázquez J, et al. An emergent entity: indolent mucormycosis of the paranasal sinuses. A multicenter study. Int Arch Otorhinolaryngol. 2019;23:92–100. https://doi.org/10.1055/s-0038-1667005.

    Article  PubMed  Google Scholar 

  4. Prakash H, Chakrabarti A. Global epidemiology of mucormycosis. J Fungi. 2019;5. https://doi.org/10.3390/jof5010026.

  5. • Katragkou A, Walsh TJ, Roilides E. Why is mucormycosis more difficult to cure than more common mycoses? Clin Microbiol Infect. 2014;20:74–81. https://doi.org/10.1111/1469-0691.12466This review provides a comprehensive overview of the challenges related to management of mucormycosis.

    Article  PubMed  Google Scholar 

  6. Chamilos G, Lewis RE, Kontoyiannis DP. Delaying amphotericin B–based frontline therapy significantly increases mortality among patients with hematologic malignancy who have zygomycosis. Clin Infect Dis. 2008;47:503–9. https://doi.org/10.1086/590004.

    Article  PubMed  Google Scholar 

  7. Mitchell TA, Hardin MO, Murray CK, Ritchie JD, Cancio LC, Renz EM, et al. Mucormycosis attributed mortality: a seven-year review of surgical and medical management. Burns. 2014;40:1689–95. https://doi.org/10.1016/j.burns.2014.03.013.

    Article  PubMed  Google Scholar 

  8. Walsh TJ, Gamaletsou MN, McGinnis MR, Hayden RT, Kontoyiannis DP. Early clinical and laboratory diagnosis of invasive pulmonary, extrapulmonary, and disseminated mucormycosis (zygomycosis). Clin Infect Dis. 2012;54:S55–60. https://doi.org/10.1093/cid.

    Article  PubMed  Google Scholar 

  9. Lee YR, Choi YW, Lee KJ, Park CK, Heo J-N. Pictorial review CT halo sign: the spectrum of pulmonary diseases. The British J of Radiol. 2005;78:862–5. https://doi.org/10.1259/bjr/77712845.

    Article  CAS  Google Scholar 

  10. Godoy MCB, Viswanathan C, Marchiori E, Truong MT, Benveniste MF, Rossi S, et al. The reversed halo sign: update and differential diagnosis. Br J Radiol. 2012;85:1226–35.

    Article  CAS  Google Scholar 

  11. •• Cornely OA, Alastruey-Izquierdo A, Arenz D, Chen SCA, Dannaoui E, Hochhegger B, et al. Global guideline for the diagnosis and management of mucormycosis: an initiative of the European Confederation of Medical Mycology in cooperation with the Mycoses Study Group Education and Research Consortium. Lancet Infect Dis. 2019;19:e405–21. https://doi.org/10.1016/S1473-3099(19)30312-3This study provides the most recent consensus reccomendations for the management of mucormycosis in different clinical scenarios.

    Article  CAS  Google Scholar 

  12. Fazel R, Krumholz HM, Wang Y, Ross JS, Chen J, Ting HH, et al. Exposure to low-dose ionizing radiation from medical imaging procedures. N Engl J Med. 2009;361:849–57. https://doi.org/10.1056/NEJMoa0901249.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Guarner J, Brandt ME. Histopathologic diagnosis of fungal infections in the 21st century. Clin Microbiol Rev. 2011;24:247–80. https://doi.org/10.1128/CMR.00053-10.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Skiada A, Lass-Floerl C, Klimko N, Ibrahim A, Roilides E, Petrikkos G. Challenges in the diagnosis and treatment of mucormycosis. Med Mycol. 2018;56:S93–101. https://doi.org/10.1093/mmy/myx101.

    Article  CAS  PubMed Central  Google Scholar 

  15. Zaman K, Rudramurthy SM, Das A, Panda N, Honnavar P, Kaur H, et al. Molecular diagnosis of rhino-orbito-cerebral mucormycosis from fresh tissue samples. J Med Microbiol. 2017;66:1124–9. https://doi.org/10.1099/jmm.0.000560.

    Article  CAS  PubMed  Google Scholar 

  16. Baldin C, Soliman S, Jeon H, Gebremariam T, Alkhazraji S, Bruno V, et al. PCR-based diagnosis of mucormycosis targeting Mucorales-specific genes. Open Forum Infect Dis. 2017;4:S612.

    Article  Google Scholar 

  17. Baldin C, Soliman SSM, Jeon HH, Alkhazraji S, Gebremariam T, Gu Y, et al. PCR-based approach targeting Mucorales-specific gene family for diagnosis of mucormycosis. J Clin Microbiol. 2018;56. https://doi.org/10.1128/JCM.00746-18.

  18. Caramalho R, Madl L, Rosam K, Rambach G, Speth C, Pallua J, et al. Evaluation of a novel mitochondrial pan-Mucorales marker for the detection, identification, quantification, and growth stage determination of mucormycetes. J Fungi. 2019;5. https://doi.org/10.3390/jof5040098.

  19. Nyilasi I, Papp T, Csernetics Á, Krizsán K, Nagy E, Vágvölgyi C. High-affinity iron permease (FTR1) gene sequence-based molecular identification of clinically important Zygomycetes. Clin Microbiol Infect. 2008;14:393–7. https://doi.org/10.1111/j.1469-0691.2007.01932.x.

    Article  CAS  PubMed  Google Scholar 

  20. Burnham-Marusich AR, Hubbard B, Kvam AJ, Gates-Hollingsworth M, Green HR, Soukup E, et al. Conservation of mannan synthesis in fungi of the Zygomycota and Ascomycota reveals a broad diagnostic target. MSphere. 2018;3. https://doi.org/10.1128/msphere.00094-18.

  21. Acharige MJT, Koshy S, Ismail N, Aloum O, Jazaerly M, Astudillo CL, et al. Breath-based diagnosis of fungal infections. J Breath Res. 2018;12:027108. https://doi.org/10.1088/1752-7163/AA98A1.

    Article  PubMed  Google Scholar 

  22. Koshy S, Ismail N, Astudillo CL, Haeger CM, Aloum O, Acharige MT, et al. Breath-based diagnosis of invasive mucormycosis (IM). Open Forum Infect Dis. 2017;4:S53–4.

    Article  Google Scholar 

  23. • Sipsas NV, Gamaletsou MN, Anastasopoulou A, Kontoyiannis DP. Therapy of mucormycosis. J Fungi. 2018. https://doi.org/10.3390/jof4030090This review summarizes the recent data that has emerged from clinical, in vitro, and in vivo studies on mucormycosis treatment.

  24. Lee FYW, Mossad SB, Adal KA. Pulmonary mucormycosis: the last 30 years. Arch Intern Med. 1999;159:1301–9. https://doi.org/10.1001/archinte.159.12.1301.

    Article  CAS  PubMed  Google Scholar 

  25. Tedder M, Spratt JA, Anstadt MP, Hegde SS, Tedder SD, Lowe JE. Pulmonary mucormycosis: results of medical and surgical therapy. Ann Thorac Surg. 1994;57:1044–50. https://doi.org/10.1016/0003-4975(94)90243-7.

    Article  CAS  PubMed  Google Scholar 

  26. Vironneau P, Kania R, Morizot G, Elie C, Garcia-Hermoso D, Herman P, et al. Local control of rhino-orbito-cerebral mucormycosis dramatically impacts survival. Clin Microbiol Infect. 2014;20:O336–9. https://doi.org/10.1111/1469-0691.12408.

    Article  CAS  PubMed  Google Scholar 

  27. Konigsberg MW, Wu CH, Strauch RJ. Topical treatment for cutaneous mucormycosis of the upper extremity. J Hand Surg Am. 2020. https://doi.org/10.1016/j.jhsa.2020.01.015.

  28. Saraiya HA. Successful management of cutaneous mucormycosis by delaying debridement. Ann Plast Surg. 2012;69:301–6. https://doi.org/10.1097/SAP.0b013e31821bd49f.

    Article  CAS  PubMed  Google Scholar 

  29. Ibrahim AS, Bowman JC, Avanessian V, Brown K, Spellberg B, Edwards JE, et al. Caspofungin inhibits Rhizopus oryzae 1,3-β-D-glucan synthase, lowers burden in brain measured by quantitative PCR, and improves survival at a low but not a high dose during murine disseminated zygomycosis. Antimicrob Agents Chemother. 2005;49:721–7. https://doi.org/10.1128/AAC.49.2.721-727.2005.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. • Ibrahim AS, Gebremariam T, Fu Y, Edwards JE, Spellberg B. Combination echinocandin-polyene treatment of murine mucormycosis. Antimicrob Agents Chemother. 2008;52:1556–8. https://doi.org/10.1128/AAC.01458-07This is the first study evaluating the combination of echinocandin and amphotericin B in vivo.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. •• Marty FM, Ostrosky-Zeichner L, Cornely OA, Mullane KM, Perfect JR, Thompson GR, et al. Isavuconazole treatment for mucormycosis: a single-arm open-label trial and case-control analysis. Lancet Infect Dis. 2016;16:828–37. https://doi.org/10.1016/S1473-3099(16)00071-2This study assessed the efficacy and safety of isavuconazole for mucormycosis treatment and compared it with amphotericin B. It provides important information on the use of this new triazole for mucormycosis management.

    Article  CAS  PubMed  Google Scholar 

  32. Vehreschild JJ, Birtel A, Vehreschild MJGT, Liss B, Farowski F, Kochanek M, et al. Mucormycosis treated with posaconazole: review of 96 case reports. Crit Rev Microbiol. 2013;39:310–24. https://doi.org/10.3109/1040841X.2012.711741.

    Article  CAS  PubMed  Google Scholar 

  33. Spellberg B, Ibrahim AS. Recent advances in the treatment of mucormycosis. Curr Infect Dis Rep. 2010;12:423–9. https://doi.org/10.1007/s11908-010-0129-9.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Shoham S, Magill SS, Merz WG, Gonzalez C, Seibel N, Buchanan WL, et al. Primary treatment of zygomycosis with liposomal amphotericin B: analysis of 28 cases. Med Mycol. 2010;48:511–7. https://doi.org/10.3109/13693780903311944.

    Article  CAS  PubMed  Google Scholar 

  35. Walsh TJ, Goodman JL, Pappas P, Bekersky I, Buell DN, Roden M, et al. Safety, tolerance, and pharmacokinetics of high-dose liposomal amphotericin B (AmBisome) in patients infected with Aspergillus species and other filamentous fungi: maximum tolerated dose study. Antimicrob Agents Chemother. 2001;45:3487–96. https://doi.org/10.1128/AAC.45.12.3487-3496.2001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Ullmann AJ, Sanz MA, Tramarin A, Barnes RA, Wu W, Gerlach BA, et al. Prospective study of amphotericin b formulations in immunocompromised patients in 4 European countries. Clin Infect Dis. 2006;43:e29–38. https://doi.org/10.1086/505969.

    Article  PubMed  Google Scholar 

  37. Mellinghoff SC, Bassetti M, Dörfel D, Hagel S, Lehners N, Plis A, et al. Isavuconazole shortens the QTc interval. Mycoses. 2018;61:256–60. https://doi.org/10.1111/myc.12731.

    Article  CAS  PubMed  Google Scholar 

  38. DiPippo AJ, Rausch CR, Kontoyiannis DP. Tolerability of isavuconazole after posaconazole toxicity in leukaemia patients. Mycoses. 2019;62:81–6. https://doi.org/10.1111/myc.12851.

    Article  CAS  PubMed  Google Scholar 

  39. Maertens JA, Raad II, Marr KA, Patterson TF, Kontoyiannis DP, Cornely OA, et al. Isavuconazole versus voriconazole for primary treatment of invasive mould disease caused by Aspergillus and other filamentous fungi (SECURE): a phase 3, randomised-controlled, non-inferiority trial. Lancet. 2016;387:760–9. https://doi.org/10.1016/S0140-6736(15)01159-9.

    Article  CAS  PubMed  Google Scholar 

  40. Skiada A, Pagano L, Groll A, Zimmerli S, Dupont B, Lagrou K, et al. Zygomycosis in Europe: analysis of 230 cases accrued by the registry of the European Confederation of Medical Mycology (ECMM) working group on zygomycosis between 2005 and 2007. Clin Microbiol Infect. 2011;17:1859–67. https://doi.org/10.1111/j.1469-0691.2010.03456.x.

    Article  CAS  PubMed  Google Scholar 

  41. Greenberg RN, Mullane K, Van Burik JAH, Raad I, Abzug MJ, Anstead G, et al. Posaconazole as salvage therapy for zygomycosis. Antimicrob Agents Chemother. 2006;50:126–33. https://doi.org/10.1128/AAC.50.1.126-133.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Van Burik J-AH, Hare RS, Solomon HF, Corrado ML, Kontoyiannis DP. Posaconazole is effective as salvage therapy in zygomycosis: a retrospective summary of 91 cases. Clin Infect Dis. 2006;42:e61–5. https://doi.org/10.1086/500212.

    Article  PubMed  Google Scholar 

  43. Kyvernitakis A, Torres HA, Jiang Y, Chamilos G, Lewis RE, Kontoyiannis DP. Initial use of combination treatment does not impact survival of 106 patients with haematologic malignancies and mucormycosis: a propensity score analysis. Clin Microbiol Infect. 2016;22:811.e1–8. https://doi.org/10.1016/j.cmi.2016.03.029.

    Article  CAS  Google Scholar 

  44. Rodriguez CJ, Tribble DR, Malone DL, Murray CK, Jessie EM, Khan M, et al. Treatment of suspected invasive fungal infection in war wounds. Mil Med. 2018;183:142–6. https://doi.org/10.1093/MILMED.

    Article  PubMed  Google Scholar 

  45. Gebremariam T, Wiederhold NP, Alqarihi A, Uppuluri P, Azie N, Edwards JE Jr, et al. Monotherapy or combination therapy of isavuconazole and micafungin for treating murine mucormycosis. J Antimicrob Chemother. 2017;72:462–6. https://doi.org/10.1093/JAC.

    Article  CAS  PubMed  Google Scholar 

  46. Walsh TJ, Jackson AJ, Lee JW, Amantea M, Sein T, Bacher J, et al. Dose-dependent pharmacokinetics of amphotericin B lipid complex in rabbits. Antimicrob Agents Chemother. 2000;44:2068–76. https://doi.org/10.1128/AAC.44.8.2068-2076.2000.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Tissot F, Agrawal S, Pagano L, Petrikkos G, Groll AH, Skiada A, et al. ECIL-6 guidelines for the treatment of invasive candidiasis, aspergillosis and mucormycosis in leukemia and hematopoietic stem cell transplant patients. Haematologica. 2017;102:433–44. https://doi.org/10.3324/haematol.2016.152900.

    Article  PubMed  PubMed Central  Google Scholar 

  48. Cornely OA, Arikan-Akdagli S, Dannaoui E, Groll AH, Lagrou K, Chakrabarti A, et al. ESCMID and ECMM joint clinical guidelines for the diagnosis and management of mucormycosis 2013 2014. https://doi.org/10.1111/1469-0691.12371.

  49. Lanternier F, Poiree S, Elie C, Garcia-Hermoso D, Bakouboula P, Sitbon K, et al. Prospective pilot study of high-dose (10 mg/kg/day) liposomal amphotericin b (l-amb) for the initial treatment of mucormycosis. J Antimicrob Chemother. 2015;70:3116–23. https://doi.org/10.1093/JAC.

    Article  CAS  PubMed  Google Scholar 

  50. Ma LJ, Ibrahim AS, Skory C, Grabherr MG, Burger G, Butler M, et al. Genomic analysis of the basal lineage fungus Rhizopus oryzae reveals a whole-genome duplication. PLoS Genet. 2009;5. https://doi.org/10.1371/journal.pgen.1000549.

  51. Schwarz P, Cornely OA, Dannaoui E. Antifungal combinations in Mucorales: a microbiological perspective. Mycoses. 2019;62:746–60. https://doi.org/10.1111/myc.12909.

    Article  PubMed  Google Scholar 

  52. Kishel JJ, Sivik J. Breakthrough invasive fungal infection in an immunocompromised host while on posaconazole prophylaxis: an omission in patient counseling and follow-up. J Oncol Pharm Pract. 2008;14:189–93. https://doi.org/10.1177/1078155208094123.

    Article  PubMed  Google Scholar 

  53. Krishna G, Ma L, Martinho M, Preston RA, Mara EO. A new solid oral tablet formulation of posaconazole: a randomized clinical trial to investigate rising single- and multiple-dose pharmacokinetics and safety in healthy volunteers. J Antimicrob Chemother. 2012;67:2725–30. https://doi.org/10.1093/JAC.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gubbins PO, Krishna G, Sansone-Parsons A, Penzak SR, Dong L, Martinho M, et al. Pharmacokinetics and safety of oral posaconazole in neutropenic stem cell transplant recipients. Antimicrob Agents Chemother. 2006;50:1993–9. https://doi.org/10.1128/AAC.00157-06.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Jain R, Pottinger P. The effect of gastric acid on the absorption of posaconazole. Clin Infect Dis. 2008;46:1627–1627; author reply 1628. https://doi.org/10.1086/587755.

    Article  PubMed  Google Scholar 

  56. Furuno JP, Tallman GB, Noble BN, Bubalo JS, Forrest GN, Lewis JS, et al. Clinical outcomes of oral suspension versus delayed-release tablet formulations of posaconazole for prophylaxis of invasive fungal infections. Antimicrob Agents Chemother. 2018;62. https://doi.org/10.1128/AAC.00893-18.

  57. John J, Loo A, Mazur S, Walsh TJ. Therapeutic drug monitoring of systemic antifungal agents: a pragmatic approach for adult and pediatric patients. Expert Opin Drug Metab Toxicol. 2019;15:881–95. https://doi.org/10.1080/17425255.2019.1671971.

    Article  CAS  PubMed  Google Scholar 

  58. Morris AA, Mueller SW, Rower JE, Washburn T, Kiser TH. Evaluation of sulfobutylether-β-cyclodextrin exposure in a critically ill patient receiving intravenous posaconazole while undergoing continuous venovenous hemofiltration. Antimicrob Agents Chemother. 2015;59:6653–6. https://doi.org/10.1128/AAC.01493-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Astellas Pharma US. Prescribing information for isavuconazonium sulfate. https://www.astellas.us/docs/cresemba.pdf. (accessed May 19, 2020).

  60. Jenks JD, Salzer HJF, Prattes J, Krause R, Buchheidt D, Hoenigl M. Spotlight on isavuconazole in the treatment of invasive aspergillosis and mucormycosis: design, development, and place in therapy. Drug Des Devel Ther. 2018;12:1033–44. https://doi.org/10.2147/DDDT.S145545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Schwartz S, Cornely OA, Hamed K, Marty FM, Maertens J, Rahav G, et al. Isavuconazole for the treatment of patients with invasive fungal diseases involving the central nervous system. Med Mycol. 2020;58:417–24. https://doi.org/10.1093/mmy/myz103.

    Article  PubMed  Google Scholar 

  62. Ashkenazi-Hoffnung L, Bilavsky E, Levy I, Grisaru G, Sadot E, Ben-Ami R, et al. Isavuconazole as successful salvage therapy for mucormycosis in pediatric patients. Pediatr Infect Dis J. 2020;1:718–24. https://doi.org/10.1097/inf.0000000000002671.

    Article  Google Scholar 

  63. Stern A, Su Y, Lee YJ, Seo S, Shaffer B, Tamari R, et al. A single-center, open-label trial of isavuconazole prophylaxis against invasive fungal infection in patients undergoing allogeneic hematopoietic cell transplantation. Biol Blood Marrow Transplant. 2020;26:1195–202. https://doi.org/10.1016/j.bbmt.2020.02.009.

    Article  CAS  PubMed  Google Scholar 

  64. Decembrino N, Perruccio K, Zecca M, Colombini A, Calore E, Muggeo P, et al. A case series and literature review of isavuconazole use in pediatric patients with hemato-oncologic diseases and hematopoietic stem cell transplantation. Antimicrob Agents Chemother. 2020;64. https://doi.org/10.1128/AAC.01783-19.

  65. Legouge C, Caillot D, Chrétien ML, Lafon I, Ferrant E, Audia S, et al. The reversed halo sign: pathognomonic pattern of pulmonary mucormycosis in leukemic patients with neutropenia? Clin Infect Dis. 2014;58:672–8. https://doi.org/10.1093/cid/cit929.

    Article  CAS  PubMed  Google Scholar 

  66. Nucci M, Perfect JR. When primary antifungal therapy fails. Clin Infect Dis. 2008;46:1426–33. https://doi.org/10.1086/587101.

    Article  PubMed  Google Scholar 

  67. Miceli MH, Maertens J, Buvé K, Grazziutti M, Woods G, Rahman M, et al. Immune reconstitution inflammatory syndrome in cancer patients with pulmonary aspergillosis recovering from neutropenia: proof of principle, description, and clinical and research implications. Cancer. 2007;110:112–20. https://doi.org/10.1002/cncr.22738.

    Article  PubMed  Google Scholar 

  68. •• Spellberg B, Ibrahim A, Roilides E, Lewis RE, Lortholary O, Petrikkos G, et al. Combination therapy for mucormycosis: why, what, and how? Clin Infect Dis. 2012;54:S73–8. https://doi.org/10.1093/cidThis comprehensive review compiles the available literature on combination antifungal therapy for mucormycosis and also describes its clinical implications on disease management.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Gargouri M, Marrakchi C, Feki W, Charfi S, Maaloul I, Lahiani D, et al. Combination of amphotericin B and caspofungin in the treatment of mucormycosis. Med Mycol Case Rep. 2019;26:32–7. https://doi.org/10.1016/j.mmcr.2019.09.006.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Reed C, Bryant R, Ibrahim AS, Edwards J Jr, Filler SG, Goldberg R, et al. Combination polyene-caspofungin treatment of rhino-orbital-cerebral mucormycosis. Clin Infect Dis. 2008;47:364–71. https://doi.org/10.1086/589857.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Ibrahim AS, Spellberg B, Edwards J. Iron acquisition: a novel perspective on mucormycosis pathogenesis and treatment. Curr Opin Infect Dis. 2008;21:620–5. https://doi.org/10.1097/QCO.0b013e3283165fd1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Rodríguez MM, Serena C, Mariné M, Pastor FJ, Guarro J. Posaconazole combined with amphotericin B, an effective therapy for a murine disseminated infection caused by Rhizopus oryzae. Antimicrob Agents Chemother. 2008;52:3786–8. https://doi.org/10.1128/AAC.00628-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ibrahim AS, Gebremariam T, Luo G, Fu Y, French SW, Edwards JE, et al. Combination therapy of murine mucormycosis or aspergillosis with iron chelation, polyenes, and echinocandins. Antimicrob Agents Chemother. 2011;55:1768–70. https://doi.org/10.1128/AAC.01577-10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Spellberg B, Ibrahim AS, Chin-Hong PV, Kontoyiannis DP, Morris MI, Perfect JR, et al. The deferasirox–AmBisome therapy for mucormycosis (DEFEAT Mucor) study: a randomized, double-blinded, placebo-controlled trial. J Antimicrob Chemother. 2012;67:715–22. https://doi.org/10.1093/JAC.

    Article  CAS  PubMed  Google Scholar 

  75. Galgóczy L, Papp T, Kovács L, Ördögh L, Vágvölgyi C. In vitro activity of phenothiazines and their combinations with amphotericin B against Zygomycetes causing rhinocerebral zygomycosis. Med Mycol. 2009;47:331–5. https://doi.org/10.1080/13693780802378853.

    Article  CAS  PubMed  Google Scholar 

  76. Chamilos G, Lewis RE, Kontoyiannis DP. Lovastatin has significant activity against zygomycetes and interacts synergistically with voriconazole. Antimicrob Agents Chemother. 2006;50:96–103. https://doi.org/10.1128/AAC.50.1.96-103.2006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Tavakkoli A, Johnston TP, Sahebkar A. Antifungal effects of statins. Pharmacol Ther. 2020;208:107483. https://doi.org/10.1016/j.pharmthera.2020.107483.

    Article  CAS  PubMed  Google Scholar 

  78. Mellinghoff SC, Panse J, Alakel N, Behre G, Buchheidt D, Christopeit M, et al. Primary prophylaxis of invasive fungal infections in patients with haematological malignancies: 2017 update of the recommendations of the Infectious Diseases Working Party (AGIHO) of the German Society for Haematology and Medical Oncology (DGHO). Ann Hematol. 2018;97:197–207. https://doi.org/10.1007/s00277-017-3196-2.

    Article  PubMed  Google Scholar 

  79. Fung M, Schwartz BS, Doernberg SB, Langelier C, Lo M, Graff L, et al. Breakthrough invasive fungal infections on isavuconazole prophylaxis and treatment: what is happening in the real-world setting? Clin Infect Dis. 2018;67:1142–3. https://doi.org/10.1093/cid/ciy260.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bowen CD, Tallman GB, Hakki M, Lewis JS II. Isavuconazole to prevent invasive fungal infection in immunocompromised adults: initial experience at an academic medical centre. Mycoses. 2019;62:665–72. https://doi.org/10.1111/myc.12924.

    Article  CAS  PubMed  Google Scholar 

  81. Fontana L, Perlin DS, Zhao Y, Noble BN, Lewis JS, Strasfeld L, et al. Isavuconazole prophylaxis in patients with hematologic malignancies and hematopoietic cell transplant recipients. Clin Infect Dis. 2020;70:723–30. https://doi.org/10.1093/cid/ciz282.

    Article  CAS  PubMed  Google Scholar 

  82. Kontoyiannis DP, Lewis RE. How I treat mucormycosis. Blood. 2011;118:1216–24. https://doi.org/10.1182/blood-2011-03-316430.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Dolton MJ, Ray JE, Chen SCA, Ng K, Pont L, McLachlan AJ. Multicenter study of posaconazole therapeutic drug monitoring: exposure-response relationship and factors affecting concentration. Antimicrob Agents Chemother. 2012;56:5503–10. https://doi.org/10.1128/AAC.00802-12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Andes D, Pascua A, Marchetti O. Antifungal therapeutic drug monitoring: established and emerging indications. Antimicrob Agents Chemother. 2009;53:24–34. https://doi.org/10.1128/AAC.00705-08.

    Article  CAS  PubMed  Google Scholar 

  85. Krishna G, Martinho M, Chandrasekar P, Ullmann AJ, Patino H. Pharmacokinetics of oral posaconazole in allogeneic hematopoietic stem cell transplant recipients with graft-versus-host disease. Pharmacotherapy. 2007;27:1627–36. https://doi.org/10.1592/phco.27.12.1627.

    Article  CAS  PubMed  Google Scholar 

  86. Pomorska A, Malecka A, Jaworski R, Radon-Proskura J, Hare RK, Nielsen HV, et al. Isavuconazole in a successful combination treatment of disseminated mucormycosis in a child with acute lymphoblastic leukaemia and generalized haemochromatosis: a case report and review of the literature. Mycopathologia. 2019;184:81–8. https://doi.org/10.1007/s11046-018-0287-0.

    Article  CAS  PubMed  Google Scholar 

  87. Borman AM, Hughes JM, Oliver D, Fraser M, Sunderland J, Noel AR, et al. Lessons from isavuconazole therapeutic drug monitoring at a United Kingdom Reference Center. Med Mycol. n.d.. https://doi.org/10.1093/MMY/MYAA022.

  88. • Gómez-López A. Antifungal therapeutic drug monitoring: focus on drugs without a clear recommendation. Clin Microbiol Infect. 2020. https://doi.org/10.1016/j.cmi.2020.05.037This systematic review focuses on different aspects of pharmacokinetic/pharmacodynamic data specifically for systemic antifungals which are not routinely reccomended for TDM by experts. It also summarizes recent threshold values for clinical outcome and side effects.

  89. Caitlin RR, Adam JD, Prithviraj B, Dimitrios PK. Breakthrough fungal infections in patients with leukemia receiving isavuconazole. Clin Infect Dis. 2018;67:1610–3. https://doi.org/10.1093/cid.

    Article  Google Scholar 

  90. Sağıroğlu P, Nedret Koç A, Atalay MA, Altinkanat Gelmez G, Canöz Ö, Mutlu Sarıgüzel F. Mucormycosis experience through the eyes of the laboratory. Infect Dis (Auckl). 2019;51:730–7. https://doi.org/10.1080/23744235.2019.1645962.

    Article  CAS  Google Scholar 

  91. Ali Asghar S, Majid Z, Tahir F, Qadar LT, Mir S. Rhino-oculo cerebral mucormycosis resistant to amphotericin b in a young patient with diabetic ketoacidosis. Cureus. 2019;11. https://doi.org/10.7759/cureus.4295.

  92. Lamoth F, Damonti L, Alexander BD. Role of antifungal susceptibility testing in non-Aspergillus invasive mold infections. J Clin Microbiol. 2016;54:1638–40. https://doi.org/10.1128/JCM.00318-16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. • Chang Z, Billmyre RB, Lee SC, Heitman J. Broad antifungal resistance mediated by RNAi-dependent epimutation in the basal human fungal pathogen Mucor circinelloides. PLoS Genet. 2019. https://doi.org/10.1371/journal.pgen.1007957This is an original article showing that RNAi-mediated epimutation is capable of targeting multiple genes which allows Mucor to develop resistance to many antifungal agents.

  94. Chang Z, Heitman J. Drug-resistant epimutants exhibit organ-specific stability and induction during murine infections caused by the human fungal pathogen Mucor circinelloides. MBio. 2019;10. https://doi.org/10.1128/mBio.02579-19.

  95. Mihara T, Kakeya H, Izumikawa K, Obata Y, Nishino T, Takazono T, et al. Efficacy of aerosolized liposomal amphotericin B against murine invasive pulmonary mucormycosis. J Infect Chemother. 2014;20:104–8. https://doi.org/10.1016/j.jiac.2013.09.002.

    Article  CAS  PubMed  Google Scholar 

  96. Devauchelle P, Jeanne M, Fréalle E, Fréalle E. Mucormycosis in burn patients. J Fungi. 2019;5. https://doi.org/10.3390/jof5010025.

  97. Di Pentima MC, Chan S, Powell J, Napoli JA, Walter AW, Walsh TJ. Topical amphotericin B in combination with standard therapy for severe necrotizing skin and soft-tissue mucormycosis in an infant with bilineal leukemia: case report and review. J Pediatr Hematol Oncol. 2014;36:e468–70. https://doi.org/10.1097/MPH.0000000000000166.

    Article  PubMed  Google Scholar 

  98. Chavanon V, Molina N,Taub DM, Taub PJ. Continuous Amphotericin Irrigation for Cutaneous Mucormycosis in the Pediatric Patient. Surgical Sciences Journal. 2020; 2:1–4. https://doi.org/10.1057/ssj0000008

  99. Brunet K, Rammaert B. Mucormycosis treatment: recommendations, latest advances, and perspectives. J Mycol Med. 2020;101007:101007. https://doi.org/10.1016/j.mycmed.2020.101007.

    Article  Google Scholar 

  100. Garcia A, Fan YY, Vellanki S, Huh EY, Vanegas D, Wang SH, et al. Nanoemulsion as an effective treatment against human-pathogenic fungi. MSphere. 2019;4. https://doi.org/10.1128/msphere.00729-19.

  101. Khalili MR, Abtahi SMB, Atighehchian M, Hosseini S, Shirvani M, Sadeghi E, et al. Invasive fungal keratitis as an uncommon form of mucormycosis leading to endophthalmitis: report of two cases and literature review. Curr Fungal Infect Rep. 2020:1–7. https://doi.org/10.1007/s12281-020-00403-5.

  102. Mesa Varona D, Celis Sánchez J, Alfaya Muñoz L, Avendaño Cantos EM, Romero Moraleda L. Keratitis caused by Absidia corymbifera in an immunocompetent male with no corneal injuries. Arch Soc Esp Oftalmol. 2015;90:139–41. https://doi.org/10.1016/j.oftal.2014.02.020.

    Article  CAS  PubMed  Google Scholar 

  103. Anderson A, McManus D, Perreault S, Lo YC, Seropian S, Topal JE. Combination liposomal amphotericin B, posaconazole and oral amphotericin B for treatment of gastrointestinal Mucorales in an immunocompromised patient. Med Mycol Case Rep. 2017;17:11–3. https://doi.org/10.1016/j.mmcr.2017.05.004.

    Article  PubMed  PubMed Central  Google Scholar 

  104. Grannan BL, Yanamadala V, Venteicher AS, Walcott BP, Barr JC. Use of external ventriculostomy and intrathecal anti-fungal treatment in cerebral mucormycotic abscess. J Clin Neurosci. 2014;21:1819–21. https://doi.org/10.1016/j.jocn.2014.01.008.

    Article  PubMed  Google Scholar 

  105. Parize P, Mamez AC, Garcia-Hermoso D, Dumaine V, Poirée S, Kauffmann-Lacroix C, et al. Successful treatment of Saksenaea sp. osteomyelitis by conservative surgery and intradiaphyseal incorporation of amphotericin B cement beads. Antimicrob Agents Chemother. 2019;63. https://doi.org/10.1128/AAC.01006-18.

  106. • Gebremariam T, Alkhazraji S, Alqarihi A, Wiederhold NP, Shaw KJ, Patterson TF, et al. Fosmanogepix (APX001) is effective in the treatment of pulmonary murine mucormycosis due to Rhizopus arrhizus. Antimicrob Agents Chemother. 2020. https://doi.org/10.1128/aac.00178-20Recent study assessing the in vivo activity and supporting the development of fosmanogepix as first-in-class treatment of mucormycosis.

  107. Novel Antifungal Gains Fast Track Designation for Seven Indications - MPR . https://www.empr.com/home/news/drugs-in-the-pipeline/novel-antifungal-gains-fast-track-designation-for-seven-indications/ (accessed May 19, 2020).

  108. Gebremariam T, Wiederhold NP, Fothergill AW, Garvey EP, Hoekstra WJ, Schotzinger RJ, et al. VT-1161 protects immunosuppressed mice from Rhizopus arrhizus var. arrhizus infection. Antimicrob Agents Chemother. 2015;59:7815–7. https://doi.org/10.1128/AAC.01437-15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Hoekstra WJ, Garvey EP, Moore WR, Rafferty SW, Yates CM, Schotzinger RJ. Design and optimization of highly-selective fungal CYP51 inhibitors. Bioorganic Med Chem Lett. 2014;24:3455–8. https://doi.org/10.1016/j.bmcl.2014.05.068.

    Article  CAS  Google Scholar 

  110. Gebremariam T, Alkhazraji S, Lin L, Wiederhold NP, Garvey EP, Hoekstra WJ, et al. Prophylactic treatment with VT-1161 protects immunosuppressed mice from Rhizopus arrhizus var. Arrhizus infection Antimicrob Agents Chemother. 2017;61. https://doi.org/10.1128/AAC.00390-17.

  111. Vellanki S, Billmyre RB, Lorenzen A, Campbell M, Turner B, Huh EY, et al. A novel resistance pathway for calcineurin inhibitors in the human-pathogenic Mucorales Mucor circinelloides. MBio. 2020;11. https://doi.org/10.1128/mBio.02949-19.

  112. Gebremariam T, Alkhazraji S, Soliman SSM, Gu Y, Jeon HH, Zhang L, et al. Anti-CotH3 antibodies protect mice from mucormycosis by prevention of invasion and augmenting opsonophagocytosis. Sci Adv. 2019;5:eaaw1327. https://doi.org/10.1126/sciadv.aaw1327.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Siddiqui A, Davidson JD, Mustoe TA. Ischemic tissue oxygen capacitance after hyperbaric oxygen therapy: a new physiologic concept. Plast Reconstr Surg. 1997;99:148–55. https://doi.org/10.1097/00006534-199701000-00023.

    Article  CAS  PubMed  Google Scholar 

  114. John BV, Chamilos G, Kontoyiannis DP. Hyperbaric oxygen as an adjunctive treatment for zygomycosis. Clin Microbiol Infect. 2005;11:515–7. https://doi.org/10.1111/j.1469-0691.2005.01170.x.

    Article  CAS  PubMed  Google Scholar 

  115. Kruse M, Nielsen S, Berg A, Kaul S. Use of adjuvant hyperbaric oxygen therapy in a patient with traumatic inoculation of mucormycosis resulting in extremity amputation. Trauma Surg Acute Care Open. 2020;5:e000434. https://doi.org/10.1136/tsaco-2019-000434.

    Article  PubMed  PubMed Central  Google Scholar 

  116. Ibrahim AS, Gebermariam T, Fu Y, Lin L, Husseiny MI, French SW, et al. The iron chelator deferasirox protects mice from mucormycosis through iron starvation. J Clin Invest. 2007;117:2649–57. https://doi.org/10.1172/JCI32338.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Rajeev S, Neha G, Anjali S, Camilla R. Deferasirox in mucormycosis: hopefully, not defeated. J Antimicrob Chemother. 2012;67:783. https://doi.org/10.1093/JAC.

    Article  Google Scholar 

  118. Gil-Lamaignere C, Simitsopoulou M, Roilides E, Maloukou A, Winn RM, Walsh TJ. Interferon-γ and granulocyte-macrophage colony-stimulating factor augment the activity of polymorphonuclear leukocytes against medically important zygomycetes. J Infect Dis. 2005;191:1180–7. https://doi.org/10.1086/428503.

    Article  CAS  PubMed  Google Scholar 

  119. Gebremariam T, Lin L, Liu M, Kontoyiannis DP, French S, Edwards JE, et al. Bicarbonate correction of ketoacidosis alters host-pathogen interactions and alleviates mucormycosis. J Clin Invest. 2016;126:2280–94. https://doi.org/10.1172/JCI82744.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Patel AK, Patel KK, Patel K, Gohel S, Chakrabarti A. Mucormycosis at a tertiary care centre in Gujarat, India. Mycoses. 2017;60:407–11. https://doi.org/10.1111/myc.12610.

    Article  PubMed  Google Scholar 

  121. Gupta N, Singh G, Xess I, Soneja M. Managing mucormycosis in a resource-limited setting: challenges and possible solutions. Trop Dr. 2019;49:153–5. https://doi.org/10.1177/0049475519825561.

    Article  Google Scholar 

  122. • Patel A, Kaur H, Xess I, Michael JS, Savio J, Rudramurthy S, et al. A multicentre observational study on the epidemiology, risk factors, management and outcomes of mucormycosis in India. Clin Microbiol Infect. 2020;26:944.e9–944.e15. https://doi.org/10.1016/j.cmi.2019.11.021The study provides the present scenario of management of mucormycosis in developing countries, especially the limitations.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

All artwork is original and was prepared using the BioRender software.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arunaloke Chakrabarti.

Ethics declarations

Conflict of Interest

Arunaloke Chakrabarti and Shreya Singh declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Current Management of Fungal Infections

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakrabarti, A., Singh, S. Management of Mucormycosis. Curr Fungal Infect Rep 14, 348–360 (2020). https://doi.org/10.1007/s12281-020-00406-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12281-020-00406-2

Keywords

Navigation