Skip to main content
Log in

Time-Kill Curves Studies with Amphotericin B Against Cryptococcus neoformans/C. gattii Species Complex Clinical Isolates

  • Clinical Mycology Lab Issues (S Córdoba, Section Editor)
  • Published:
Current Fungal Infection Reports Aims and scope Submit manuscript

Abstract

Purpose of Review

We reviewed data on amphotericin B (AmB) tolerance among Cryptococcus neoformans/C. gattii species complex clinical isolates and present our results of large recent study on this issue.

Recent Findings

The standard method to detect antifungal susceptibility is based on MIC (minimal inhibitory concentration) determination; however, there is no interpretative clinical breakpoints defined for antifungal agents against Cryptococcus species, and to date, there is no correlation of MIC and clinical response. The time-kill curves (TKC) methodology seems to provide some correlation with outcome and it could identify distinct profiles of AmB-fungicidal activity.

Summary

Our group analyzed 83 human isolates from cryptococcosis cases. The isolates were tested by TKC and showed up 8.3% of tolerance to AmB. Importantly, the AmB-MIC was low for all isolates, including tolerant ones. Our findings are similar to other authors, due the ability of TKC to identify distinct AmB-fungicidal activity and detecting low susceptible isolates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Lin X, Heitman J. The biology of the Cryptococcus neoformans species complex. Annu Rev Microbiol. 2006;60:69–105.

    Article  CAS  PubMed  Google Scholar 

  2. Ellis DH, Pfeiffer TJ. Natural habitat of Cryptococcus neoformans var. gattii. J Clin Microbiol. 1990;28:1642–4.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Ngamskulrungroj P, Gilgado F, Faganello J, Litvintseva AP, Leal AL, Tsui KM, et al. Genetic diversity of the Cryptococcus species complex suggests that Cryptococcus gattii deserves to have varieties. Alspaugh A, organizador. PLoS One. 2009;4:e5862.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Hagen F, Khayhan K, Theelen B, Kolecka A, Polacheck I, Sionov E, et al. Recognition of seven species in the Cryptococcus gattii/Cryptococcus neoformans species complex. Fungal Genet Biol. 2015;78:16–48.

    Article  CAS  PubMed  Google Scholar 

  5. Boekhout T, Theelen B, Diaz M, Fell JW, Hop WCJ, Abeln ECA, et al. Hybrid genotypes in the pathogenic yeast Cryptococcus neoformans. Microbiology. 2001;147:891–907.

    Article  CAS  PubMed  Google Scholar 

  6. Meyer W, Castañeda A, Jackson S, Huynh M, Castañeda E, Group ICS, et al. Molecular typing of IberoAmerican Cryptococcus neoformans isolates. Emerg Infect Dis. 2003;9:189.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Perfect JR, Dismukes WE, Dromer F, Goldman DL, Graybill JR, Hamill RJ, et al. Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the Infectious Diseases Society of America. Clin Infect Dis. 2010;50:291–322.

    Article  PubMed  Google Scholar 

  8. Pfaller M, Zhang J, Messer S, Tumberland M, Mbidde E, Jessup C, et al. Molecular epidemiology and antifungal susceptibility of Cryptococcus neoformans isolates from Ugandan AIDS patients. Diagn Microbiol Infect Dis. 1998;32:191–9.

    Article  CAS  PubMed  Google Scholar 

  9. Aller AI, Martin-Mazuelos E, Lozano F, Gomez-Mateos J, Steele-Moore L, Holloway WJ, et al. Correlation of fluconazole MICs with clinical outcome in cryptococcal infection. Antimicrob Agents Chemother. 2000;44:1544–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dannaoui E, Abdul M, Arpin M, Michel-Nguyen A, Piens MA, Favel A, et al. Results obtained with various antifungal susceptibility testing methods do not predict early clinical outcome in patients with cryptococcosis. Antimicrob Agents Chemother. 2006;50:2464–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Pfaller MA, Messer SA, Boyken L, Rice C, Tendolkar S, Hollis RJ, et al. Global trends in the antifungal susceptibility of Cryptococcus neoformans (1990 to 2004). J Clin Microbiol. 2005;43:2163–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Espinel-Ingroff A, Aller AI, Canton E, Castanon-Olivares LR, Chowdhary A, Cordoba S, et al. Cryptococcus neoformans-Cryptococcus gattii species complex: an international study of wild-type susceptibility endpoint distributions and epidemiological cutoff values for fluconazole, itraconazole, posaconazole, and voriconazole. Antimicrob Agents Chemother. 2012;56:5898–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Pfaller MA, Castanheira M, Diekema DJ, Messer SA, Jones RN. Wild-type MIC distributions and epidemiologic cutoff values for fluconazole, posaconazole, and voriconazole when testing Cryptococcus neoformans as determined by the CLSI broth microdilution method. Diagn Microbiol Infect Dis. 2011;71:252–9.

    Article  CAS  PubMed  Google Scholar 

  14. Espinel-Ingroff A, Chowdhary A, Cuenca-Estrella M, Fothergill A, Fuller J, Hagen F, et al. Cryptococcus neoformans-Cryptococcus gattii species complex: an international study of wild-type susceptibility endpoint distributions and epidemiological cutoff values for amphotericin B and flucytosine. Antimicrob Agents Chemother. 2012;56:3107–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. •• Córdoba S, Vivot W, Szusz W, Isla G, Davel G. Comparison of different in vitro tests to detect Cryptococcus neoformans not susceptible to amphotericin B. Mycopathologia. 2015;179:359–71. A study with clinical isolates showing the association between time-kill curves methodology results and the outcome.

    Article  PubMed  Google Scholar 

  16. Rodero L, Cordoba S, Cahn P, Soria M, Lucarini M, Davel G, et al. Timed-kill curves for Cryptococcus neoformans isolated from patients with AIDS. Med Mycol. 2000;38:201–7.

    Article  CAS  PubMed  Google Scholar 

  17. Pappalardo MCSM, Szeszs MW, Martins MA, Baceti LB, Bonfietti LX, Purisco SU, et al. Susceptibility of clinical isolates of Cryptococcus neoformans to amphotericin B using time-kill methodology. Diagn Microbiol Infect Dis. 2009;64:146–51.

    Article  CAS  PubMed  Google Scholar 

  18. Silva DC, Martins MA, Szeszs MW, Bonfietti LX, Matos D, Melhem MSC. Susceptibility to antifungal agents and genotypes of Brazilian clinical and environmental Cryptococcus gattii strains. Diagn Microbiol Infect Dis. 2012;72:332–9.

    Article  CAS  PubMed  Google Scholar 

  19. National Committee for Clinical Laboratory Standards. Methods for determining bactericidal activity of antimicrobial agents. Wayne: National Committee for Clinical Laboratory Standards; 1999.

    Google Scholar 

  20. Klepser ME, Ernst EJ, Lewis RE, Ernst ME, Pfaller MA. Influence of test conditions on antifungal time-kill curve results: proposal for standardized methods. Antimicrob Agents Chemother. 1998;42:1207–12.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Klepser ME, Wolfe EJ, Pfaller MA. Antifungal pharmacodynamic characteristics of fluconazole and amphotericin B against Cryptococcus neoformans. J Antimicrob Chemother. 1998;41:397–401.

    Article  CAS  PubMed  Google Scholar 

  22. • Balouiri M, Sadiki M, Ibnsouda SK. Methods for in vitro evaluating antimicrobial activity: a review. J Pharm Anal. 2016;6:71–9. A review about methods used to determine the antimicrobial susceptibility.

    Article  Google Scholar 

  23. •• Delarze E, Sanglard D. Defining the frontiers between antifungal resistance, tolerance and the concept of persistence. Drug Resist Updat. 2015;23:12–9. A review explaining the aspects about the susceptibility and the importance to detect the the resistant and tolerante fungal strains.

    Article  PubMed  Google Scholar 

  24. Arendrup MC, Guinea J, Cuenca-Estrella M, Meletiadis J, Mouton JW, Lagrou K, et al. EUCAST definitive document E.DEF 7.3. Method for the determination of broth dilution minimum Inhibitory concentrations of antifungal agents for yeasts. www.eucast.org.

  25. Burgess DS, Hastings RW. A comparison of dynamic characteristics of fluconazole, itraconazole, and amphotericin B against Cryptococcus neoformans using time-kill methodology. Diagn Microbiol Infect Dis. 2000;38:87–93.

    Article  CAS  PubMed  Google Scholar 

  26. Rodero L, Córdoba S, Cahn P, Hochenfellner F, Davel G, Canteros C, et al. In vitro susceptibility studies of Cryptococcus neoformans isolated from patients with no clinical response to amphotericin B therapy. J Antimicrob Chemother. 2000;45:239–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lidiane de Oliveira.

Ethics declarations

Conflict of Interest

The authors declare that they have no competing interests.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

Additional information

This article is part of the Topical Collection on Clinical Mycology Lab Issues

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Oliveira, L., Cristina Silva Santos, D., dos Anjos Martins, M. et al. Time-Kill Curves Studies with Amphotericin B Against Cryptococcus neoformans/C. gattii Species Complex Clinical Isolates. Curr Fungal Infect Rep 11, 158–162 (2017). https://doi.org/10.1007/s12281-017-0296-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12281-017-0296-3

Keywords

Navigation