Advertisement

Current Fungal Infection Reports

, Volume 11, Issue 1, pp 25–34 | Cite as

Invasive Fungal Infection in Primary Immunodeficiencies Other Than Chronic Granulomatous Disease

  • A. Garraffo
  • B. Pilmis
  • J. Toubiana
  • A. Puel
  • N. Mahlaoui
  • S. Blanche
  • O. Lortholary
  • F. Lanternier
Pediatric Fungal Infections (T Lehrnbecher, Section Editor)
Part of the following topical collections:
  1. Topical Collection on Pediatric Fungal Infections

Abstract

Purpose of review

We aimed to review invasive fungal infections complicating primary immunodeficiencies (PID).

Recent findings

Several PID predisposing to fungal infections were recently deciphered. CARD9 deficiency selectively predisposes to fungal infections including candidiasis, aspergillosis, deep dermatophytosis, and phaeohyphomycosis, with frequent central nervous system location, especially after Candida infection. Patients with heterozygous STAT1 gain-of-function mutations are mostly predisposed to chronic mucocutaneous candidiasis but may also display, even though less frequently, invasive fungal infections. Aspergillosis complicating STAT3 deficiency is also a major concern in patients with lung cavities. Antifungal prophylaxis is recommended in this first group of patients. Previously well-reported PID are known to predispose to fungal infections, such as genetic defects impairing the IL-12/IFN-γ axis can predispose to cryptococcosis, and dimorphic fungal infections.

Summary

Patients developing invasive fungal infections including candidiasis, aspergillosis, cryptococcosis, phaeohyphomycosis, pneumocystosis, or disseminated infections caused by dimorphic fungi, without known underlying risk factors, should be explored immunogenetically in order to diagnose primary immunodeficiencies, even in the absence of previous other infectious episodes.

Keywords

Primary immunodeficiencies (PIDs) Invasive fungal diseases Pediatric fungal infections Chronic mucocutaneous candidiasis Dimorphic fungi CARD9 STAT1 STAT3 Opportunistic infections 

Notes

Acknowledgements

The Laboratory of Human Genetics of Infectious Diseases and Infectious Diseases Unit were supported by the French National Research Agency (ANR) under HGDIFD (ANR-14-CE15-0006).

Compliance with Ethical Standards

Conflict of Interest

Olivier Lortholary reports personal fees from Pfizer, MSD, Gilead, and Astellas.

Fanny Lanternier reports personal fees from Basilea, MSD, and Gilead.

Aurelie Garraffo, Benoît Pilmis, Julie Toubiana, A. Puel, Nizar Mahlaoui, and S. Blanche declare that they have no conflict of interest.

Human and Animal Rights and Informed Consent

This article does not contain any studies with human or animal subjects performed by any of the authors.

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. 1.
    Buckley RH. Primary immunodeficiency diseases due to defects in lymphocytes. N Engl J Med. 2000;343(18):1313–24.PubMedCrossRefGoogle Scholar
  2. 2.
    Lekstrom-Himes JA, Gallin JI. Immunodeficiency diseases caused by defects in phagocytes. N Engl J Med. 2000;343(23):1703–14.PubMedCrossRefGoogle Scholar
  3. 3.•
    Moens LN, Falk-Sörqvist E, Asplund AC, Bernatowska E, Smith CIE, Nilsson M. Diagnostics of primary immunodeficiency diseases: a sequencing capture approach. PLoS One. 2014;9(12):e114901. A sequencing capture approach by sequencing DNA from 33 patients to identify disease-causing mutations in 179 known PID genes.PubMedPubMedCentralCrossRefGoogle Scholar
  4. 4.
    Bonilla FA, Bernstein IL, Khan DA, Ballas ZK, Chinen J, Frank MM, et al. Practice parameter for the diagnosis and management of primary immunodeficiency. Ann Allergy Asthma Immunol Off Publ Am Coll Allergy Asthma Immunol. 2005;94(5 Suppl 1):S1–63.CrossRefGoogle Scholar
  5. 5.
    Lindegren ML, Kobrynski L, Rasmussen SA, Moore CA, Grosse SD, Vanderford ML, et al. Applying public health strategies to primary immunodeficiency diseases: a potential approach to genetic disorders. MMWR Recomm Rep Morb Mortal Wkly Rep Recomm Rep. 2004;53(RR-1):1–29.Google Scholar
  6. 6.
    Ochs HD, Smith CIE, Puck JM. Genetic aspects of primary immunodeficiencies., eds. Primary immunodeficiency diseases: a molecular and genetic approach. New York: Oxford University Press; 1999.Google Scholar
  7. 7.
    Antachopoulos C, Walsh TJ, Roilides E. Fungal infections in primary immunodeficiencies. Eur J Pediatr. 2007;166(11):1099–117.PubMedCrossRefGoogle Scholar
  8. 8.
    Winkelstein JA, Marino MC, Ochs H, Fuleihan R, Scholl PR, Geha R, et al. The X-linked hyper-IgM syndrome: clinical and immunologic features of 79 patients. Medicine (Baltimore). 2003;82(6):373–84.CrossRefGoogle Scholar
  9. 9.
    Van den Berg JM, van Koppen E, Ahlin A, Belohradsky BH, Bernatowska E, Corbeel L, et al. Chronic granulomatous disease: the European experience. PLoS One. 2009;4(4), e5234.PubMedPubMedCentralCrossRefGoogle Scholar
  10. 10.••
    Gazendam RP, van Hamme JL, Tool ATJ, van Houdt M, Verkuijlen PJJH, Herbst M, et al. Two independent killing mechanisms of Candida albicans by human neutrophils: evidence from innate immunity defects. Blood. 2014;124(4):590–7. Description of CARD9 role in non opsonized Candida killing.PubMedCrossRefGoogle Scholar
  11. 11.
    Yamamoto H, Nakamura Y, Sato K, Takahashi Y, Nomura T, Miyasaka T, et al. Defect of CARD9 leads to impaired accumulation of gamma interferon-producing memory phenotype T cells in lungs and increased susceptibility to pulmonary infection with Cryptococcus neoformans. Infect Immun. 2014;82(4):1606–15.PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.••
    Drummond RA, Collar AL, Swamydas M, Rodriguez CA, Lim JK, Mendez LM, et al. CARD9-dependent neutrophil recruitment protects against fungal invasion of the central nervous system. PLoS Pathog. 2015;11(12):e1005293. Evidence lack of neutrophil accumulation in CNS of CARD9 deficient patients with CNS candidiasis and in a murine model role of CARD9 in neutrophil trafficking to central nervous system.PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Rieber N, Gazendam RP, Freeman AF, Hsu AP, Collar AL, Sugui JA, et al. Extrapulmonary aspergillus infection in patients with CARD9 deficiency. JCI Insight. 2016;1(17), e89890.PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Jachiet M, Lanternier F, Rybojad M, Bagot M, Ibrahim L, Casanova J-L, et al. Posaconazole treatment of extensive skin and nail dermatophytosis due to autosomal recessive deficiency of CARD9. JAMA Dermatol. 2015;151(2):192.PubMedCrossRefGoogle Scholar
  15. 15.
    Grumach AS, de Queiroz-Telles F, Migaud M, Lanternier F, Filho NR, Palma SMU, et al. A homozygous CARD9 mutation in a Brazilian patient with deep dermatophytosis. J Clin Immunol. 2015;35(5):486–90.PubMedCrossRefGoogle Scholar
  16. 16.
    Lanternier F, Pathan S, Vincent QB, Liu L, Cypowyj S, Prando C, et al. Deep dermatophytosis and inherited CARD9 deficiency. N Engl J Med. 2013;369(18):1704–14.PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Dereure O. Deep dermatophytosis and CARD9-inactivating mutation. Ann Dermatol Vénéréol. 2014;141(5):392–3.PubMedCrossRefGoogle Scholar
  18. 18.
    Lanternier F, Mahdaviani SA, Barbati E, Chaussade H, Koumar Y, Levy R, et al. Inherited CARD9 deficiency in otherwise healthy children and adults with Candida species-induced meningoencephalitis, colitis, or both. J Allergy Clin Immunol. 2015;135(6):1558–1568.e2.PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Jones N, Garcez T, Newman W, Denning D. Endogenous Candida endophthalmitis and osteomyelitis associated with CARD9 deficiency. BMJ Case Rep. 2016;3:2016.Google Scholar
  20. 20.
    Wang X, Wang W, Lin Z, Wang X, Li T, Yu J, et al. CARD9 mutations linked to subcutaneous phaeohyphomycosis and TH17 cell deficiencies. J Allergy Clin Immunol. 2014;133(3):905–908.e3.PubMedCrossRefGoogle Scholar
  21. 21.
    Lanternier F, Barbati E, Meinzer U, Liu L, Pedergnana V, Migaud M, et al. Inherited CARD9 deficiency in 2 unrelated patients with invasive exophiala infection. J Infect Dis [Internet]. 2014[cited 2015 Oct 13]; Available from: http://jid.oxfordjournals.org/lookup. doi: 10.1093/infdis/jiu412.
  22. 22.••
    Liu L, Okada S, Kong X-F, Kreins AY, Cypowyj S, Abhyankar A, et al. Gain-of-function human STAT1 mutations impair IL-17 immunity and underlie chronic mucocutaneous candidiasis. J Exp Med. 2011;208(8):1635–48. Description of STAT1 GOF mutations in 47 patients with autosomal dominant chronic muco-cutaneous candidiasis associated with Th17 defect.PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.••
    Van de Veerdonk FL, Plantinga TS, Hoischen A, Smeekens SP, Joosten LAB, Gilissen C, et al. STAT1 mutations in autosomal dominant chronic mucocutaneous candidiasis. N Engl J Med. 2011;365(1):54–61. Description of GOF STAT1 mutation in 14 patients with CMC.PubMedCrossRefGoogle Scholar
  24. 24.
    Dupuis S, Döffinger R, Picard C, Fieschi C, Altare F, Jouanguy E, et al. Human interferon-gamma-mediated immunity is a genetically controlled continuous trait that determines the outcome of mycobacterial invasion. Immunol Rev. 2000;178:129–37.PubMedCrossRefGoogle Scholar
  25. 25.
    Sampaio EP, Bax HI, Hsu AP, Kristosturyan E, Pechacek J, Chandrasekaran P, et al. A novel STAT1 mutation associated with disseminated mycobacterial disease. J Clin Immunol. 2012;32(4):681–9.PubMedPubMedCentralCrossRefGoogle Scholar
  26. 26.
    Dupuis S, Jouanguy E, Al-Hajjar S, Fieschi C, Al-Mohsen IZ, Al-Jumaah S, et al. Impaired response to interferon-alpha/beta and lethal viral disease in human STAT1 deficiency. Nat Genet. 2003;33(3):388–91.PubMedCrossRefGoogle Scholar
  27. 27.
    Ng W-F, von Delwig A, Carmichael AJ, Arkwright PD, Abinun M, Cant AJ, et al. Impaired T(H)17 responses in patients with chronic mucocutaneous candidiasis with and without autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy. J Allergy Clin Immunol. 2010;126(5):1006–15. 1015.e1–4.PubMedCrossRefGoogle Scholar
  28. 28.••
    Toubiana J, Okada S, Hiller J, Oleastro M, Lagos Gomez M, Aldave Becerra JC, et al. Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype. Blood. 2016;127(25):3154–64. International study reporting clinical features of 274 patients with AD STAT1 GOF mutations.PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Chen M, Chen G, Nie H, Zhang X, Niu X, Zang YCQ, et al. Regulatory effects of IFN-beta on production of osteopontin and IL-17 by CD4+ T cells in MS. Eur J Immunol. 2009;39(9):2525–36.PubMedCrossRefGoogle Scholar
  30. 30.
    Zheng J, van de Veerdonk FL, Crossland KL, Smeekens SP, Chan CM, Al Shehri T, et al. Gain-of-function STAT1 mutations impair STAT3 activity in patients with chronic mucocutaneous candidiasis (CMC). Eur J Immunol. 2015;45(10):2834–46.PubMedCrossRefGoogle Scholar
  31. 31.
    Baris S, Alroqi F, Kiykim A, Karakoc-Aydiner E, Ogulur I, Ozen A, et al. Severe early-onset combined immunodeficiency due to heterozygous gain-of-function mutations in STAT1. J Clin Immunol. 2016;36(7):641–8.PubMedCrossRefGoogle Scholar
  32. 32.
    Kobbe R, Kolster M, Fuchs S, Schulze-Sturm U, Jenderny J, Kochhan L, et al. Common variable immunodeficiency, impaired neurological development and reduced numbers of T regulatory cells in a 10-year-old boy with a STAT1 gain-of-function mutation. Gene. 2016;586(2):234–8.PubMedCrossRefGoogle Scholar
  33. 33.
    Sobh A, Chou J, Schneider L, Geha RS, Massaad MJ. Chronic mucocutaneous candidiasis associated with an SH2 domain gain-of-function mutation that enhances STAT1 phosphorylation. J Allergy Clin Immunol. 2016;138(1):297–9.PubMedCrossRefGoogle Scholar
  34. 34.
    Lee PPW, Mao H, Yang W, Chan K-W, Ho MHK, Lee T-L, et al. Penicillium marneffei infection and impaired IFN-γ immunity in humans with autosomal-dominant gain-of-phosphorylation STAT1 mutations. J Allergy Clin Immunol. 2014;133(3):894–896.e5.PubMedCrossRefGoogle Scholar
  35. 35.•
    Sampaio EP, Hsu AP, Pechacek J, Bax HI, Dias DL, Paulson ML, et al. Signal transducer and activator of transcription 1 (STAT1) gain-of-function mutations and disseminated coccidioidomycosis and histoplasmosis. J Allergy Clin Immunol. 2013;131(6):1624–34.PubMedPubMedCentralCrossRefGoogle Scholar
  36. 36.
    Uzel G, Sampaio EP, Lawrence MG, Hsu AP, Hackett M, Dorsey MJ, et al. Dominant gain-of-function STAT1 mutations in FOXP3 wild-type immune dysregulation-polyendocrinopathy-enteropathy-X-linked-like syndrome. J Allergy Clin Immunol. 2013;131(6):1611–23.PubMedPubMedCentralCrossRefGoogle Scholar
  37. 37.
    Dotta L, Scomodon O, Padoan R, Timpano S, Plebani A, Soresina A, et al. Clinical heterogeneity of dominant chronic mucocutaneous candidiasis disease: presenting as treatment-resistant candidiasis and chronic lung disease. Clin Immunol Orlando Fla. 2016;164:1–9.CrossRefGoogle Scholar
  38. 38.•
    Kumar N, Hanks ME, Chandrasekaran P, Davis BC, Hsu AP, Van Wagoner NJ, et al. Gain-of-function signal transducer and activator of transcription 1 (STAT1) mutation-related primary immunodeficiency is associated with disseminated mucormycosis. J Allergy Clin Immunol. 2014;134(1):236–9. Mucormycosis in STAT1 GOF mutated patient.PubMedPubMedCentralCrossRefGoogle Scholar
  39. 39.••
    Minegishi Y, Saito M, Tsuchiya S, Tsuge I, Takada H, Hara T, et al. Dominant-negative mutations in the DNA-binding domain of STAT3 cause hyper-IgE syndrome. Nature. 2007;448(7157):1058–62. STAT3 DNA-binding domain mutation in patients with hyper IgE syndrome.PubMedCrossRefGoogle Scholar
  40. 40.••
    Chandesris M-O, Melki I, Natividad A, Puel A, Fieschi C, Yun L, et al. Autosomal dominant STAT3 deficiency and hyper-IgE syndrome: molecular, cellular, and clinical features from a French national survey. Medicine (Baltimore). 2012;91(4):e1–19. Clinical and genetic description of 60 French patients with AD STAT3 deficiency.PubMedCentralCrossRefGoogle Scholar
  41. 41.••
    Holland SM, DeLeo FR, Elloumi HZ, Hsu AP, Uzel G, Brodsky N, et al. STAT3 mutations in the hyper-IgE syndrome. N Engl J Med. 2007;357(16):1608–19. Identification of STAT3 mutation in 50 patients with hyper IgE syndrome.PubMedCrossRefGoogle Scholar
  42. 42.
    Grimbacher B, Holland SM, Gallin JI, Greenberg F, Hill SC, Malech HL, et al. Hyper-IgE syndrome with recurrent infections—an autosomal dominant multisystem disorder. N Engl J Med. 1999;340(9):692–702.PubMedCrossRefGoogle Scholar
  43. 43.
    Renner ED, Rylaarsdam S, Anover-Sombke S, Rack AL, Reichenbach J, Carey JC, et al. Novel signal transducer and activator of transcription 3 (STAT3) mutations, reduced T(H)17 cell numbers, and variably defective STAT3 phosphorylation in hyper-IgE syndrome. J Allergy Clin Immunol. 2008;122(1):181–7.PubMedPubMedCentralCrossRefGoogle Scholar
  44. 44.
    Jiao H, Tóth B, Erdos M, Fransson I, Rákóczi E, Balogh I, et al. Novel and recurrent STAT3 mutations in hyper-IgE syndrome patients from different ethnic groups. Mol Immunol. 2008;46(1):202–6.PubMedCrossRefGoogle Scholar
  45. 45.
    Woellner C, Gertz EM, Schäffer AA, Lagos M, Perro M, Glocker E-O, et al. Mutations in STAT3 and diagnostic guidelines for hyper-IgE syndrome. J Allergy Clin Immunol. 2010;125(2):424–432.e8.PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Buckley RH, Becker WG. Abnormalities in the regulation of human IgE synthesis. Immunol Rev. 1978;41:288–314.PubMedCrossRefGoogle Scholar
  47. 47.••
    Vinh DC, Sugui JA, Hsu AP, Freeman AF, Holland SM. Invasive fungal disease in autosomal-dominant hyper-IgE syndrome. J Allergy Clin Immunol. 2010;125(6):1389–90. Description of 64 STAT3 deficient patients complicated with 28% mold infections, mainly due to Aspergillus.PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Van der Meer JW, Bont L, Verhage J. Aspergillus infection in patients with hyperimmunoglobulin E syndrome. Clin Infect Dis Off Publ Infect Dis Soc Am. 1998;27(5):1337.CrossRefGoogle Scholar
  49. 49.
    Almyroudis NG, Holland SM, Segal BH. Invasive aspergillosis in primary immunodeficiencies. Med Mycol. 2005;43 Suppl 1:S247–59.PubMedCrossRefGoogle Scholar
  50. 50.
    Dureault A., C. Tcherakian, S. Poiree, E. Catherinot, ME Bougnoux, H.Coignard, C. Givel, G. Jouvion, D. Garcia Hermoso, C. Picard, O. Lortholary, MO Chansdesris, F. Lanternier. Mold infections in STAT 3 deficient patients: a nationwide study in France. Advances against Aspergillus Congress; 2016; Manchester.Google Scholar
  51. 51.
    Freeman AF, Kleiner DE, Nadiminti H, Davis J, Quezado M, Anderson V, et al. Causes of death in hyper-IgE syndrome. J Allergy Clin Immunol. 2007;119(5):1234–40.PubMedCrossRefGoogle Scholar
  52. 52.
    Odio CD, Milligan KL, McGowan K, Rudman Spergel AK, Bishop R, Boris L, et al. Endemic mycoses in patients with STAT3 mutated hyperimmunoglobulin E (Job’s) syndrome. J Allergy Clin Immunol. 2015;136(5):1411–1413.e2.PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Poirée M, Picard C, Aguilar C, Haas H. Prophylactic antibiotics for immunocompromised children. Arch Pediatr Organe Off Soc Francaise Pediatr. 2013;20 Suppl 3:S94–8.Google Scholar
  54. 54.••
    Aguilar C, Malphettes M, Donadieu J, Chandesris O, Coignard-Biehler H, Catherinot E, et al. Prevention of infections during primary immunodeficiency. Clin Infect Dis Off Publ Infect Dis Soc Am. 2014;59(10):1462–70. Recommendations of anti infectious prophylaxis in PIDs.CrossRefGoogle Scholar
  55. 55.
    Aloj G, Giardino G, Valentino L, Maio F, Gallo V, Esposito T, et al. Severe combined immunodeficiences: new and old scenarios. Int Rev Immunol. 2012;31(1):43–65.PubMedCrossRefGoogle Scholar
  56. 56.••
    Rozmus J, Junker A, Thibodeau ML, Grenier D, Turvey SE, Yacoub W, et al. Severe combined immunodeficiency (SCID) in Canadian children: a national surveillance study. J Clin Immunol. 2013;33(8):1310–6. This paper describes 36 documented infections among 36 of the 40 confirmed cases.PubMedCrossRefGoogle Scholar
  57. 57.
    Kwan A, Abraham RS, Currier R, Brower A, Andruszewski K, Abbott JK, et al. Newborn screening for severe combined immunodeficiency in 11 screening programs in the United States. JAMA. 2014;312(7):729–38.PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Qasim W, Gennery AR. Gene therapy for primary immunodeficiencies: current status and future prospects. Drugs. 2014;74(9):963–9.PubMedCrossRefGoogle Scholar
  59. 59.
    Griffith LM, Cowan MJ, Notarangelo LD, Kohn DB, Puck JM, Shearer WT, et al. Primary immune deficiency treatment consortium (PIDTC) update. J Allergy Clin Immunol. 2016;138(2):375–85.PubMedCrossRefGoogle Scholar
  60. 60.
    Bakir M, Cerikcioğlu N, Tirtir A, Berrak S, Ozek E, Canpolat C. Pichia anomala fungaemia in immunocompromised children. Mycoses. 2004;47(5–6):231–5.PubMedCrossRefGoogle Scholar
  61. 61.
    Buckley RH. Primary cellular immunodeficiencies. J Allergy Clin Immunol. 2002;109(5):747–57.PubMedCrossRefGoogle Scholar
  62. 62.
    Kobayashi S, Murayama S, Tatsuzawa O, Koinuma G, Kawasaki K, Kiyotani C, et al. X-linked severe combined immunodeficiency (X-SCID) with high blood levels of immunoglobulins and Aspergillus pneumonia successfully treated with micafangin followed by unrelated cord blood stem cell transplantation. Eur J Pediatr. 2007;166(3):207–10.PubMedCrossRefGoogle Scholar
  63. 63.
    Smego RA, Devoe PW, Sampson HA, Perfect JR, Wilfert CM, Buckley RH. Candida meningitis in two children with severe combined immunodeficiency. J Pediatr. 1984;104(6):902–4.PubMedCrossRefGoogle Scholar
  64. 64.
    Yoshihara T, Morimoto A, Nakauchi S, Fujii N, Tsunamoto K, Misawa A, et al. Successful transplantation of haploidentical CD34+ selected bone marrow cells for an infantile case of severe combined immunodeficiency with aspergillus pneumonia. Pediatr Hematol Oncol. 2002;19(6):439–43.PubMedCrossRefGoogle Scholar
  65. 65.
    Domínguez-Pinilla N, Allende-Martínez L, Corral Sánchez MD, de JI A, González-Granado LI. Presentation of severe combined immunodeficiency with respiratory syncytial virus and pneumocystis co-infection. Pediatr Infect Dis J. 2015;34(4):433–4.PubMedCrossRefGoogle Scholar
  66. 66.
    Lundgren IS, Englund JA, Burroughs LM, Torgerson TR, Skoda-Smith S. Outcomes and duration of Pneumocystis jiroveci pneumonia therapy in infants with severe combined immunodeficiency. Pediatr Infect Dis J. 2012;31(1):95–7.PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Fogarty L. Thrush and septic shock in a two-month-old. Pediatr Infect Dis J. 1996;15(6):553–4. 559–60.PubMedCrossRefGoogle Scholar
  68. 68.
    Walcott DW, Linehan T, Hilman BC, Hershfield MS, el Dahr J. Failure to thrive, diarrhea, cough, and oral candidiasis in a three-month-old boy. Ann Allergy. 1994;72(5):408–14.PubMedGoogle Scholar
  69. 69.
    Yin EZ, Frush DP, Donnelly LF, Buckley RH. Primary immunodeficiency disorders in pediatric patients: clinical features and imaging findings. AJR Am J Roentgenol. 2001;176(6):1541–52.PubMedCrossRefGoogle Scholar
  70. 70.
    Lau YL, Yuen KY, Lee CW, Chan CF. Invasive Acremonium falciforme infection in a patient with severe combined immunodeficiency. Clin Infect Dis Off Publ Infect Dis Soc Am. 1995;20(1):197–8.CrossRefGoogle Scholar
  71. 71.
    Davies EG, Thrasher AJ. Update on the hyper immunoglobulin M syndromes. Br J Haematol. 2010;149(2):167–80.PubMedPubMedCentralCrossRefGoogle Scholar
  72. 72.••
    Picard C, Al-Herz W, Bousfiha A, Casanova J-L, Chatila T, Conley ME, et al. Primary immunodeficiency diseases: an update on the classification from the International Union of Immunological Societies Expert Committee for Primary Immunodeficiency 2015. J Clin Immunol. 2015;35(8):696–726. This paper report the updated classification of PID compiled by the PID Expert Committee of the International Union of Immunological Societies.PubMedPubMedCentralCrossRefGoogle Scholar
  73. 73.
    Fuleihan R, Ramesh N, Loh R, Jabara H, Rosen RS, Chatila T, et al. Defective expression of the CD40 ligand in X chromosome-linked immunoglobulin deficiency with normal or elevated IgM. Proc Natl Acad Sci U S A. 1993;90(6):2170–3.PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Hostoffer RW, Berger M, Clark HT, Schreiber JR. Disseminated Histoplasma capsulatum in a patient with hyper IgM immunodeficiency. Pediatrics. 1994;94(2 Pt 1):234–6.PubMedGoogle Scholar
  75. 75.
    Kuijpers TW, Ijspeert H, van Leeuwen EMM, Jansen MH, Hazenberg MD, Weijer KC, et al. Idiopathic CD4+ T lymphopenia without autoimmunity or granulomatous disease in the slipstream of RAG mutations. Blood. 2011;117(22):5892–6.PubMedCrossRefGoogle Scholar
  76. 76.
    Serwas NK, Cagdas D, Ban SA, Bienemann K, Salzer E, Tezcan I, et al. Identification of ITK deficiency as a novel genetic cause of idiopathic CD4+ T-cell lymphopenia. Blood. 2014;124(4):655–7.PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Tanaka S, Teraguchi M, Hasui M, Taniuchi S, Ikemoto Y, Kobayashi Y. Idiopathic CD4+ T-lymphocytopenia in a boy with Down syndrome. Report of a patient and a review of the literature. Eur J Pediatr. 2004;163(2):122–3.PubMedCrossRefGoogle Scholar
  78. 78.
    Pasic S, Minic P, Dzudovic S, Minic A, Slavkovic B. Idiopathic CD4+ lymphocytopenia and juvenile laryngeal papillomatosis. Pediatr Pulmonol. 2005;39(3):281–3.PubMedCrossRefGoogle Scholar
  79. 79.
    Régent A, Autran B, Carcelain G, Cheynier R, Terrier B, Charmeteau-De Muylder B, et al. Idiopathic CD4 lymphocytopenia: clinical and immunologic characteristics and follow-up of 40 patients. Medicine (Baltimore). 2014;93(2):61–72.CrossRefGoogle Scholar
  80. 80.
    Ahmad DS, Esmadi M, Steinmann WC. Idiopathic CD4 lymphocytopenia: spectrum of opportunistic infections, malignancies, and autoimmune diseases. Avicenna J Med. 2013;3(2):37–47.PubMedPubMedCentralCrossRefGoogle Scholar
  81. 81.
    Pavić I, Cekinović D, Begovac J, Maretić T, Civljak R, Troselj-Vukić B. Cryptococcus neoformans meningoencephalitis in a patient with idiopathic CD4+ T lymphocytopenia. Coll Antropol. 2013;37(2):619–23.PubMedGoogle Scholar
  82. 82.
    Dromer F, Mathoulin-Pélissier S, Launay O, Lortholary O, French Cryptococcosis Study Group. Determinants of disease presentation and outcome during cryptococcosis: the CryptoA/D study. PLoS Med. 2007;4(2):e21.PubMedPubMedCentralCrossRefGoogle Scholar
  83. 83.
    Legarth RA, Christensen M, Calum H, Katzenstein TL, Helweg-Larsen J. Cryptococcal rib osteomyelitis as primary and only symptom of idiopathic CD4 penia. Med Mycol Case Rep. 2014;4:16–8.PubMedPubMedCentralCrossRefGoogle Scholar
  84. 84.
    Zonios DI, Falloon J, Bennett JE, Shaw PA, Chaitt D, Baseler MW, et al. Idiopathic CD4+ lymphocytopenia: natural history and prognostic factors. Blood. 2008;112(2):287–94.PubMedPubMedCentralCrossRefGoogle Scholar
  85. 85.
    Kortsik C, Elmer A, Tamm I. Pleural effusion due to Histoplasma capsulatum and idiopathic CD4 lymphocytopenia. Respir Int Rev Thorac Dis. 2003;70(1):118–22.Google Scholar
  86. 86.
    Xia X-J, Shen H, Xu A. Cutaneous Penicillium marneffei infection in a patient with idiopathic CD4(+) lymphocytopenia. J Dermatol. 2015;42(8):812–4.PubMedCrossRefGoogle Scholar
  87. 87.
    Duncan RA, von Reyn CF, Alliegro GM, Toossi Z, Sugar AM, Levitz SM. Idiopathic CD4+ T-lymphocytopenia—four patients with opportunistic infections and no evidence of HIV infection. N Engl J Med. 1993;328(6):393–8.PubMedCrossRefGoogle Scholar
  88. 88.
    Zonios DI, Falloon J, Huang C-Y, Chaitt D, Bennett JE. Cryptococcosis and idiopathic CD4 lymphocytopenia. Medicine (Baltimore). 2007;86(2):78–92.CrossRefGoogle Scholar
  89. 89.
    Imai K, Morio T, Zhu Y, Jin Y, Itoh S, Kajiwara M, et al. Clinical course of patients with WASP gene mutations. Blood. 2004;103(2):456–64.PubMedCrossRefGoogle Scholar
  90. 90.••
    Aydin SE, Kilic SS, Aytekin C, Kumar A, Porras O, Kainulainen L, et al. Inborn errors working party of EBMT. DOCK8 deficiency: clinical and immunological phenotype and treatment options—a review of 136 patients. J Clin Immunol. 2015;35(2):189–98. This study describes the clinical presentation of 136 patients presenting DOCK8 deficiency.PubMedCrossRefGoogle Scholar
  91. 91.
    Nekrep N, Fontes JD, Geyer M, Peterlin BM. When the lymphocyte loses its clothes. Immunity. 2003;18(4):453–7.PubMedCrossRefGoogle Scholar
  92. 92.
    Picard C, Fischer A. Hematopoietic stem cell transplantation and other management strategies for MHC class II deficiency. Immunol Allergy Clin North Am. 2010;30(2):173–8.PubMedCrossRefGoogle Scholar
  93. 93.
    Donadieu J, Fenneteau O, Beaupain B, Mahlaoui N, Chantelot CB. Congenital neutropenia: diagnosis, molecular bases and patient management. Orphanet J Rare Dis. 2011;6:26.PubMedPubMedCentralCrossRefGoogle Scholar
  94. 94.
    Dale DC, Bolyard AA, Schwinzer BG, Pracht G, Bonilla MA, Boxer L, et al. The severe chronic neutropenia international registry: 10-year follow-up report. Supp Cancer Ther. 2006;3(4):220–31.CrossRefGoogle Scholar
  95. 95.
    Desplantes C, Fremond ML, Beaupain B, Harousseau JL, Buzyn A, Pellier I, et al. Clinical spectrum and long-term follow-up of 14 cases with G6PC3 mutations from the French severe congenital neutropenia registry. Orphanet J Rare Dis [Internet]. 2014;9. Available from: http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4279596/.
  96. 96.
    Bernini JC. Diagnosis and management of chronic neutropenia during childhood. Pediatr Clin North Am. 1996;43(3):773–92.PubMedCrossRefGoogle Scholar
  97. 97.
    Horwitz M, Benson KF, Person RE, Aprikyan AG, Dale DC. Mutations in ELA2, encoding neutrophil elastase, define a 21-day biological clock in cyclic haematopoiesis. Nat Genet. 1999;23(4):433–6.PubMedCrossRefGoogle Scholar
  98. 98.
    Dale DC, Person RE, Bolyard AA, Aprikyan AG, Bos C, Bonilla MA, et al. Mutations in the gene encoding neutrophil elastase in congenital and cyclic neutropenia. Blood. 2000;96(7):2317–22.PubMedGoogle Scholar
  99. 99.
    Nustede R, Klimiankou M, Klimenkova O, Kuznetsova I, Zeidler C, Welte K, et al. ELANE mutant-specific activation of different UPR pathways in congenital neutropenia. Br J Haematol. 2016;172(2):219–27.PubMedCrossRefGoogle Scholar
  100. 100.
    Welte K, Zeidler C, Dale DC. Severe congenital neutropenia. Semin Hematol. 2006;43(3):189–95.PubMedCrossRefGoogle Scholar
  101. 101.
    Dallorso S, Manzitti C, Dodero P, Faraci M, Rosanda C, Castagnola E. Uneventful outcome of unrelated hematopoietic stem cell transplantation in a patient with leukemic transformation of Kostmann syndrome and long-lasting invasive pulmonary mycosis. Eur J Haematol. 2003;70(5):322–5.PubMedCrossRefGoogle Scholar
  102. 102.
    Fahimzad A, Chavoshzadeh Z, Abdollahpour H, Klein C, Rezaei N. Necrosis of nasal cartilage due to mucormycosis in a patient with severe congenital neutropenia due to HAX1 deficiency. J Investig Allergol Clin Immunol. 2008;18(6):469–72.PubMedGoogle Scholar
  103. 103.
    Dale DC. The discovery, development and clinical applications of granulocyte colony-stimulating factor. Trans Am Clin Climatol Assoc. 1998;109:27–36. discussion 36–38.PubMedPubMedCentralGoogle Scholar
  104. 104.
    Wada T, Tone Y, Shibata F, Toma T, Yachie A. Delayed wound healing in leukocyte adhesion deficiency type 1. J Pediatr. 2011;158(2):342.PubMedCrossRefGoogle Scholar
  105. 105.
    Fischer A, Lisowska-Grospierre B, Anderson DC, Springer TA. Leukocyte adhesion deficiency: molecular basis and functional consequences. Immunodefic Rev. 1988;1(1):39–54.PubMedGoogle Scholar
  106. 106.
    Marquardt T, Brune T, Lühn K, Zimmer KP, Körner C, Fabritz L, et al. Leukocyte adhesion deficiency II syndrome, a generalized defect in fucose metabolism. J Pediatr. 1999;134(6):681–8.PubMedCrossRefGoogle Scholar
  107. 107.
    Cox DP, Weathers DR. Leukocyte adhesion deficiency type 1: an important consideration in the clinical differential diagnosis of prepubertal periodontitis. A case report and review of the literature. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2008;105(1):86–90.PubMedCrossRefGoogle Scholar
  108. 108.
    Anderson DC, Springer TA. Leukocyte adhesion deficiency: an inherited defect in the Mac-1, LFA-1, and p150,95 glycoproteins. Annu Rev Med. 1987;38:175–94.PubMedCrossRefGoogle Scholar
  109. 109.
    Valentini P, De Sole P, De Luca D, Plaisant P, Puggioni P, Rossi MC, et al. Decreased chemiluminescence in leukocyte adhesion deficiency presenting with recurrent sepsis, amoebiasis and Candida albicans urinary tract infection. Minerva Med. 2006;97(5):437–42.PubMedGoogle Scholar
  110. 110.
    Kuijpers TW, van Bruggen R, Kamerbeek N, Tool ATJ, Hicsonmez G, Gurgey A, et al. Natural history and early diagnosis of LAD-1/variant syndrome. Blood. 2007;109(8):3529–37.PubMedCrossRefGoogle Scholar
  111. 111.
    Filipe-Santos O, Bustamante J, Chapgier A, Vogt G, de Beaucoudrey L, Feinberg J, et al. Inborn errors of IL-12/23- and IFN-gamma-mediated immunity: molecular, cellular, and clinical features. Semin Immunol. 2006;18(6):347–61.PubMedCrossRefGoogle Scholar
  112. 112.
    Bogunovic D, Byun M, Durfee LA, Abhyankar A, Sanal O, Mansouri D, et al. Mycobacterial disease and impaired IFN-γ immunity in humans with inherited ISG15 deficiency. Science. 2012;337(6102):1684–8.PubMedPubMedCentralCrossRefGoogle Scholar
  113. 113.
    Bustamante J, Arias AA, Vogt G, Picard C, Galicia LB, Prando C, et al. Germline CYBB mutations that selectively affect macrophages in kindreds with X-linked predisposition to tuberculous mycobacterial disease. Nat Immunol. 2011;12(3):213–21.PubMedPubMedCentralCrossRefGoogle Scholar
  114. 114.
    De Beaucoudrey L, Samarina A, Bustamante J, Cobat A, Boisson-Dupuis S, Feinberg J, et al. Revisiting human IL-12Rβ1 deficiency: a survey of 141 patients from 30 countries. Medicine (Baltimore). 2010;89(6):381–402.CrossRefGoogle Scholar
  115. 115.
    Denis M, Gregg EO, Ghandirian E. Cytokine modulation of Mycobacterium tuberculosis growth in human macrophages. Int J Immunopharmacol. 1990;12(7):721–7.PubMedCrossRefGoogle Scholar
  116. 116.•
    Ouederni M, Sanal O, Ikinciogullari A, Tezcan I, Dogu F, Sologuren I, et al. Clinical features of Candidiasis in patients with inherited interleukin 12 receptor β1 deficiency. Clin Infect Dis Off Publ Infect Dis Soc Am. 2014;58(2):204–13.CrossRefGoogle Scholar
  117. 117.
    Jirapongsananuruk O, Luangwedchakarn V, Niemela JE, Pacharn P, Visitsunthorn N, Thepthai C, et al. Cryptococcal osteomyelitis in a child with a novel compound mutation of the IL12RB1 gene. Asian Pac J Allergy Immunol. 2012;30(1):79–82.PubMedGoogle Scholar
  118. 118.
    de Moraes-Vasconcelos D, Grumach AS, Yamaguti A, Andrade MEB, Fieschi C, de Beaucoudrey L, et al. Paracoccidioides brasiliensis disseminated disease in a patient with inherited deficiency in the beta1 subunit of the interleukin (IL)-12/IL-23 receptor. Clin Infect Dis Off Publ Infect Dis Soc Am. 2005;41(4):e31–7.CrossRefGoogle Scholar
  119. 119.
    Zerbe CS, Holland SM. Disseminated histoplasmosis in persons with interferon-gamma receptor 1 deficiency. Clin Infect Dis Off Publ Infect Dis Soc Am. 2005;41(4):e38–41.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • A. Garraffo
    • 1
    • 2
  • B. Pilmis
    • 1
    • 3
  • J. Toubiana
    • 4
  • A. Puel
    • 5
  • N. Mahlaoui
    • 6
  • S. Blanche
    • 6
  • O. Lortholary
    • 1
    • 7
  • F. Lanternier
    • 1
    • 7
  1. 1.Infectious Diseases and Tropical Medicine Unit, Antimicrobial Stewardship Team, Necker-Enfants Malades HospitalAP-HP and Paris Descartes UniversityParisFrance
  2. 2.Pediatric unit and Antimicrobial Stewardship Team, Robert Debré HospitalAP-HP and Paris Diderot UniversityParisFrance
  3. 3.Antimicrobial Stewardship Team, Microbiology UnitGroupe Hospitalier Paris Saint JosephParisFrance
  4. 4.General Pediatric and Infectious Diseases Unit, Antimicrobial Stewardship Team, Necker Enfants-Malades HospitalAP-HP Paris Descartes UniversityParisFrance
  5. 5.Laboratory of Human Genetics of Infectious Diseases, Necker Branch, INSERM U1163, Necker Medical SchoolImagine Institute and Paris Descartes UniversityParisFrance
  6. 6.Pediatric Hematology-Immunology Unit, Necker Enfants-Malades HospitalAP-HP, and Paris Descartes UniversityParisFrance
  7. 7.Institut Pasteur, Unité de Mycologie Moléculaire, CNRS URA3012National Reference Center of Invasive Mycoses and AntifungalsParisFrance

Personalised recommendations