Antifungal and Antibacterial Activity of Terpenes for Improvement of Indoor Air Quality

Abstract

Purpose of Review

We summarized the studies on the usage of terpenes and some essential oils on mold and bacterial concentrations in air samples. There was strong action of the terpenes product to decrease total microbial load. The investigation of antifungal activity in indoor environments validates the translation of laboratory-based outcomes showing a statistically significant reduction of bacterial and fungal concentration in the tested sites.

Recent Findings

Terpenes have recently generated interest for their in vitro antimicrobial efficacy, but have not been widely evaluated in situ. There have been limited studies that scale-up laboratory experiments and assess the efficiency of antimicrobial agents within building environments. Our findings provide a basis to reduce microbial load, including drug-resistant fungi, by washing the indoor air with a terpenes solution. This strategy could diminish health adverse effects, such as allergy or pulmonary infection, produced by inhalation of etiologic agents.

Summary

Terpenes have an effect on the indoor microbial load and may be used to reduce fungal and bacterial contaminants in workplaces, hospitals and houses.

This is a preview of subscription content, access via your institution.

Fig. 1

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1

    Dancer SJ. Importance of the environment in meticillin-resistant Staphylococcus aureus acquisition: the case for hospital cleaning. Lancet Infect Dis. 2008 Feb;8(2):101–13.

    PubMed  Google Scholar 

  2. 2

    Azimi F, Naddafi K, Nabizadeh R, Hassanvand MS, Alimohammadi M, Afhami S, et al. Fungal air quality in hospital rooms: a case study in Tehran. Iran J Environ Health Sci Eng. 2013 Dec;11(1):30.

    PubMed  Google Scholar 

  3. 3

    Eduard W, Pearce N, Douwes J. Chronic bronchitis, COPD, and lung function in farmers. Chest. 2009 Sep;136(3):716–25.

    PubMed  Google Scholar 

  4. 4

    Ayanbimpe GM, Wapwera SD, Kuchin D. Indoor air mycoflora of residential dwellings in Jos metropolis. Afr Health Sci. 2010 Jun;10(2):172–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. 5

    Vornanen-Winqvist C, Järvi K, Toomla S, Ahmed K, Andersson M, Mikkola R, et al. Ventilation positive pressure intervention effect on indoor air quality in a school building with moisture problems. Int J Environ Res Public Health. 2018 Jan 30;15(2):230.

    PubMed Central  Google Scholar 

  6. 6

    Escombe AR, Moore DAJ, Gilman RH, Navincopa M, Ticona E, Mitchell B, et al. Upper-Room Ultraviolet Light and Negative Air Ionization to Prevent Tuberculosis Transmission. Wilson P, editor. PLoS Med. 2009 Mar 17;6(3):e1000043.

  7. 7

    de Hoog GS, Guarro Safont J, Gené J, Figueras MJ, Botter A. Atlas of clinical Fungi. 2nd ed. Centraalbureau voor Schimmelcultures: Utrecht; 2000. 1126 p.

    Google Scholar 

  8. 8

    Normand AC, Becker P, Gabriel F, Cassagne C, Accoceberry I, Gari-Toussaint M, et al. Validation of a new web application for identification of Fungi by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2017;55(9):2661–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    EUCAST. Technical note on the method for the determination of broth dilution minimum inhibitory concentrations of antifungal agents for conidia–forming moulds. Clin Microbiol Infect. 2008 Oct;14(10):982–4.

    Google Scholar 

  10. 10.

    • Abbasi F, Samaei MR. The effect of temperature on airborne filamentous fungi in the indoor and outdoor space of a hospital. Environ Sci Pollut Res. 2019 Jun;26(17):16868–76. The authors showed the relevance of temperature on fungi growth inside hospital settings.

  11. 11.

    Lee KW, Mukund R. Filter collection. In: Baron PA, Willeke K, editors. Aerosol measurement, principles, techniques and applications. 2nd ed. New York: Wiley; 2001. p. 197–228.

    Google Scholar 

  12. 12.

    •• Eduard W, Heederik D, Duchaine C, Green BJ. Bioaerosol exposure assessment in the workplace: the past, present and recent advances. J environ Monit. 2012;14(2):334. An excellent review on the bioaerosols professional exposure .

  13. 13.

    • Yoo K, Lee TK, Choi EJ, Yang J, Shukla SK, Hwang S, et al. Molecular approaches for the detection and monitoring of microbial communities in bioaerosols: A review. J Environ Sci. 2017 Jan;51:234–47. This study points out some future strategies to detect fungi in bioaerosols.

  14. 14.

    Samson RA, Visagie CM, Houbraken J, Hong S-B, Hubka V, Klaassen CHW, et al. Phylogeny, identification and nomenclature of the genus Aspergillus. Stud Mycol. 2014 Jun;78:141–73.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15.

    Visagie CM, Hirooka Y, Tanney JB, Whitfield E, Mwange K, Meijer M, et al. Aspergillus, Penicillium and Talaromyces isolated from house dust samples collected around the world. Stud Mycol. 2014 Jun;78:63–139.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. 16.

    • Flannigan B, Samson RA, Miller JD, editors. Microorganisms in home and indoor work environments: diversity, health impacts, investigation and control. 2nd ed. Boca Raton, FL: CRC Press; 2011. 529 p. A comprehensive review of the impact of indoor air on human health.

  17. 17.

    Amend AS, Seifert KA, Bruns TD. Quantifying microbial communities with 454 pyrosequencing: does read abundance count? Mol Ecol. 2010 Dec;19(24):5555–65.

    CAS  PubMed  Google Scholar 

  18. 18.

    Nonnenmann MW, Coronado G, Thompson B, Griffith WC, Hanson JD, Vesper S, et al. Utilizing pyrosequencing and quantitative PCR to characterize fungal populations among house dust samples. J Environ Monit. 2012;14(8):2038–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. 19.

    • Douwes J, Thorne P, Pearce N, Heederik D. Bioaerosol health effects and exposure assessment: progress and prospects. Ann Occup Hyg. 2003 Apr;47(3):187–200. The health effects of bioaerosols are well described by the authors.

  20. 20.

    Griffin DW. Atmospheric movement of microorganisms in clouds of desert dust and implications for human health. Clin Microbiol Rev. 2007 Jul;20(3):459–77, table of contents.

  21. 21.

    Kuhn DM, Ghannoum MA. Indoor mold, toxigenic fungi, and Stachybotrys chartarum: infectious disease perspective. Clin Microbiol Rev. 2003 Jan;16(1):144–72.

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Mandal J, Brandl H. Bioaerosols in indoor environment - a review with special reference to residential and occupational locations. Open Environ Biol Monit J. 2011 Sep 28;4(1):83–96.

    Google Scholar 

  23. 23.

    Mensah-Attipoe J, Saari S, Veijalainen AM, Pasanen P, Keskinen J, Leskinen JTT, et al. Release and characteristics of fungal fragments in various conditions. Sci Total Environ. 2016 Mar;547:234–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Afanou KA, Straumfors A, Skogstad A, Skaar I, Hjeljord L, Skare Ø, et al. Profile and morphology of fungal aerosols characterized by field emission scanning Electron microscopy (FESEM). Aerosol Sci Technol J Am Assoc Aerosol Res. 2015;49(6):423–35.

    CAS  Google Scholar 

  25. 25.

    Reijula K. Moisture-problem buildings with molds causing work-related diseases. Adv Appl Microbiol. 2004;55:175–89.

    PubMed  Google Scholar 

  26. 26.

    •• Knutsen AP, Bush RK, Demain JG, Denning DW, Dixit A, Fairs A, et al. Fungi and allergic lower respiratory tract diseases. J Allergy Clin Immunol. 2012 Feb;129(2):280–91. The relationship between allergy and fungi is depicted.

  27. 27.

    Hoseini-Tabatabaei SA, Gluhak A, Tafazolli R. A survey on smartphone-based systems for opportunistic user context recognition. ACM Comput Surv. 2013 Jun 1;45(3):1–51.

    Google Scholar 

  28. 28.

    Kramer A, Schwebke I, Kampf G. How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect Dis. 2006 Dec;6(1):130.

    PubMed  PubMed Central  Google Scholar 

  29. 29.

    Chouhan S, Sharma K, Guleria S. Antimicrobial activity of some essential oils-present status and future perspectives. Med Basel Switz. 2017 Aug;8:4(3).

    Google Scholar 

  30. 30.

    López P, Sánchez C, Batlle R, Nerín C. Vapor-phase activities of cinnamon, thyme, and oregano essential oils and key constituents against foodborne microorganisms. J Agric Food Chem. 2007 May;55(11):4348–56.

    PubMed  Google Scholar 

  31. 31.

    Nielsen PV, Rios R. Inhibition of fungal growth on bread by volatile components from spices and herbs, and the possible application in active packaging, with special emphasis on mustard essential oil. Int J Food Microbiol. 2000 Sep;60(2–3):219–29.

    CAS  PubMed  Google Scholar 

  32. 32.

    Suppakul P, Miltz J, Sonneveld K, Bigger SW. Antimicrobial properties of basil and its possible application in food packaging. J Agric Food Chem. 2003 May;51(11):3197–207.

    CAS  PubMed  Google Scholar 

  33. 33.

    Chanthaphon S, Chanthachum S, Hongpattarakere T. Antimicrobial activities of essential oils and crude extracts from tropical Citrus spp. against food-related microorganisms. Songklanakarin J Sci Technol. 2008 Apr;30(Suppl.1):125–31.

    Google Scholar 

  34. 34.

    Jafari S, Esfahani S, Fazeli MR, Jamalifar H, Samadi M, Samadi N, et al. Antimicrobial activity of lime essential oil against food-borne pathogens isolated from cream-filled cakes and pastries. Int J Biol Chem. 2011 Apr 1;5(4):258–65.

    CAS  Google Scholar 

  35. 35.

    Tyagi AK, Malik A. Antimicrobial potential and chemical composition of Eucalyptus globulus oil in liquid and vapour phase against food spoilage microorganisms. Food Chem. 2011 May;126(1):228–35.

    CAS  Google Scholar 

  36. 36.

    •• Su HJ, Chao CJ, Chang HY, Wu PC. The effects of evaporating essential oils on indoor air quality. Atmos Environ. 2007 Feb;41(6):1230–6. The essential oil antifungal activities on indoor air are pointed out.

  37. 37.

    Su HJ, Wu PC, Chen HL, Lee FC, Lin LL. Exposure assessment of indoor allergens, endotoxin, and airborne Fungi for homes in southern Taiwan. Environ Res. 2001 Feb;85(2):135–44.

    CAS  PubMed  Google Scholar 

  38. 38.

    •• Heo KJ, Lim CE, Kim HB, Lee BU. Effects of human activities on concentrations of culturable bioaerosols in indoor air environments. J Aerosol Sci. 2017 Feb;104:58–65. The correlation between human activities and bioaerosols is defined.

  39. 39.

    Hospodsky D, Qian J, Nazaroff WW, Yamamoto N, Bibby K, Rismani-Yazdi H, et al. Human Occupancy as a Source of Indoor Airborne Bacteria. Wold LE, editor. PLoS ONE. 2012 Apr 18;7(4):e34867.

  40. 40.

    Meadow JF, Altrichter AE, Kembel SW, Kline J, Mhuireach G, Moriyama M, et al. Indoor airborne bacterial communities are influenced by ventilation, occupancy, and outdoor air source. Indoor Air. 2014 Feb;24(1):41–8.

  41. 41.

    Gaüzère C, Godon JJ, Blanquart H, Ferreira S, Moularat S, Robine E, et al. ‘Core species’ in three sources of indoor air belonging to the human micro-environment to the exclusion of outdoor air. Sci Total Environ. 2014 Jul;485–486:508–17.

    PubMed  Google Scholar 

  42. 42.

    Gaüzère C, Moletta-Denat M, Blanquart H, Ferreira S, Moularat S, Godon JJ, et al. Stability of airborne microbes in the louvre museum over time. Indoor Air. 2014 Feb;24(1):29–40.

    PubMed  Google Scholar 

  43. 43.

    Qian H, Zheng X. Ventilation control for airborne transmission of human exhaled bio-aerosols in buildings. J Thorac Dis. 2018 Jul;10(S9):S2295–304.

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Miller JD, Laflamme AM, Sobol Y, Lafontaine P, Greenhalgh R. Fungi and fungal products in some Canadian houses. Int Biodeterior. 1988 Jan;24(2):103–20.

    CAS  Google Scholar 

  45. 45.

    Chew GL, Douwes J, Doekes G, Higgins KM, Van Strien R, Spithoven J, et al. Fungal extracellular polysaccharides, beta (1,3)-glucans and culturable fungi in repeated sampling of house dust. Indoor Air. 2001 Sep;11(3):171–8.

    CAS  PubMed  Google Scholar 

  46. 46.

    Gehring U, Douwes J, Doekes G, Koch A, Bischof W, Fahlbusch B, et al. Beta(1,3)-glucan in house dust of German homes: housing characteristics, occupant behavior, and relations with endotoxins, allergens, and molds. Environ Health Perspect. 2001 Feb;109(2):139–44.

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47.

    • Li DW, Kendrick B. A Year-round Comparison of Fungal Spores in Indoor and Outdoor Air. Mycologia. 1995 Mar;87(2):190. A well-done study on monitoring fungal spores in atmospheric air.

  48. 48.

    Wouters IM, Douwes J, Doekes G, Thorne PS, Brunekreef B, Heederik DJJ. Increased levels of markers of microbial exposure in homes with indoor storage of organic household waste. Appl Environ Microbiol. 2000 Feb 1;66(2):627–31.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49.

    Becher R, Øvrevik J, Schwarze P, Nilsen S, Hongslo J, Bakke J. Do carpets impair indoor air quality and cause adverse health outcomes: a review. Int J Environ Res Public Health. 2018 Jan 23;15(2):184.

    PubMed Central  Google Scholar 

  50. 50.

    Ren P, Jankun TM, Belanger K, Bracken MB, Leaderer BP. The relation between fungal propagules in indoor air and home characteristics. Allergy. 2001 May;56(5):419–24.

    CAS  PubMed  Google Scholar 

  51. 51.

    Foarde K, Berry M. Comparison of biocontaminant levels associated with hard vs. carpet floors in nonproblem schools: results of a year long study. J Expo Sci Environ Epidemiol. 2004 Apr;14(S1):S41–8.

    Google Scholar 

  52. 52.

    Sessa R, Di PM, Schiavoni G, Santino I, Altieri A, Pinelli S, et al. Microbiological indoor air quality in healthy buildings. New Microbiol. 2002 Jan;25(1):51–6.

    CAS  PubMed  Google Scholar 

  53. 53.

    Täubel M, Rintala H, Pitkäranta M, Paulin L, Laitinen S, Pekkanen J, et al. The occupant as a source of house dust bacteria. J Allergy Clin Immunol. 2009 Oct;124(4):834–840.e47.

  54. 54.

    Kembel SW, O’Connor TK, Arnold HK, Hubbell SP, Wright SJ, Green JL. Relationships between phyllosphere bacterial communities and plant functional traits in a neotropical forest. Proc Natl Acad Sci U S A. 2014 Sep 23;111(38):13715–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Crawford JA, Rosenbaum PF, Anagnost SE, Hunt A, Abraham JL. Indicators of airborne fungal concentrations in urban homes: understanding the conditions that affect indoor fungal exposures. Sci Total Environ. 2015 Jun;517:113–24.

    CAS  PubMed  Google Scholar 

  56. 56.

    Noris F, Siegel JA, Kinney KA. Evaluation of HVAC filters as a sampling mechanism for indoor microbial communities. Atmos Environ. 2011 Jan;45(2):338–46.

    CAS  Google Scholar 

  57. 57.

    Weaver L, Michels HT, Keevil CW. Potential for preventing spread of fungi in air-conditioning systems constructed using copper instead of aluminium. Lett Appl Microbiol. 2010 Jan;50(1):18–23.

    CAS  PubMed  Google Scholar 

  58. 58.

    • Perdelli F, Cristina ML, Sartini M, Spagnolo AM, Dallera M, Ottria G, et al. Fungal contamination in hospital environments. Infect Control Hosp Epidemiol. 2006 Jan;27(1):44–7. This study stressed the relevance of monitoring hospital settings for bioaerosols.

  59. 59.

    Panagopoulou P, Filioti J, Petrikkos G, Giakouppi P, Anatoliotaki M, Farmaki E, et al. Environmental surveillance of filamentous fungi in three tertiary care hospitals in Greece. J Hosp Infect. 2002 Nov;52(3):185–91.

    CAS  PubMed  Google Scholar 

  60. 60.

    Li CS, Hou PA. Bioaerosol characteristics in hospital clean rooms. Sci Total Environ. 2003 Apr 15;305(1–3):169–76.

    CAS  PubMed  Google Scholar 

  61. 61.

    Basilico M de la LZ, Chiericatti C, Aringoli EE, Althaus RL, Basilico JC. Influence of environmental factors on airborne fungi in houses of Santa Fe City, Argentina. Sci Total Environ 2007 Apr 15;376(1–3):143–50, 143.

  62. 62.

    Haleem Khan AA, Mohan KS. Fungal pollution of indoor environments and its management. Saudi J Biol Sci. 2012 Oct;19(4):405–26.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63.

    DeKoster JA, Thorne PS. Bioaerosol concentrations in noncomplaint, complaint, and intervention homes in the Midwest. Am Ind Hyg Assoc J. 1995 Jun;56(6):573–80.

    Google Scholar 

  64. 64.

    Dharmage S, Bailey M, Raven J, Mitakakis T, Thien F, Forbes A, et al. Prevalence and residential determinants of fungi within homes in Melbourne, Australia. Clin Exp Allergy J Br Soc Allergy Clin Immunol. 1999 Nov;29(11):1481–9.

    CAS  Google Scholar 

  65. 65.

    Fradkin A, Tobin RS, Tarlo SM, Tucic-Porretta M, Malloch D. Species identification of airborne molds and its significance for the detection of indoor pollution. JAPCA. 1987 Jan;37(1):51–3.

    CAS  PubMed  Google Scholar 

  66. 66.

    Kuo YM, Li CS. Seasonal fungus prevalence inside and outside of domestic environments in the subtropical climate. Atmos Environ. 1994 Nov;28(19):3125–30.

    CAS  Google Scholar 

  67. 67.

    Burge HA, Rogers CA. Outdoor allergens. Environ Health Perspect. 2000 Aug;108(suppl 4):653–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68.

    Lee JH, Jo WK. Characteristics of indoor and outdoor bioaerosols at Korean high-rise apartment buildings. Environ Res. 2006 May;101(1):11–7.

    CAS  PubMed  Google Scholar 

  69. 69.

    Pitkäranta M, Meklin T, Hyvärinen A, Paulin L, Auvinen P, Nevalainen A, et al. Analysis of fungal flora in indoor dust by ribosomal DNA sequence analysis, quantitative PCR, and culture. Appl Environ Microbiol. 2008 Jan;74(1):233–44.

    PubMed  Google Scholar 

  70. 70.

    Ege MJ, Mayer M, Normand A-C, Genuneit J, Cookson WOCM, Braun-Fahrländer C, et al. Exposure to environmental microorganisms and childhood asthma. N Engl J Med. 2011 Feb 24;364(8):701–9.

    CAS  PubMed  Google Scholar 

  71. 71.

    Glikson M, Rutherford S, Simpson RW, Mitchell CA, Yago A. Microscopic and submicron components of atmospheric particulate matter during high asthma periods in Brisbane, Queensland. Australia Atmos Environ. 1995 Mar;29(4):549–62.

    CAS  Google Scholar 

  72. 72.

    Alghamdi MA, Shamy M, Redal MA, Khoder M, Awad AH, Elserougy S. Microorganisms associated particulate matter: a preliminary study. Sci Total Environ. 2014 May;479–480:109–16.

    PubMed  Google Scholar 

  73. 73.

    Liu Z, Li A, Hu Z, Sun H. Study on the potential relationships between indoor culturable fungi, particle load and children respiratory health in Xi’an. China Build Environ. 2014 Oct;80:105–14.

    Google Scholar 

  74. 74.

    Gao M, Yan X, Qiu T, Han M, Wang X. Variation of correlations between factors and culturable airborne bacteria and fungi. Atmos Environ. 2016 Mar;128:10–9.

    CAS  Google Scholar 

  75. 75.

    Du P, Du R, Ren W, Lu Z, Zhang Y, Fu P. Variations of bacteria and fungi in PM2.5 in Beijing, China. Atmos Environ. 2018 Jan;172:55–64.

    CAS  Google Scholar 

  76. 76.

    Cassagne C, Normand A-C, L’Ollivier C, Ranque S, Piarroux R. Performance of MALDI-TOF MS platforms for fungal identification. Mycoses. 2016 Nov;59(11):678–90.

    PubMed  Google Scholar 

  77. 77.

    Hedayati MT, Mayahi S, Denning DW. A study on Aspergillus species in houses of asthmatic patients from Sari City, Iran and a brief review of the health effects of exposure to indoor Aspergillus. Environ Monit Assess. 2010 Sep;168(1–4):481–7.

    PubMed  Google Scholar 

  78. 78.

    Mousavi B, Hedayati MT, Hedayati N, Ilkit M, Syedmousavi S. Aspergillus species in indoor environments and their possible occupational and public health hazards. Curr Med Mycol. 2016 Mar 1;2(1):36–42.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79.

    Gniadek A, Krzyściak P, Twarużek M, Macura AB. Occurrence of fungi and cytotoxicity of the species: Aspergillus ochraceus, Aspergillus niger and Aspergillus flavus isolated from the air of hospital wards. Int J Occup Med Environ Health. 2017 Mar 30;30(2):231–9.

    PubMed  Google Scholar 

  80. 80.

    Górny RL, Dutkiewicz J. Bacterial and fungal aerosols in indoor environment in central and eastern European countries. Ann Agric Environ Med AAEM. 2002;9(1):17–23.

    PubMed  Google Scholar 

  81. 81.

    La Duc MT, Vaishampayan P, Nilsson HR, Torok T, Venkateswaran K. Pyrosequencing-derived bacterial, archaeal, and fungal diversity of spacecraft hardware destined for Mars. Appl Environ Microbiol. 2012 Aug;78(16):5912–22.

    PubMed  PubMed Central  Google Scholar 

  82. 82.

    Checinska A, Probst AJ, Vaishampayan P, White JR, Kumar D, Stepanov VG, et al. Microbiomes of the dust particles collected from the International Space Station and Spacecraft Assembly Facilities. Microbiome. 2015 Oct 27;3:50.

  83. 83.

    Anaissie EJ, Stratton SL, Dignani MC, Lee C, Summerbell RC, Rex JH, et al. Pathogenic molds (including Aspergillus species) in hospital water distribution systems: a 3-year prospective study and clinical implications for patients with hematologic malignancies. Blood. 2003 Apr 1;101(7):2542–6.

    CAS  PubMed  Google Scholar 

  84. 84.

    Nevalainen A, Täubel M, Hyvärinen A. Indoor fungi: companions and contaminants. Indoor Air. 2015 Apr;25(2):125–56.

    CAS  PubMed  Google Scholar 

  85. 85.

    Hamada N, Abe N. Growth characteristics of four fungal species in bathrooms. Biocontrol Sci. 2010 Sep;15(3):111–5.

    PubMed  Google Scholar 

  86. 86.

    Zupančič J, Novak Babič M, Zalar P, Gunde-Cimerman N. The Black Yeast Exophiala dermatitidis and Other Selected Opportunistic Human Fungal Pathogens Spread from Dishwashers to Kitchens. Sturtevant J, editor. PLOS ONE. 2016 Feb 11;11(2):e0148166.

  87. 87.

    •• Sharpe RA, Bearman N, Thornton CR, Husk K, Osborne NJ. Indoor fungal diversity and asthma: a meta-analysis and systematic review of risk factors. J Allergy Clin Immunol. 2015 Jan;135(1):110–22. Statistical analysis of the relationship between asthma and indoor air.

  88. 88.

    Hyvarinen A, Reponen T, Husman T, Ruuskanen J, Nevalainen A. Characterizing Mold problem buildings - concentrations and Flora of viable Fungi. Indoor Air. 1993 Dec;3(4):337–43.

    Google Scholar 

  89. 89.

    Hyvarinen A, Meklin T, Vepsalainen A, Nevalainen A. Fungi and actinobacteria in moisture-damaged building materials — concentrations and diversity. Int Biodeterior Biodegrad. 2002 Jan;49(1):27–37.

    Google Scholar 

  90. 90.

    Pessi A-M, Suonketo J, Pentti M, Kurkilahti M, Peltola K, Rantio-Lehtimaki A. Microbial growth inside insulated external walls as an indoor air biocontamination source. Appl Environ Microbiol. 2002 Feb 1;68(2):963–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  91. 91.

    Lehtonen M, Reponen T, Nevalainen A. Everyday activities and variation of fungal spore concentrations in indoor air. Int Biodeterior Biodegrad. 1993 Jan;31(1):25–39.

    Google Scholar 

  92. 92.

    Leppänen HK, Nevalainen A, Vepsäläinen A, Roponen M, Täubel M, Laine O, et al. Determinants, reproducibility, and seasonal variation of ergosterol levels in house dust. Indoor Air. 2014 Jun;24(3):248–59.

    PubMed  Google Scholar 

  93. 93.

    Pasanen AL, Rautiala S, Kasanen JP, Raunio P, Rantamäki J, Kalliokoski P. The relationship between measured moisture conditions and fungal concentrations in water-damaged building materials. Indoor Air. 2000 Jun;10(2):111–20.

    CAS  PubMed  Google Scholar 

  94. 94.

    Chowdhary A, Agarwal K, Meis JF. Filamentous Fungi in Respiratory Infections. What Lies Beyond Aspergillosis and Mucormycosis? Sheppard DC, editor. PLOS Pathog. 2016 Apr 28;12(4):e1005491.

  95. 95.

    Fernández-López J, Viuda-Martos M. Introduction to the special issue: application of essential oils in food systems. Foods Basel Switz. 2018 Apr;5:7(4).

    Google Scholar 

  96. 96.

    Bluma R, Amaiden MR, Daghero J, Etcheverry M. Control of Aspergillus section Flavi growth and aflatoxin accumulation by plant essential oils. J Appl Microbiol. 2008 Jul;105(1):203–14.

    CAS  PubMed  Google Scholar 

  97. 97.

    Carson CF, Mee BJ, Riley TV. Mechanism of action of Melaleuca alternifolia (tea tree) oil on Staphylococcus aureus determined by time-kill, lysis, leakage, and salt tolerance assays and electron microscopy. Antimicrob Agents Chemother. 2002 Jun;46(6):1914–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  98. 98.

    Nychas GJE. Natural antimicrobials from plants. In: Gould GW, editor. New methods of food preservation. Boston, MA: Springer US; 1995. p. 58–89.

    Google Scholar 

  99. 99.

    Gómez-Sánchez A, Palou E, López-Malo A. Antifungal activity evaluation of Mexican oregano (Lippia berlandieri Schauer) essential oil on the growth of Aspergillus flavus by gaseous contact. J Food Prot. 2011 Dec;74(12):2192–8.

    PubMed  Google Scholar 

  100. 100.

    Inouye S, Uchida K, Maruyama N, Yamaguchi H, Abe S. A novel method to estimate the contribution of the vapor activity of essential oils in agar diffusion assay. Nihon Ishinkin Gakkai Zasshi Jpn J Med Mycol. 2006;47(2):91–8.

    CAS  Google Scholar 

  101. 101.

    Adams RI, Tian Y, Taylor JW, Bruns TD, Hyvärinen A, Täubel M. Passive dust collectors for assessing airborne microbial material. Microbiome. 2015 Dec;3(1):46.

    PubMed  PubMed Central  Google Scholar 

  102. 102.

    Prasad C, Hogan MB, Peele K, Wilson NW. Effect of evaporative coolers on skin test reactivity to dust mites and molds in a desert environment. Allergy Asthma Proc. 2009 Dec;30(6):624–7.

    PubMed  Google Scholar 

Download references

Acknowledgments

We thank Andres Avelino Baez and Mirian Randó Araujo for their excellent technical assistance.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Marcia de Souza Carvalho Melhem.

Ethics declarations

Conflict of Interest

Marcia de Souza Carvalho Melhem reports a fellowship with CNPq, Minister of Health, Brazil. Artur Luiz Rocha and Natalia Viola worked in chemistry at Terpinoil. Dulcilena de Matos Castro Silva, Raquel Keiko de Luca Ito, Lucas Xavier Bonfietti, Maria Walderez Szeszs and Edson Abdala declare no conflicts of interest relevant to this manuscript.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article is part of the Topical Collection on Clinical Mycology Lab Issues

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Matos Castro Silva, D., de Luca Ito, R.K., Bonfietti, L.X. et al. Antifungal and Antibacterial Activity of Terpenes for Improvement of Indoor Air Quality. Curr Fungal Infect Rep 14, 299–309 (2020). https://doi.org/10.1007/s12281-020-00397-0

Download citation

Keywords

  • Terpenes
  • Airborne microbes
  • Fungicidal
  • Fungi
  • Antifungal resistance
  • Asthma
  • Occupational exposure