Current Fungal Infection Reports

, Volume 11, Issue 2, pp 52–59

Harnessing Whole Genome Sequencing in Medical Mycology

Advances in Diagnosis of Invasive Fungal Infections (S Chen, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Advances in Diagnosis of Invasive Fungal Infections

Abstract

Purpose of Review

Comparative genome sequencing studies of human fungal pathogens enable identification of genes and variants associated with virulence and drug resistance. This review describes current approaches, resources, and advances in applying whole genome sequencing to study clinically important fungal pathogens.

Recent Findings

Genomes for some important fungal pathogens were only recently assembled, revealing gene family expansions in many species and extreme gene loss in one obligate species. The scale and scope of species sequenced is rapidly expanding, leveraging technological advances to assemble and annotate genomes with higher precision. By using iteratively improved reference assemblies or those generated de novo for new species, recent studies have compared the sequence of isolates representing populations or clinical cohorts. Whole genome approaches provide the resolution necessary for comparison of closely related isolates, for example, in the analysis of outbreaks or sampled across time within a single host.

Summary

Genomic analysis of fungal pathogens has enabled both basic research and diagnostic studies. The increased scale of sequencing can be applied across populations, and new metagenomic methods allow direct analysis of complex samples.

Keywords

Whole genome sequencing Human fungal pathogens Genome sequencing Medical mycology Fungal infections Review 

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. 1.
    • Ma L, Chen Z, Huang DW, Kutty G, Ishihara M, Wang H, et al. Genome analysis of three Pneumocystis species reveals adaptation mechanisms to life exclusively in mammalian hosts. Nat Commun. 2016;7:10740. Chromosomal assemblies of Pneumocystis jirovecii , P. murina , and P. carinii . Comparative analysis revealed loss of enzymes responsible for chitin and higher order mannose synthesis, suggesting a more flexible cell wall structure that may also impact detection by the host immune system CrossRefPubMedPubMedCentralGoogle Scholar
  2. 2.
    Muñoz JF, Farrer RA, Desjardins CA, Gallo JE, Sykes S, Sakthikumar S, et al. Genome diversity, recombination, and virulence across the major lineages of Paracoccidioides. mSphere. 2016;1.Google Scholar
  3. 3.
    • Chibucos MC, Soliman S, Gebremariam T, Lee H, Daugherty S, Orvis J, et al. An integrated genomic and transcriptomic survey of mucormycosis-causing fungi. Nat Commun. 2016;7:12218. Large comparative study of mucorales pathogens CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Braun BR, van Het Hoog M, d’Enfert C, Martchenko M, Dungan J, Kuo A, et al. A human-curated annotation of the Candida albicans genome. PLoS Genet. 2005;1:36–57.CrossRefPubMedGoogle Scholar
  5. 5.
    • Cissé OH, Pagni M, Hauser PM. De novo assembly of the Pneumocystis jirovecii genome from a single bronchoalveolar lavage fluid specimen from a patient. MBio. 2012;4:e00428–12. First genome assembly for Pneumocystis jirovecii , utilizing purification and host sequence filtering to assemble this obligate pathogen CrossRefPubMedPubMedCentralGoogle Scholar
  6. 6.
    Galagan JE, Calvo SE, Cuomo C, Ma LJ, Wortman JR, Batzoglou S, et al. Sequencing of Aspergillus nidulans and comparative analysis with A. fumigatus and A. oryzae. Nature. 2005;438:1105–15.CrossRefPubMedGoogle Scholar
  7. 7.
    O’Gorman CM, Fuller HT, Dyer PS. Discovery of a sexual cycle in the opportunistic fungal pathogen Aspergillus fumigatus. Nature. 2009;457:471–4.CrossRefPubMedGoogle Scholar
  8. 8.
    Liu OW, Chun CD, Chow ED, Chen C, Madhani HD, Noble SM. Systematic genetic analysis of virulence in the human fungal pathogen Cryptococcus neoformans. Cell. 2008;135:174–88.CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Roemer T, Jiang B, Davison J, Ketela T, Veillette K, Breton A, et al. Large-scale essential gene identification in Candida albicans and applications to antifungal drug discovery. Mol Microbiol. 2003;50:167–81.CrossRefPubMedGoogle Scholar
  10. 10.
    Vyas VK, Barrasa MI, Fink GR. A Candida albicans CRISPR system permits genetic engineering of essential genes and gene families. Sci Adv. 2015;1:e1500248.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Cuomo CA, Birren BW. The fungal genome initiative and lessons learned from genome sequencing. Methods Enzymol. 2010;470:Chapter 34.Google Scholar
  12. 12.
    Treangen TJ, Salzberg SL. Repetitive DNA and next-generation sequencing: computational challenges and solutions. Nat Rev Genet. 2011;13:36–46.PubMedPubMedCentralGoogle Scholar
  13. 13.
    Burton JN, Adey A, Patwardhan RP, Qiu R, Kitzman JO, Shendure J. Chromosome-scale scaffolding of de novo genome assemblies based on chromatin interactions. Nat Biotechnol. 2013;31:1119–25.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Lieberman-Aiden, et al. Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science. 2009;326:289–293.Google Scholar
  15. 15.
    • Muzzey D, Schwartz K, Weissman JS, Sherlock G. Assembly of a phased diploid Candida albicans genome facilitates allele-specific measurements and provides a simple model for repeat and indel structure. Genome Biol. 2013;14:R97. Production of a phased diploid assembly for Candida albicans , enabling allele-specific analysis CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Chin C-S, Peluso P, Sedlazeck FJ, Nattestad M, Concepcion GT, Clum A, et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat Methods. 2016;13:1050–4.CrossRefPubMedGoogle Scholar
  17. 17.
    Haas BJ, Zeng Q, Pearson MD, Cuomo CA, Wortman JR. Approaches to fungal genome annotation. Mycology. 2011;2:118–41.PubMedPubMedCentralGoogle Scholar
  18. 18.
    Fedorova ND, Khaldi N, Joardar VS, Maiti R, Amedeo P, Anderson MJ, et al. Genomic islands in the pathogenic filamentous fungus Aspergillus fumigatus. PLoS Genet. 2008;4:e1000046.CrossRefPubMedPubMedCentralGoogle Scholar
  19. 19.
    Nierman WC, Pain A, Anderson MJ, Wortman JR, Kim HS, Arroyo J, et al. Genomic sequence of the pathogenic and allergenic filamentous fungus Aspergillus fumigatus. Nature. 2005;438:1151–6.CrossRefPubMedGoogle Scholar
  20. 20.
    Muñoz JF, Gauthier GM, Desjardins CA, Gallo JE, Holder J, Sullivan TD, et al. The dynamic genome and transcriptome of the human fungal pathogen Blastomyces and close relative Emmonsia. PLoS Genet. 2015;11:e1005493.CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    van het Hoog M, Rast TJ, Martchenko M, Grindle S, Dignard D, Hogues H, et al. Assembly of the Candida albicans genome into sixteen supercontigs aligned on the eight chromosomes. Genome Biol. 2007;8:R52.CrossRefGoogle Scholar
  22. 22.
    Dujon B, Sherman D, Fischer G, Durrens P, Casaregola S, Lafontaine I, et al. Genome evolution in yeasts. Nature. 2004;430:35–44.CrossRefPubMedGoogle Scholar
  23. 23.
    Sharpton TJ, Stajich JE, Rounsley SD, Gardner MJ, Wortman JR, Jordar VS, et al. Comparative genomic analyses of the human fungal pathogens Coccidioides and their relatives. Genome Res. 2009;19:1722–31.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Janbon G, Ormerod KL, Paulet D, Byrnes EJ, Yadav V, Chatterjee G, et al. Analysis of the genome and transcriptome of Cryptococcus neoformans var. grubii reveals complex RNA expression and microevolution leading to virulence attenuation. PLoS Genet. 2014;10:e1004261.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    D’Souza CA, Kronstad JW, Taylor G, Warren R, Yuen M, Hu G, et al. Genome variation in Cryptococcus gattii, an emerging pathogen of immunocompetent hosts. mBio. 2011;2.Google Scholar
  26. 26.
    Farrer RA, Desjardins CA, Sakthikumar S, Gujja S, Saif S, Zeng Q, et al. Genome evolution and innovation across the four major lineages of Cryptococcus gattii. MBio. 2015;6:e00868–15.CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Loftus BJ, Fung E, Roncaglia P, Rowley D, Amedeo P, Bruno D, et al. The genome of the basidiomycetous yeast and human pathogen Cryptococcus neoformans. Science. 2005;307:1321–4.CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Histoplasma Genome Project | Broad Institute [Internet]. [cited 2017 Mar 21]. Available from: https://www.broadinstitute.org/fungal-genome-initiative/histoplasma-genome-project
  29. 29.
    Desjardins CA, Champion MD, Holder JW, Muszewska A, Goldberg J, Bailao AM, et al. Comparative genomic analysis of human fungal pathogens causing paracoccidioidomycosis. PLoS Genet. 2011;7:e1002345.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Nierman WC, Fedorova-Abrams ND, Andrianopoulos A. Genome sequence of the AIDS-associated pathogen Penicillium marneffei (ATCC18224) and its near taxonomic relative Talaromyces stipitatus (ATCC10500). Genome Announc. 2015;3.Google Scholar
  31. 31.
    Woo PCY, Lau SKP, Liu B, Cai JJ, Chong KTK, Tse H, et al. Draft genome sequence of Penicillium marneffei strain PM1. Eukaryot Cell. 2011;10:1740–1.CrossRefPubMedPubMedCentralGoogle Scholar
  32. 32.
    Ma LJ, Ibrahim AS, Skory C, Grabherr MG, Burger G, Butler M, et al. Genomic analysis of the basal lineage fungus Rhizopus oryzae reveals a whole-genome duplication. PLoS Genet. 2009;5:e1000549.CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Brown GD, Denning DW, Gow NAR, Levitz SM, Netea MG, White TC. Hidden killers: human fungal infections. Sci Transl Med. 2012;4:165rv13.CrossRefPubMedGoogle Scholar
  34. 34.
    Engelthaler DM, Hicks ND, Gillece JD, Roe CC, Schupp JM, Driebe EM, et al. Cryptococcus gattii in North American Pacific Northwest: whole-population genome analysis provides insights into species evolution and dispersal. MBio. 2014;5:e01464–14.CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Billmyre RB, Croll D, Li W, Mieczkowski P, Carter DA, Cuomo CA, et al. Highly recombinant VGII Cryptococcus gattii population develops clonal outbreak clusters through both sexual macroevolution and asexual microevolution. MBio. 2014;5:e01494–14.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    • Desjardins C, Giamberardino C, Sykes S, Yu C-H, Tenor J, Chen Y, et al. Population genomics and the evolution of virulence in the fungal pathogen Cryptococcus neoformans. bioRxiv. 2017;118323. Large population genomic study in Cryptococcus establishing the major subdivisions in the populations and associated phenotypes and application of GWAS to identify variants associated with clinical origin and phenotypes.Google Scholar
  37. 37.
    Hirakawa MP, Martinez DA, Sakthikumar S, Anderson MZ, Berlin A, Gujja S, et al. Genetic and phenotypic intra-species variation in Candida albicans. Genome Res. 2015;25:413–25.CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Engelthaler DM, Roe CC, Hepp CM, Teixeira M, Driebe EM, Schupp JM, et al. Local population structure and patterns of western hemisphere dispersal for Coccidioides spp., the fungal cause of valley fever. MBio. 2016;7:e00550–16.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Taylor JW, Jacobson DJ, Kroken S, Kasuga T, Geiser DM, Hibbett DS, et al. Phylogenetic species recognition and species concepts in fungi. Fungal Genet Biol. 2000;31:21–32.CrossRefPubMedGoogle Scholar
  40. 40.
    Hagen F, Khayhan K, Theelen B, Kolecka A, Polacheck I, Sionov E, et al. Recognition of seven species in the Cryptococcus gattii/Cryptococcus neoformans species complex. Fungal Genet Biol. 2015.Google Scholar
  41. 41.
    Kwon-Chung KJ, Bennett JE, Wickes BL, Meyer W, Cuomo CA, Wollenburg KR, et al. The case for adopting the “species complex” nomenclature for the etiologic agents of Cryptococcosis. mSphere. 2017;2.Google Scholar
  42. 42.
    Schwartz IS, Kenyon C, Feng P, Govender NP, Dukik K, Jiang Y, et al. 50 years of Emmonsia disease in humans: the dramatic emergence of a cluster of novel fungal pathogens. PLoS Pathog. 2015;11:e1005198.CrossRefPubMedPubMedCentralGoogle Scholar
  43. 43.
    Dukik K, Muñoz JF, Jiang Y, Feng P, Sigler L, Stielow JB, et al. Novel taxa of thermally dimorphic systemic pathogens in the Ajellomycetaceae (Onygenales). Mycoses. 2017.Google Scholar
  44. 44.
    Andes D, Casadevall A. Insights into fungal pathogenesis from the iatrogenic epidemic of Exserohilum rostratum fungal meningitis. Fungal Genet Biol FG B. 2013;61:143–5.CrossRefPubMedGoogle Scholar
  45. 45.
    Centers for Disease Control and Prevention. Exophiala infection from contaminated injectable steroids prepared by a compounding pharmacy—United States, July--November 2002. Morb Mortal Week Rep. 2002;51:1109–12.Google Scholar
  46. 46.
    Litvintseva AP, Hurst S, Gade L, Frace MA, Hilsbeck R, Schupp JM, et al. Whole-genome analysis of Exserohilum rostratum from an outbreak of fungal meningitis and other infections. J Clin Microbiol. 2014;52:3216–22.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Litvintseva AP, Marsden-Haug N, Hurst S, Hill H, Gade L, Driebe EM, et al. Valley fever: finding new places for an old disease: Coccidioides immitis found in Washington State soil associated with recent human infection. Clin Infect Dis Off Publ Infect Dis Soc Am. 2015;60:e1–3.CrossRefGoogle Scholar
  48. 48.
    • Lockhart SR, Etienne KA, Vallabhaneni S, Farooqi J, Chowdhary A, Govender NP, et al. Simultaneous emergence of multidrug-resistant Candida auris on 3 continents confirmed by whole-genome sequencing and epidemiological analyses. Clin. Infect. Dis. Off. Publ. Infect. Dis. Soc. Am. 2017;64:134–40. Population genomic study of Candida auris outbreak isolates and characterization of geographic substructure and the basis of drug resistance; example of application of a de novo assembly and re-sequencing approach CrossRefGoogle Scholar
  49. 49.
    Sharma C, Kumar N, Pandey R, Meis JF, Chowdhary A. Whole genome sequencing of emerging multidrug resistant Candida auris isolates in India demonstrates low genetic variation. New Microbes New Infect. 2016;13:77–82.CrossRefPubMedPubMedCentralGoogle Scholar
  50. 50.
    Healey KR, Zhao Y, Perez WB, Lockhart SR, Sobel JD, Farmakiotis D, et al. Prevalent mutator genotype identified in fungal pathogen Candida glabrata promotes multi-drug resistance. Nat Commun. 2016;7:11128.CrossRefPubMedGoogle Scholar
  51. 51.
    • Ford CB, Funt JM, Abbey D, Issi L, Guiducci C, Martinez DA, et al. The evolution of drug resistance in clinical isolates of Candida albicans. elife. 2015;4:e00662. Initial study of microevolution and the acquisition of new phenotypes in serial isolates of Candida albicans CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Chen Y, Farrer RA, Giamberardino C, Sakthikumar S, Jones A, Yang T, et al. Microevolution of serial clinical isolates of Cryptococcus neoformans var. grubii and C. gattii. MBio. 2017;8:e00166–17.PubMedPubMedCentralGoogle Scholar
  53. 53.
    Rhodes J, Beale MA, Vanhove M, Jarvis JN, Kannambath S, Simpson JA, et al. A population genomics approach to assessing the genetic basis of within-host microevolution underlying recurrent cryptococcal meningitis infection. G3 Bethesda Md. 2017.Google Scholar
  54. 54.
    White TC. The presence of an R467K amino acid substitution and loss of allelic variation correlate with an azole-resistant lanosterol 14alpha demethylase in Candida albicans. Antimicrob Agents Chemother. 1997;41:1488–94.PubMedPubMedCentralGoogle Scholar
  55. 55.
    Dunkel N, Blass J, Rogers PD, Morschhäuser J. Mutations in the multi-drug resistance regulator MRR1, followed by loss of heterozygosity, are the main cause of MDR1 overexpression in fluconazole-resistant Candida albicans strains. Mol Microbiol. 2008;69:827–40.CrossRefPubMedPubMedCentralGoogle Scholar
  56. 56.
    Coste A, Turner V, Ischer F, Morschhäuser J, Forche A, Selmecki A, et al. A mutation in Tac1p, a transcription factor regulating CDR1 and CDR2, is coupled with loss of heterozygosity at chromosome 5 to mediate antifungal resistance in Candida albicans. Genetics. 2006;172:2139–56.CrossRefPubMedPubMedCentralGoogle Scholar
  57. 57.
    Sionov E, Lee H, Chang YC, Kwon-Chung KJ. Cryptococcus neoformans overcomes stress of azole drugs by formation of disomy in specific multiple chromosomes. PLoS Pathog. 2010;6:e1000848.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Kostic AD, Ojesina AI, Pedamallu CS, Jung J, Verhaak RGW, Getz G, et al. PathSeq: software to identify or discover microbes by deep sequencing of human tissue. Nat Biotechnol. 2011;29:393–6.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Naccache SN, Federman S, Veeraraghavan N, Zaharia M, Lee D, Samayoa E, et al. A cloud-compatible bioinformatics pipeline for ultrarapid pathogen identification from next-generation sequencing of clinical samples. Genome Res. 2014;24:1180–92.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Morowitz MJ, Denef VJ, Costello EK, Thomas BC, Poroyko V, Relman DA, et al. Strain-resolved community genomic analysis of gut microbial colonization in a premature infant. Proc Natl Acad Sci U S A. 2011;108:1128–33.CrossRefPubMedGoogle Scholar
  61. 61.
    Truong DT, Tett A, Pasolli E, Huttenhower C, Segata N. Microbial strain-level population structure and genetic diversity from metagenomes. Genome Res. [Internet]. 2017 [cited 2017 Mar 14]; Available from: http://genome.cshlp.org/content/early/2017/03/10/gr.216242.116

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Infectious Disease and Microbiome ProgramBroad Institute of MIT and HarvardCambridgeUSA

Personalised recommendations