Skip to main content

Advertisement

Log in

Current Status of Diagnosis of Mucormycosis: Update on Molecular Methods

  • Hot Topic
  • Published:
Current Fungal Infection Reports Aims and scope Submit manuscript

Abstract

The diagnosis of mucormycosis remains difficult. Clinical and radiological signs are not specific and therefore biological markers are of prime importance. The conventional diagnosis relies on the direct examination and culture of clinical samples followed by morphological identification of the causative agent. Nevertheless, direct examination may be difficult to interpret, cultures may be negative, and most of the Mucorales share common morphological characteristics rendering identification problematic. In recent years, several alternative approaches, mainly based on molecular methods, have been developed to overcome these difficulties. Major advances have been made in the molecular identification of isolates in culture and a consensus has been reached as to the best technique to use. Very interesting results have also been obtained in molecular diagnosis using clinical samples, with a variety of methodological approaches, but none of these techniques is completely standardized yet. Recent results show that detection of DNA in serum may also be feasible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Dannaoui E, Garcia-Hermoso D. The Zygomycetes. In: Kavanagh K, editor. New insights in fungal pathogenicity. Dordrecht: Springer Science; 2007. p. 159–83.

    Google Scholar 

  2. Garcia-Hermoso D, Dannaoui E, Lortholary O, et al. Agents of systemic and subcutaneous mucormycosis and entomophthoromycosis. In: Versalovic J, Carroll KC, Funke G, et al., editors. Manual of clinical microbiology. 10th ed. Washington, DC: ASM Press; 2011. p. 1880–901.

    Google Scholar 

  3. Ribes JA, Vanover-Sams CL, Baker DJ. Zygomycetes in human disease. Clin Microbiol Rev. 2000;13:236–301.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Bitar D, Van Cauteren D, Lanternier F, et al. Increasing incidence of zygomycosis (mucormycosis), France, 1997–2006. Emerg Infect Dis. 2009;15:1395–401.

    Article  PubMed Central  PubMed  Google Scholar 

  5. Kontoyiannis DP, Wessel VC, Bodey GP, et al. Zygomycosis in the 1990s in a tertiary-care cancer center. Clin Infect Dis. 2000;30:851–6.

    Article  CAS  PubMed  Google Scholar 

  6. Roden MM, Zaoutis TE, Buchanan WL, et al. Epidemiology and outcome of zygomycosis: a review of 929 reported cases. Clin Infect Dis. 2005;41:634–53.

    Article  PubMed  Google Scholar 

  7. Saegeman V, Maertens J, Meersseman W, et al. Increasing incidence of mucormycosis in University Hospital, Belgium. Emerg Infect Dis. 2010;16:1456–8.

    Article  PubMed Central  PubMed  Google Scholar 

  8. Petrikkos G, Skiada A, Lortholary O, et al. Epidemiology and clinical manifestations of mucormycosis. Clin Infect Dis. 2012;54 Suppl 1:S23–34.

    Article  PubMed  Google Scholar 

  9. Skiada A, Pagano L, Groll A, et al. Zygomycosis in Europe: analysis of 230 cases accrued by the registry of the European Confederation of Medical Mycology (ECMM) Working Group on Zygomycosis between 2005 and 2007. Clin Microbiol Infect. 2011;17:1859–67.

    Article  CAS  PubMed  Google Scholar 

  10. Gomes MZ, Lewis RE, Kontoyiannis DP. Mucormycosis caused by unusual mucormycetes, non-Rhizopus, -Mucor, and -Lichtheimia species. Clin Microbiol Rev. 2011;24:411–45.

    Article  PubMed Central  PubMed  Google Scholar 

  11. Lanternier F, Dannaoui E, Morizot G, et al. A global analysis of mucormycosis in France: the RetroZygo study (2005–2007). Clin Infect Dis. 2012;54 Suppl 1:S35–43.

    Article  CAS  PubMed  Google Scholar 

  12. Benedict K, Park BJ. Invasive fungal infections after natural disasters. Emerg Infect Dis. 2014;20:349–55.

    Article  PubMed Central  PubMed  Google Scholar 

  13. Warkentien T, Rodriguez C, Lloyd B, et al. Invasive mold infections following combat-related injuries. Clin Infect Dis. 2012;55:1441–9.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Rammaert B, Lanternier F, Zahar JR, et al. Healthcare-associated mucormycosis. Clin Infect Dis. 2012;54 Suppl 1:S44–54.

    Article  PubMed  Google Scholar 

  15. Chamilos G, Lewis RE, Kontoyiannis DP. Delaying amphotericin B-based frontline therapy significantly increases mortality among patients with hematologic malignancy who have zygomycosis. Clin Infect Dis. 2008;47:503–9.

    Article  PubMed  Google Scholar 

  16. Dannaoui E, Meletiadis J, Mouton JW, et al. In vitro susceptibilities of zygomycetes to conventional and new antifungals. J Antimicrob Chemother. 2003;51:45–52.

    Article  CAS  PubMed  Google Scholar 

  17. Vitale RG, de Hoog GS, Schwarz P, et al. Antifungal susceptibility and phylogeny of opportunistic members of the order mucorales. J Clin Microbiol. 2012;50:66–75.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Walsh TJ, Gamaletsou MN, McGinnis MR, et al. Early clinical and laboratory diagnosis of invasive pulmonary, extrapulmonary, and disseminated mucormycosis (zygomycosis). Clin Infect Dis. 2012;54 Suppl 1:S55–60.

    Article  PubMed  Google Scholar 

  19. Dannaoui E. Molecular tools for identification of Zygomycetes and the diagnosis of zygomycosis. Clin Microbiol Infect. 2009;15 Suppl 5:66–70.

    Article  CAS  PubMed  Google Scholar 

  20. Cornely OA, Arikan-Akdagli S, Dannaoui E, et al. ESCMID and ECMM joint clinical guidelines for the diagnosis and management of mucormycosis 2013. Clin Microbiol Infect. 2014;20 Suppl 3:5–26. European guidelines for mucormycosis with grading of each recommendation. It covers diagnostic procedures including direct examination, histopathology, culture, molecular identification of causative agents, antifungal susceptibility testing, and imaging. It also adresses management, with recommendations on surgery, antifungal treatments, and reversal of predisposing factors.

    Article  CAS  PubMed  Google Scholar 

  21. Arendrup MC, Bille J, Dannaoui E, et al. ECIL-3 classical diagnostic procedures for the diagnosis of invasive fungal diseases in patients with leukaemia. Bone Marrow Transplant. 2012;47:1030–45. European recommendations for optimal use of classical diagnostic procedures (sample types, microscopy and culture procedures, antifungal susceptibility testing and imaging) in patients with leukaemia.

    Article  CAS  PubMed  Google Scholar 

  22. Lass-Florl C. Zygomycosis: conventional laboratory diagnosis. Clin Microbiol Infect. 2009;15 Suppl 5:60–5.

    Article  PubMed  Google Scholar 

  23. Torres-Narbona M, Guinea J, Martinez-Alarcon J, et al. Impact of zygomycosis on microbiology workload: a survey study in Spain. J Clin Microbiol. 2007;45:2051–3.

    Article  PubMed Central  PubMed  Google Scholar 

  24. Torres-Narbona M, Guinea J, Martinez-Alarcon J, et al. Workload and clinical significance of the isolation of zygomycetes in a tertiary general hospital. Med Mycol. 2008;46:225–30.

    Article  CAS  PubMed  Google Scholar 

  25. Ostrosky-Zeichner L, Alexander BD, Kett DH, et al. Multicenter clinical evaluation of the (1–>3) beta-D-glucan assay as an aid to diagnosis of fungal infections in humans. Clin Infect Dis. 2005;41:654–9.

    Article  CAS  PubMed  Google Scholar 

  26. Potenza L, Vallerini D, Barozzi P, et al. Mucorales-specific T cells emerge in the course of invasive mucormycosis and may be used as a surrogate diagnostic marker in high-risk patients. Blood. 2011;118:5416–9.

    Article  CAS  PubMed  Google Scholar 

  27. Lass-Florl C, Resch G, Nachbaur D, et al. The value of computed tomography-guided percutaneous lung biopsy for diagnosis of invasive fungal infection in immunocompromised patients. Clin Infect Dis. 2007;45:e101–4.

    Article  PubMed  Google Scholar 

  28. McDermott NE, Barrett J, Hipp J, et al. Successful treatment of periodontal mucormycosis: report of a case and literature review. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2010;109:e64–9.

    Article  PubMed  Google Scholar 

  29. Sangoi AR, Rogers WM, Longacre TA, et al. Challenges and pitfalls of morphologic identification of fungal infections in histologic and cytologic specimens: a ten-year retrospective review at a single institution. Am J Clin Pathol. 2009;131:364–75.

    Article  PubMed  Google Scholar 

  30. Jensen HE, Salonen J, Ekfors TO. The use of immunohistochemistry to improve sensitivity and specificity in the diagnosis of systemic mycoses in patients with haematological malignancies. J Pathol. 1997;181:100–5.

    Article  CAS  PubMed  Google Scholar 

  31. Schwarz P, Lortholary O, Dromer F, et al. Carbon assimilation profiles as a tool for identification of zygomycetes. J Clin Microbiol. 2007;45:1433–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Kontoyiannis DP, Chamilos G, Hassan SA, et al. Increased culture recovery of Zygomycetes under physiologic temperature conditions. Am J Clin Pathol. 2007;127:208–12.

    Article  PubMed  Google Scholar 

  33. Millon L, Larosa F, Lepiller Q, et al. Quantitative polymerase chain reaction detection of circulating DNA in serum for early diagnosis of mucormycosis in immunocompromised patients. Clin Infect Dis. 2013;56:e95–e101. First large study demonstrating the possibility of diagnosing mucormycosis by molecular-based detection of a biomarker in serum. The study showed that circulating DNA can be detected several days before confirmation of the diagnosis by classical methods.

    Article  CAS  PubMed  Google Scholar 

  34. Dannaoui E, Schwarz P, Slany M, et al. Molecular detection and identification of zygomycetes species from paraffin-embedded tissues in a murine model of disseminated zygomycosis: a collaborative European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Fungal Infection Study Group (EFISG) evaluation. J Clin Microbiol. 2010;48:2043–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Schwarz P, Bretagne S, Gantier JC, et al. Molecular identification of zygomycetes from culture and experimentally infected tissues. J Clin Microbiol. 2006;44:340–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  36. Lau A, Chen S, Sorrell T, et al. Development and clinical application of a panfungal PCR assay to detect and identify fungal DNA in tissue specimens. J Clin Microbiol. 2007;45:380–5.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Buitrago MJ, Aguado JM, Ballen A, et al. Efficacy of DNA amplification in tissue biopsy samples to improve the detection of invasive fungal disease. Clin Microbiol Infect. 2013;19:E271–7.

    Article  CAS  PubMed  Google Scholar 

  38. Iwen PC, Freifeld AG, Sigler L, et al. Molecular identification of Rhizomucor pusillus as a cause of sinus-orbital zygomycosis in a patient with acute myelogenous leukemia. J Clin Microbiol. 2005;43:5819–21.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Khan ZU, Ahmad S, Brazda A, et al. Mucor circinelloides as a cause of invasive maxillofacial zygomycosis: an emerging dimorphic pathogen with reduced susceptibility to posaconazole. J Clin Microbiol. 2009;47:1244–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. Kobayashi M, Togitani K, Machida H, et al. Molecular polymerase chain reaction diagnosis of pulmonary mucormycosis caused by Cunninghamella bertholletiae. Respirology. 2004;9:397–401.

    Article  PubMed  Google Scholar 

  41. Lechevalier P, Hermoso DG, Carol A, et al. Molecular diagnosis of Saksenaea vasiformis cutaneous infection after scorpion sting in an immunocompetent adolescent. J Clin Microbiol. 2008;46:3169–72.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  42. Bialek R, Konrad F, Kern J, et al. PCR based identification and discrimination of agents of mucormycosis and aspergillosis in paraffin wax embedded tissue. J Clin Pathol. 2005;58:1180–4.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Hammond SP, Bialek R, Milner DA, et al. Molecular methods to improve diagnosis and identification of mucormycosis. J Clin Microbiol. 2011;49:2151–3.

    Article  PubMed Central  PubMed  Google Scholar 

  44. Rickerts V, Just-Nubling G, Konrad F, et al. Diagnosis of invasive aspergillosis and mucormycosis in immunocompromised patients by seminested PCR assay of tissue samples. Eur J Clin Microbiol Infect Dis. 2006;25:8–13.

    Article  CAS  PubMed  Google Scholar 

  45. Rickerts V, Mousset S, Lambrecht E, et al. Comparison of histopathological analysis, culture, and polymerase chain reaction assays to detect invasive mold infections from biopsy specimens. Clin Infect Dis. 2007;44:1078–83.

    Article  PubMed  Google Scholar 

  46. Hrncirova K, Lengerova M, Kocmanova I, et al. Rapid detection and identification of mucormycetes from culture and tissue samples by use of high-resolution melt analysis. J Clin Microbiol. 2010;48:3392–4.

    Article  PubMed Central  PubMed  Google Scholar 

  47. Bernal-Martinez L, Buitrago MJ, Castelli MV, et al. Development of a single tube multiplex real-time PCR to detect the most clinically relevant Mucormycetes species. Clin Microbiol Infect. 2013;19:E1–7.

    Article  CAS  PubMed  Google Scholar 

  48. Hata DJ, Buckwalter SP, Pritt BS, et al. Real-time PCR method for detection of zygomycetes. J Clin Microbiol. 2008;46:2353–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Kasai M, Harrington SM, Francesconi A, et al. Detection of a molecular biomarker for zygomycetes by quantitative PCR assays of plasma, bronchoalveolar lavage, and lung tissue in a rabbit model of experimental pulmonary zygomycosis. J Clin Microbiol. 2008;46:3690–702.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Hayden RT, Qian X, Procop GW, et al. In situ hybridization for the identification of filamentous fungi in tissue section. Diagn Mol Pathol. 2002;11:119–26.

    Article  CAS  PubMed  Google Scholar 

  51. Shigemura T, Nakazawa Y, Matsuda K, et al. Serial monitoring of Mucorales DNA load in serum samples of a patient with disseminated mucormycosis after allogeneic bone marrow transplantation. Int J Hematol. 2014. doi:10.1007/s12185-014-1597-8.

    PubMed  Google Scholar 

  52. Schipper MA, Stalpers JA. Zygomycetes. The order Mucorales. In: Howard DH, editor. Pathogenic fungi in humans and animals. 2nd ed. New York: Marcel Dekker; 2003. p. 67–125.

    Google Scholar 

  53. Walther G, Pawlowska J, Alastruey-Izquierdo A, et al. DNA barcoding in Mucorales: an inventory of biodiversity. Persoonia. 2013;30:11–47. A comprehensive study confirming that the ITS region is an appropriate target for barcoding of Mucorales.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  54. Kontoyiannis DP, Lionakis MS, Lewis RE, et al. Zygomycosis in a tertiary-care cancer center in the era of Aspergillus-active antifungal therapy: a case-control observational study of 27 recent cases. J Infect Dis. 2005;191:1350–60.

    Article  PubMed  Google Scholar 

  55. Alvarez E, Sutton DA, Cano J, et al. Spectrum of zygomycete species identified in clinically significant specimens in the United States. J Clin Microbiol. 2009;47:1650–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Blanchet D, Dannaoui E, Fior A, et al. Saksenaea vasiformis infection, French Guiana. Emerg Infect Dis. 2008;14:342–4.

    Article  PubMed Central  PubMed  Google Scholar 

  57. Dannaoui E. Saksenaea vasiformis. In: Liu D, editor. Molecular detection of human fungal pathogens. Boca Raton: CRC Press; 2011. p. 777–84.

    Google Scholar 

  58. Kwon-Chung KJ. Taxonomy of fungi causing mucormycosis and entomophthoramycosis (zygomycosis) and nomenclature of the disease: molecular mycologic perspectives. Clin Infect Dis. 2012;54 Suppl 1:S8–S15.

    Article  PubMed Central  PubMed  Google Scholar 

  59. Garcia-Hermoso D, Hoinard D, Gantier JC, et al. Molecular and phenotypic evaluation of Lichtheimia corymbifera (formerly Absidia corymbifera) complex isolates associated with human mucormycosis: rehabilitation of L. ramosa. J Clin Microbiol. 2009;47:3862–70.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  60. Voigt K, Wostemeyer J. Phylogeny and origin of 82 zygomycetes from all 54 genera of the Mucorales and Mortierellales based on combined analysis of actin and translation elongation factor EF-1alpha genes. Gene. 2001;270:113–20.

    Article  CAS  PubMed  Google Scholar 

  61. Machouart M, Larche J, Burton K, et al. Genetic identification of the main opportunistic Mucorales by PCR-restriction fragment length polymorphism. J Clin Microbiol. 2006;44:805–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Voigt K, Cigelnik E, O’Donnell K. Phylogeny and PCR identification of clinically important Zygomycetes based on nuclear ribosomal-DNA sequence data. J Clin Microbiol. 1999;37:3957–64.

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Nyilasi I, Papp T, Csernetics A, et al. High-affinity iron permease (FTR1) gene sequence-based molecular identification of clinically important Zygomycetes. Clin Microbiol Infect. 2008;14:393–7.

    Article  CAS  PubMed  Google Scholar 

  64. Alvarez E, Cano J, Stchigel AM, et al. Two new species of Mucor from clinical samples. Med Mycol. 2011;49:62–72.

    Article  PubMed  Google Scholar 

  65. Chakrabarti A, Ghosh A, Prasad GS, et al. Apophysomyces elegans: an emerging zygomycete in India. J Clin Microbiol. 2003;41:783–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  66. Guarro J, Chander J, Alvarez E, et al. Apophysomyces variabilis infections in humans. Emerg Infect Dis. 2011;17:134–5.

    Article  PubMed Central  PubMed  Google Scholar 

  67. Nagao K, Ota T, Tanikawa A, et al. Genetic identification and detection of human pathogenic Rhizopus species, a major mucormycosis agent, by multiplex PCR based on internal transcribed spacer region of rRNA gene. J Dermatol Sci. 2005;39:23–31.

    Article  CAS  PubMed  Google Scholar 

  68. Balajee SA, Borman AM, Brandt ME, et al. Sequence-based identification of Aspergillus, fusarium, and mucorales species in the clinical mycology laboratory: where are we and where should we go from here? J Clin Microbiol. 2009;47:877–84.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Massire C, Buelow DR, Zhang SX, et al. PCR followed by electrospray ionization mass spectrometry for broad-range identification of fungal pathogens. J Clin Microbiol. 2013;51:959–66.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Etienne KA, Gillece J, Hilsabeck R, et al. Whole genome sequence typing to investigate the Apophysomyces outbreak following a tornado in Joplin, Missouri, 2011. PLoS One. 2012;7:e49989. First study using a whole-genome sequencing approach for typing Mucorales.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  71. Neblett Fanfair R, Benedict K, Bos J, et al. Necrotizing cutaneous mucormycosis after a tornado in Joplin, Missouri, in 2011. N Engl J Med. 2012;367:2214–25.

    Article  PubMed  Google Scholar 

  72. Bader O. MALDI-TOF-MS-based species identification and typing approaches in medical mycology. Proteomics. 2013;13:788–99. A review of interest in and limits of MALDI-TOF in the field of medical mycology.

    Article  CAS  PubMed  Google Scholar 

  73. Cassagne C, Ranque S, Normand AC, et al. Mould routine identification in the clinical laboratory by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. PLoS One. 2011;6:e28425.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. De Carolis E, Posteraro B, Lass-Florl C, et al. Species identification of Aspergillus, Fusarium and Mucorales with direct surface analysis by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Microbiol Infect. 2012;18:475–84.

    Article  PubMed  Google Scholar 

  75. Lau AF, Drake SK, Calhoun LB, et al. Development of a clinically comprehensive database and a simple procedure for identification of molds from solid media by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol. 2013;51:828–34.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Schrodl W, Heydel T, Schwartze VU, et al. Direct analysis and identification of pathogenic Lichtheimia species by matrix-assisted laser desorption ionization-time of flight analyzer-mediated mass spectrometry. J Clin Microbiol. 2012;50:419–27. The first large study demonstrating that MALDI-TOF can be used for identification of Mucorales.

    Article  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. U. Binder of the Medical University Innsbruck (Innsbruck, Austria) for her review of the manuscript.

Compliance with Ethics Guidelines

Conflict of Interest

E. Dannaoui has received research grants from Gilead.

L. Millon has received travel accommodation for participation in a congress from Pfizer and Gilead.

Human and Animal Rights and Informed Consent

All studies by the authors involving animal and/or human subjects were performed after approval by the appropriate institutional review boards. When required, written informed consent was obtained from all participants.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric Dannaoui.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dannaoui, E., Millon, L. Current Status of Diagnosis of Mucormycosis: Update on Molecular Methods. Curr Fungal Infect Rep 8, 353–359 (2014). https://doi.org/10.1007/s12281-014-0196-8

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12281-014-0196-8

Keywords

Navigation