Skip to main content
Log in

A Comprehensive Analysis of MALDI-TOF MS and Ribosomal DNA Sequencing for Identification of Clinical Yeasts

  • Clinical Mycology Lab Issues (S Córdoba, Section Editor)
  • Published:
Current Fungal Infection Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

The purpose of this study is to analyze the current knowledge about matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS) identification of clinical yeasts comparing with the ribosomal DNA sequencing identification. We also review the lasts taxonomical and nomenclature changes of clinical yeasts.

Recent Findings

In most studies, the two main commercially available, MALDI Biotyper and VITEK MS, correctly identified more than 90% of yeasts isolates. Most drawbacks are due to low discrimination between closely related species or due to a lack of the reference main spectra (MSP) in the database. The addition of MSPs in the databases improves the performance.

Summary

MALDI-TOF MS has proven to be good for the identification of clinical yeasts and to differentiate some closely related species or species undifferentiated by conventional techniques. However, some species remain difficult to differentiate by this technique and should be identified by ribosomal DNA sequencing. Accurate and rapid yeasts identification could improve the management of patients with yeasts infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kurtzman CP, Fell JW, Boekhout T. The yeasts, a taxonomic study. London: Elsevier; 2011.

    Google Scholar 

  2. Alcoba-Flórez J, Méndez-Alvarez S, Cano J, Guarro J, Pérez-Roth E, del Pilar Arévalo M. Phenotypic and molecular characterization of Candida nivariensis sp. nov., a possible new opportunistic fungus. J Clin Microbiol. 2005;43(8):4107–11.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Correia A, Sampaio P, James S, Pais C. Candida bracarensis sp. nov., a novel anamorphic yeast species phenotypically similar to Candida glabrata. Int J Syst Evol Microbiol. 2006;56(Pt 1):313–7.

    Article  CAS  PubMed  Google Scholar 

  4. Sullivan DJ, Westerneng TJ, Haynes KA, Bennett DE, Coleman DC. Candida dubliniensis sp. nov.: phenotypic and molecular characterization of a novel species associated with oral candidosis in HIV-infected individuals. Microbiol Read Engl. 1995;141(Pt 7):1507–21.

    Article  CAS  Google Scholar 

  5. Tavanti A, Davidson AD, Gow NAR, Maiden MCJ, Odds FC. Candida orthopsilosis and Candida metapsilosis spp. nov. to replace Candida parapsilosis groups II and III. J Clin Microbiol. 2005;43(1):284–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Tietz HJ, Hopp M, Schmalreck A, Sterry W, Czaika V. Candida africana sp. nov., a new human pathogen or a variant of Candida albicans? Mycoses. 2001;44(11–12):437–45.

    Article  CAS  PubMed  Google Scholar 

  7. Vaughan-Martini A, Kurtzman CP, Meyer SA, O’Neill EB. Two new species in the Pichia guilliermondii clade: Pichia caribbica sp. nov., the ascosporic state of Candida fermentati, and Candida carpophila comb. nov. FEMS Yeast Res. 2005;5(4–5):463–9.

    Article  CAS  PubMed  Google Scholar 

  8. Cendejas-Bueno E, Kolecka A, Alastruey-Izquierdo A, Theelen B, Groenewald M, Kostrzewa M, et al. Reclassification of the Candida haemulonii complex as Candida haemulonii (C. haemulonii group I), C. duobushaemulonii sp. nov. (C. haemulonii group II), and C. haemulonii var. vulnera var. nov.: three multiresistant human pathogenic yeasts. J Clin Microbiol. 2012;50(11):3641–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Chaves GM, Terçarioli GR, Padovan ACB, Rosas RC, Ferreira RC, Melo ASA, et al. Candida mesorugosa sp. nov., a novel yeast species similar to Candida rugosa, isolated from a tertiary hospital in Brazil. Med Mycol. 2013;51(3):231–42.

    Article  CAS  PubMed  Google Scholar 

  10. Paredes K, Sutton DA, Cano J, Fothergill AW, Lawhon SD, Zhang S, et al. Molecular identification and antifungal susceptibility testing of clinical isolates of the Candida rugosa species complex and proposal of the new species Candida neorugosa. J Clin Microbiol. 2012;50(7):2397–403.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Groenewald M, Daniel H-M, Robert V, Poot GA, Smith MT. Polyphasic re-examination of Debaryomyces hansenii strains and reinstatement of D. hansenii, D. fabryi and D. subglobosus. Persoonia. 2008;21:17–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Castanheira M, Woosley LN, Diekema DJ, Jones RN, Pfaller MA. Candida guilliermondii and other species of candida misidentified as Candida famata: assessment by vitek 2, DNA sequencing analysis, and matrix-assisted laser desorption ionization-time of flight mass spectrometry in two global antifungal surveillance programs. J Clin Microbiol. 2013;51(1):117–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Desnos-Ollivier M, Ragon M, Robert V, Raoux D, Gantier J-C, Dromer F. Debaryomyces hansenii (Candida famata), a rare human fungal pathogen often misidentified as Pichia guilliermondii (Candida guilliermondii). J Clin Microbiol. 2008;46(10):3237–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Kathuria S, Singh PK, Sharma C, Prakash A, Masih A, Kumar A, et al. Multidrug-resistant Candida auris misidentified as Candida haemulonii: characterization by matrix-assisted laser desorption ionization-time of flight mass spectrometry and DNA sequencing and its antifungal susceptibility profile variability by Vitek 2, CLSI broth microdilution, and Etest method. J Clin Microbiol. 2015;53(6):1823–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Hawksworth DL, Crous PW, Redhead SA, Reynolds DR, Samson RA, Seifert KA, et al. The amsterdam declaration on fungal nomenclature. IMA Fungus. 2011;2(1):105–12.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Taylor JW. One fungus = one name: DNA and fungal nomenclature twenty years after PCR. IMA Fungus. 2011;2(2):113–20.

    Article  PubMed  PubMed Central  Google Scholar 

  17. McNeill J, Barrie F, Buck W, Demoulin V, Greuter W, Hawksworth D, et al. International code of nomenclature for algae, fungi, and plants (Melbourne code). Australia: Koeltz Scientific Books; 2012.

    Google Scholar 

  18. Tsui CKM, Daniel H-M, Robert V, Meyer W. Re-examining the phylogeny of clinically relevant Candida species and allied genera based on multigene analyses. FEMS Yeast Res. 2008;8(4):651–9.

    Article  CAS  PubMed  Google Scholar 

  19. Daniel H-M, Lachance M-A, Kurtzman CP. On the reclassification of species assigned to Candida and other anamorphic ascomycetous yeast genera based on phylogenetic circumscription. Antonie Van Leeuwenhoek. 2014;106(1):67–84.

    Article  PubMed  Google Scholar 

  20. Lachance MA. In defense of yeast sexual life cycles: the forma asexualis—an informal proposal. Yeast Newletter. 2012;61:24–5.

    Google Scholar 

  21. Hagen F, Khayhan K, Theelen B, Kolecka A, Polacheck I, Sionov E, et al. Recognition of seven species in the Cryptococcus gattii/Cryptococcus neoformans species complex. Fungal Genet Biol FG B. 2015;78:16–48.

    Article  CAS  PubMed  Google Scholar 

  22. Liu X-Z, Wang Q-M, Göker M, Groenewald M, Kachalkin AV, Lumbsch HT, et al. Towards an integrated phylogenetic classification of the Tremellomycetes. Stud Mycol. 2015;81:85–147.

    Article  PubMed  Google Scholar 

  23. White TJ, Bruns T, Lee S, Taylor J. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: PCR protocols: a guide to methods and applications. New York: Academic Press; 1990. p. 315–22.

  24. Pincus DH, Orenga S, Chatellier S. Yeast identification—past, present, and future methods. Med Mycol. 2007;45(2):97–121.

    Article  CAS  PubMed  Google Scholar 

  25. Iwen PC, Hinrichs SH, Rupp ME. Utilization of the internal transcribed spacer regions as molecular targets to detect and identify human fungal pathogens. Med Mycol. 2002;40(1):87–109.

    Article  CAS  PubMed  Google Scholar 

  26. Schoch CL, Seifert KA, Huhndorf S, Robert V, Spouge JL, Levesque CA, et al. Nuclear ribosomal internal transcribed spacer (ITS) region as a universal DNA barcode marker for fungi. Proc Natl Acad Sci U S A. 2012;109(16):6241–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Irinyi L, Serena C, Garcia-Hermoso D, Arabatzis M, Desnos-Ollivier M, Vu D, et al. International Society of Human and Animal Mycology (ISHAM)-ITS reference DNA barcoding database—the quality controlled standard tool for routine identification of human and animal pathogenic fungi. Med Mycol. 2015;53(4):313–37.

    Article  CAS  PubMed  Google Scholar 

  28. Fungal XJ. DNA barcoding. Genome. 2016;59(11):913–32.

    Article  Google Scholar 

  29. Taverna CG, Córdoba S, Murisengo OA, Vivot W, Davel G, Bosco-Borgeat ME. Molecular identification, genotyping, and antifungal susceptibility testing of clinically relevant Trichosporon species from Argentina. Med Mycol. 2014;52(4):356–66.

    Article  CAS  PubMed  Google Scholar 

  30. Stielow JB, Lévesque CA, Seifert KA, Meyer W, Iriny L, Smits D, et al. One fungus, which genes? Development and assessment of universal primers for potential secondary fungal DNA barcodes. Persoonia. 2015;35:242–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Vu D, Groenewald M, Szöke S, Cardinali G, Eberhardt U, Stielow B, et al. DNA barcoding analysis of more than 9 000 yeast isolates contributes to quantitative thresholds for yeast species and genera delimitation. Stud Mycol. 2016;85:91–105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Kurtzman CP, Robnett CJ. Identification and phylogeny of ascomycetous yeasts from analysis of nuclear large subunit (26S) ribosomal DNA partial sequences. Antonie Van Leeuwenhoek. 1998;73(4):331–71.

    Article  CAS  PubMed  Google Scholar 

  33. Fell JW, Boekhout T, Fonseca A, Scorzetti G, Statzell-Tallman A. Biodiversity and systematics of basidiomycetous yeasts as determined by large-subunit rDNA D1/D2 domain sequence analysis. Int J Syst Evol Microbiol. 2000;50(Pt 3):1351–71.

    Article  CAS  PubMed  Google Scholar 

  34. Taverna CG, Bosco-Borgeat ME, Murisengo OA, Davel G, Boité MC, Cupolillo E, et al. Comparative analyses of classical phenotypic method and ribosomal RNA gene sequencing for identification of medically relevant Candida species. Mem Inst Oswaldo Cruz. 2013;108(2):178–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Sugita T, Nakajima M, Ikeda R, Matsushima T, Shinoda T. Sequence analysis of the ribosomal DNA intergenic spacer 1 regions of Trichosporon species. J Clin Microbiol. 2002;40(5):1826–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Meyer W, Castañeda A, Jackson S, Huynh M, Castañeda E. IberoAmerican Cryptococcal Study Group. Molecular typing of IberoAmerican Cryptococcus neoformans isolates. Emerg Infect Dis. 2003;9(2):189–95.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Croxatto A, Prod’hom G, Greub G. Applications of MALDI-TOF mass spectrometry in clinical diagnostic microbiology. FEMS Microbiol Rev. 2012;36(2):380–407.

    Article  CAS  PubMed  Google Scholar 

  38. Tan KE, Ellis BC, Lee R, Stamper PD, Zhang SX, Carroll KC. Prospective evaluation of a matrix-assisted laser desorption ionization-time of flight mass spectrometry system in a hospital clinical microbiology laboratory for identification of bacteria and yeasts: a bench-by-bench study for assessing the impact on time to identification and cost-effectiveness. J Clin Microbiol. 2012;50(10):3301–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Posteraro B, Vella A, Cogliati M, De Carolis E, Florio AR, Posteraro P, et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry-based method for discrimination between molecular types of Cryptococcus neoformans and Cryptococcus gattii. J Clin Microbiol. 2012;50(7):2472–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bader O. Fungal species identification by MALDI-ToF mass spectrometry. Methods Mol Biol Clifton NJ. 2017;1508:323–37.

    Article  Google Scholar 

  41. Santos C, Lima N, Sampaio P, Pais C. Matrix-assisted laser desorption/ionization time-of-flight intact cell mass spectrometry to detect emerging pathogenic Candida species. Diagn Microbiol Infect Dis. 2011;71(3):304–8.

    Article  CAS  PubMed  Google Scholar 

  42. Pfaller MA, Castanheira M. Nosocomial Candidiasis: antifungal stewardship and the importance of rapid diagnosis. Med Mycol. 2016;54(1):1–22.

    PubMed  Google Scholar 

  43. Santos CR, Francisco E, Mazza M, Padovan ACB, Colombo AL, Lima N. Impact of MALDI-TOF MS in clinical mycology; progress and barriers in diagnostics. In: Shah HR, Gharbia SE, editors. MALDI-TOF and tandem MS for clinical microbiology. Wiley: Chichester; 2017.

    Google Scholar 

  44. Cassagne C, Normand A-C, L’Ollivier C, Ranque S, Piarroux R. Performance of MALDI-TOF MS platforms for fungal identification. Mycoses. 2016;59(11):678–90.

    Article  PubMed  Google Scholar 

  45. Wang H, Fan Y-Y, Kudinha T, Xu Z-P, Xiao M, Zhang L, et al. A comprehensive evaluation of the Bruker Biotyper MS and Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry systems for identification of yeasts, part of the National China Hospital Invasive Fungal Surveillance Net (CHIF-NET) study, 2012 to 2013. J Clin Microbiol. 2016;54(5):1376–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Stefaniuk E, Baraniak A, Fortuna M, Hryniewicz W. Usefulness of CHROMagar Candida medium, biochemical methods—API ID32C and VITEK 2 compact and two MALDI-TOF MS Systems for Candida spp. identification. Pol J Microbiol. 2016;65(1):111–4.

    Article  PubMed  Google Scholar 

  47. Kim T-H, Kweon OJ, Kim HR, Lee M-K. Identification of uncommon Candida species using commercial identification systems. J Microbiol Biotechnol. 2016;26(12):2206–13.

    Article  PubMed  Google Scholar 

  48. Lee HS, Shin JH, Choi MJ, Won EJ, Kee SJ, Kim SH, et al. Comparison of the Bruker Biotyper and VITEK MS matrix-assisted laser desorption/ionization time-of-flight mass spectrometry systems using a formic acid extraction method to identify common and uncommon yeast isolates. Ann Lab Med. 2017;37(3):223–30.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Porte L, García P, Braun S, Ulloa MT, Lafourcade M, Montaña A, et al. Head-to-head comparison of microflex LT and Vitek MS systems for routine identification of microorganisms by MALDI-TOF mass spectrometry in Chile. PLoS One. 2017;12(5):e0177929.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Mancini N, De Carolis E, Infurnari L, Vella A, Clementi N, Vaccaro L, et al. Comparative evaluation of the Bruker Biotyper and Vitek MS matrix-assisted laser desorption ionization-time of flight (MALDI-TOF) mass spectrometry systems for identification of yeasts of medical importance. J Clin Microbiol. 2013;51(7):2453–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Chen JHK, Yam W-C, Ngan AHY, Fung AMY, Woo W-L, Yan M-K, et al. Advantages of using matrix-assisted laser desorption ionization-time of flight mass spectrometry as a rapid diagnostic tool for identification of yeasts and mycobacteria in the clinical microbiological laboratory. J Clin Microbiol. 2013;51(12):3981–7.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hamprecht A, Christ S, Oestreicher T, Plum G, Kempf VAJ, Göttig S. Performance of two MALDI-TOF MS systems for the identification of yeasts isolated from bloodstream infections and cerebrospinal fluids using a time-saving direct transfer protocol. Med Microbiol Immunol (Berl). 2014;203(2):93–9.

    Article  CAS  Google Scholar 

  53. Jamal WY, Ahmad S, Khan ZU, Rotimi VO. Comparative evaluation of two matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) systems for the identification of clinically significant yeasts. Int J Infect Dis IJID Off Publ Int Soc Infect Dis. 2014;26:167–70.

    CAS  Google Scholar 

  54. Chao Q-T, Lee T-F, Teng S-H, Peng L-Y, Chen P-H, Teng L-J, et al. Comparison of the accuracy of two conventional phenotypic methods and two MALDI-TOF MS systems with that of DNA sequencing analysis for correctly identifying clinically encountered yeasts. PLoS One. 2014;9(10):e109376.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Deak E, Charlton CL, Bobenchik AM, Miller SA, Pollett S, McHardy IH, et al. Comparison of the Vitek MS and Bruker microflex LT MALDI-TOF MS platforms for routine identification of commonly isolated bacteria and yeast in the clinical microbiology laboratory. Diagn Microbiol Infect Dis. 2015;81(1):27–33.

    Article  CAS  PubMed  Google Scholar 

  56. Pence MA, McElvania TeKippe E, Wallace MA, Burnham CA. Comparison and optimization of two MALDI-TOF MS platforms for the identification of medically relevant yeast species. Eur J Clin Microbiol Infect Dis Off Publ Eur Soc Clin Microbiol. 2014;33(10):1703–12.

    Article  CAS  Google Scholar 

  57. Bader O, Weig M, Taverne-Ghadwal L, Lugert R, Gross U, Kuhns M. Improved clinical laboratory identification of human pathogenic yeasts by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Microbiol Infect Off Publ Eur Soc Clin Microbiol Infect Dis. 2011;17(9):1359–65.

    CAS  Google Scholar 

  58. Hou X, Xiao M, Chen SC, Wang H, Yu S-Y, Fan X, et al. Identification and antifungal susceptibility profiles of Candida nivariensis and Candida bracarensis in a multi-center Chinese collection of yeasts. Front Microbiol. 2017;8:5.

    PubMed  PubMed Central  Google Scholar 

  59. Haas M, Grenouillet F, Loubersac S, Ariza B, Pepin-Puget L, Alvarez-Moreno CA, et al. Identification of cryptic Candida species by MALDI-TOF mass spectrometry, not all MALDI-TOF systems are the same: focus on the C. parapsilosis species complex. Diagn Microbiol Infect Dis. 2016;86(4):385–6.

    Article  CAS  PubMed  Google Scholar 

  60. Gouriet F, Ghiab F, Couderc C, Bittar F, Tissot Dupont H, Flaudrops C, et al. Evaluation of a new extraction protocol for yeast identification by mass spectrometry. J Microbiol Methods. 2016;129:61–5.

    Article  CAS  PubMed  Google Scholar 

  61. Denis J, Machouart M, Morio F, Sabou M, Kauffmann-LaCroix C, Contet-Audonneau N, et al. Performance of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identifying clinical Malassezia isolates. J Clin Microbiol. 2017;55(1):90–6.

    Article  PubMed  Google Scholar 

  62. de Almeida JN, Sztajnbok J, da Silva AR, Vieira VA, Galastri AL, Bissoli L, et al. Rapid identification of moulds and arthroconidial yeasts from positive blood cultures by MALDI-TOF mass spectrometry. Med Mycol. 2016;54(8):885–9.

    Article  Google Scholar 

  63. Vlek A, Kolecka A, Khayhan K, Theelen B, Groenewald M, Boel E, et al. Interlaboratory comparison of sample preparation methods, database expansions, and cutoff values for identification of yeasts by matrix-assisted laser desorption ionization-time of flight mass spectrometry using a yeast test panel. J Clin Microbiol. 2014;52(8):3023–9.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Kolecka A, Khayhan K, Groenewald M, Theelen B, Arabatzis M, Velegraki A, et al. Identification of medically relevant species of arthroconidial yeasts by use of matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2013;51(8):2491–500.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. De Carolis E, Vella A, Vaccaro L, Torelli R, Posteraro P, Ricciardi W, et al. Development and validation of an in-house database for matrix-assisted laser desorption ionization-time of flight mass spectrometry-based yeast identification using a fast protein extraction procedure. J Clin Microbiol. 2014;52(5):1453–8.

    Article  PubMed  PubMed Central  Google Scholar 

  66. McTaggart LR, Lei E, Richardson SE, Hoang L, Fothergill A, Zhang SX. Rapid identification of Cryptococcus neoformans and Cryptococcus gattii by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2011;49(8):3050–3.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Pinto A, Halliday C, Zahra M, van Hal S, Olma T, Maszewska K, et al. Matrix-assisted laser desorption ionization-time of flight mass spectrometry identification of yeasts is contingent on robust reference spectra. PLoS One. 2011;6(10):e25712.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Nadia Bueno for the writing assistance and Ruben Barrios for the technical support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Constanza Giselle Taverna.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Clinical Mycology Lab Issues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Taverna, C.G., Mazza, M., Refojo, N. et al. A Comprehensive Analysis of MALDI-TOF MS and Ribosomal DNA Sequencing for Identification of Clinical Yeasts. Curr Fungal Infect Rep 11, 184–189 (2017). https://doi.org/10.1007/s12281-017-0297-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12281-017-0297-2

Keywords

Navigation