Skip to main content

Advertisement

Log in

Pros and Cons of Extrapolating Animal Data on Antifungal Pharmacodynamics to Humans

  • Published:
Current Fungal Infection Reports Aims and scope Submit manuscript

Abstract

Both the incidence of invasive fungal infections and the number of antifungal agents available to clinicians have expanded significantly over the past two decades. Successes with pharmacokinetic and pharmacodynamic evaluations of other antimicrobial agents in animal models and their clinical correlations with patient outcomes have led to an increased number of studies evaluating both old and new antifungal agents. Recently, animal models have successfully defined target pharmacodynamic indices for many antifungal agents and fungal infections, but validation of these targets in human studies is frequently lacking. This article evaluates the potential pros and cons of extrapolating to humans the animal data on antifungal pharmacodynamics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance

  1. Louie A, Drusano GL, Banerjee P, et al. Pharmacodynamics of fluconazole in a murine model of systemic candidiasis. Antimicrob Agents Chemother. 1998;42:1105–9.

    PubMed  CAS  Google Scholar 

  2. Andes D, van Ogtrop M. Characterization and quantitation of the pharmacodynamics of fluconazole in a neutropenic murine disseminated candidiasis infection model. Antimicrob Agents Chemother. 1999;43:2116–20.

    PubMed  CAS  Google Scholar 

  3. Clancy CJ, Yu VL, Morris AJ, et al. Fluconazole MIC and the fluconazole dose/MIC ratio correlate with therapeutic response among patients with candidemia. Antimicrob Agents Chemother. 2005;49:3171–7.

    Article  PubMed  CAS  Google Scholar 

  4. Pai MP, Turpin RS, Garey KW. Association of fluconazole area under the concentration-time curve/MIC and dose/MIC ratios with mortality in nonneutropenic patients with candidemia. Antimicrob Agents Chemother. 2007;51:35–9.

    Article  PubMed  CAS  Google Scholar 

  5. Andes D, Marchillo K, Stamstad T, Conklin R. In vivo pharmacokinetics and pharmacodynamics of a new triazole, voriconazole, in a murine candidiasis model. Antimicrob Agents Chemother. 2003;47:3165–9.

    Article  PubMed  CAS  Google Scholar 

  6. Pascual A, Calandra T, Bolay S, et al. Voriconazole therapeutic drug monitoring in patients with invasive mycoses improves efficacy and safety outcomes. Clin Infect Dis. 2008;46:201–11.

    Article  PubMed  CAS  Google Scholar 

  7. Trifilio S, Singhal S, Williams S, et al. Breakthrough fungal infections after allogeneic hematopoietic stem cell transplantation in patients on prophylactic voriconazole. Bone Marrow Transplant. 2007;40:451–6.

    Article  PubMed  CAS  Google Scholar 

  8. Andes D, Marchillo K, Conklin R, et al. Pharmacodynamics of a new triazole, posaconazole, in a murine model of disseminated candidiasis. Antimicrob Agents Chemother. 2004;48:137–42.

    Article  PubMed  CAS  Google Scholar 

  9. Mavridou E, Bruggemann RJ, Melchers WJ, et al. Efficacy of posaconazole against three clinical Aspergillus fumigatus isolates with mutations in the cyp51A gene. Antimicrob Agents Chemother. 2010;54:860–5.

    Article  PubMed  CAS  Google Scholar 

  10. Howard SJ, Lestner JM, Sharp A, et al. Pharmacokinetics and pharmacodynamics of posaconazole for invasive pulmonary aspergillosis: clinical implications for antifungal therapy. J Infect Dis. 2011:1–9. doi:10.1093/infdis/jir023.

  11. • Hussaini T, Ruping MJ, Farowski F, et al. Therapeutic drug monitoring of voriconazole and posaconazole. Pharmacotherapy. 2011;31:214–25. This review describes the most up-to-date information on the relationship between voriconazole and posaconazole serum concentrations and their related efficacy and toxicity.

    Article  PubMed  CAS  Google Scholar 

  12. Walsh TJ, Raad I, Patterson TF, et al. Treatment of invasive aspergillosis with posaconazole in patients who are refractory to or intolerant of conventional therapy: an externally controlled trial. Clin Infect Dis. 2007;44:2–12.

    Article  PubMed  CAS  Google Scholar 

  13. • Andes D, Diekema DJ, Pfaller MA, et al. In vivo comparison of the pharmacodynamic targets for echinocandin drugs against Candida species. Antimicrob Agents Chemother. 2010;54:2497–506. This study identifies the pharmacodynamic targets for echinocandins against common Candida species, describes subtle differences amongst agents, and suggests that the current MIC breakpoints should be re-evaluated.

    Article  PubMed  CAS  Google Scholar 

  14. Andes D, Stamsted T, Conklin R. Pharmacodynamics of amphotericin B in a neutropenic-mouse disseminated-candidiasis model. Antimicrob Agents Chemother. 2001;45:922–6.

    Article  PubMed  CAS  Google Scholar 

  15. Wiederhold NP, Tam VH, Chi J, et al. Pharmacodynamic activity of amphotericin B deoxycholate is associated with peak plasma concentrations in a neutropenic murine model of invasive pulmonary aspergillosis. Antimicrob Agents Chemother. 2006;50:469–73.

    Article  PubMed  CAS  Google Scholar 

  16. Lewis RE, Liao G, Hou J, et al. Comparative analysis of amphotericin B lipid complex and liposomal amphotericin B kinetics of lung accumulation and fungal clearance in a murine model of acute invasive pulmonary aspergillosis. Antimicrob Agents Chemother. 2007;51:1253–8.

    Article  PubMed  CAS  Google Scholar 

  17. • Lewis RE, Albert ND, Liao G, et al. Comparative pharmacodynamics of amphotericin B lipid complex and liposomal amphotericin B in a murine model of pulmonary mucormycosis. Antimicrob Agents Chemother. 2010;54:1298–304. This study highlights important differences in pulmonary tissue concentrations between ABLC and L-AMB and suggests altered dosing strategies for L-AMB to optimize tissue penetration and reduce fungal burden in the first 72 hours of therapy.

    Article  PubMed  CAS  Google Scholar 

  18. Cornely OA, Maertens J, Bresnik M, et al. Liposomal amphotericin B as initial therapy for invasive mold infection: a randomized trial comparing a high-loading dose regimen with standard dosing (AmBiLoad trial). Clin Infect Dis. 2007;44:1289–97.

    Article  PubMed  CAS  Google Scholar 

  19. Walsh TJ, Foulds G, Pizzo PA. Pharmacokinetics and tissue penetration of fluconazole in rabbits. Antimicrob Agents Chemother. 1989;33:467–9.

    PubMed  CAS  Google Scholar 

  20. Park SS, D’Amico DJ, Paton B, Baker AS. Treatment of exogenous Candida endophthalmitis in rabbits with oral fluconazole. Antimicrob Agents Chemother. 1995;39:958–63.

    PubMed  CAS  Google Scholar 

  21. Pappas PG, Kauffman CA, Andes D, et al. Clinical practice guidelines for the management of candidiasis: 2009 update by the Infectious Diseases Society of America. Clin Infect Dis. 2009;48:503–35.

    Article  PubMed  CAS  Google Scholar 

  22. Riddell JT, Comer GM, Kauffman CA. Treatment of endogenous fungal endophthalmitis: focus on new antifungal agents. Clin Infect Dis. 2011;52:648–53.

    Article  PubMed  CAS  Google Scholar 

  23. Hariprasad SM, Mieler WF, Holz ER, et al. Determination of vitreous, aqueous, and plasma concentration of orally administered voriconazole in humans. Arch Ophthalmol. 2004;122:42–7.

    Article  PubMed  CAS  Google Scholar 

  24. Suzuki T, Uno T, Chen G, Ohashi Y. Ocular distribution of intravenously administered micafungin in rabbits. J Infect Chemother. 2008;14:204–7.

    Article  PubMed  CAS  Google Scholar 

  25. Lutsar I, Roffey S, Troke P. Voriconazole concentrations in the cerebrospinal fluid and brain tissue of guinea pigs and immunocompromised patients. Clin Infect Dis. 2003;37:728–32.

    Article  PubMed  Google Scholar 

  26. Schwartz S, Thiel E. Cerebral aspergillosis: tissue penetration is the key. Med Mycol. 2009;47 Suppl 1:S387–93.

    Article  PubMed  CAS  Google Scholar 

  27. Saag MS, Powderly WG, Cloud GA, et al. Comparison of amphotericin B with fluconazole in the treatment of acute AIDS-associated cryptococcal meningitis. The NIAID Mycoses Study Group and the AIDS Clinical Trials Group. N Engl J Med. 1992;326:83–9.

    Article  PubMed  CAS  Google Scholar 

  28. Groll AH, Giri N, Petraitis V, et al. Comparative efficacy and distribution of lipid formulations of amphotericin B in experimental Candida albicans infection of the central nervous system. J Infect Dis. 2000;182:274–82.

    Article  PubMed  CAS  Google Scholar 

  29. Korfel A, Menssen HD, Schwartz S, Thiel E. Cryptococcosis in Hodgkin’s disease: description of two cases and review of the literature. Ann Hematol. 1998;76:283–6.

    Article  PubMed  CAS  Google Scholar 

  30. Collette N, van der Auwera P, Lopez AP, et al. Tissue concentrations and bioactivity of amphotericin B in cancer patients treated with amphotericin B-deoxycholate. Antimicrob Agents Chemother. 1989;33:362–8.

    PubMed  CAS  Google Scholar 

  31. Conaughty JM, Khurana S, Banovac K, et al. Antifungal penetration into normal rabbit nucleus pulposus. Spine (Phila Pa 1976). 2004;29:E289–93.

    Google Scholar 

  32. Louie A, Liu W, Miller DA, et al. Efficacies of high-dose fluconazole plus amphotericin B and high-dose fluconazole plus 5-fluorocytosine versus amphotericin B, fluconazole, and 5-fluorocytosine monotherapies in treatment of experimental endocarditis, endophthalmitis, and pyelonephritis due to Candida albicans. Antimicrob Agents Chemother. 1999;43:2831–40.

    PubMed  CAS  Google Scholar 

  33. • van de Sande WW, Mathot RA, ten Kate MT, et al. Combination therapy of advanced invasive pulmonary aspergillosis in transiently neutropenic rats using human pharmacokinetic equivalent doses of voriconazole and anidulafungin. Antimicrob Agents Chemother. 2009;53:2005–13. This study demonstrated that the combination of voriconazole plus anidulafungin was not more effective than voriconazole monotherapy, questioning the proposed theoretic synergy between triazoles and echinocandins.

    Article  PubMed  Google Scholar 

  34. Petraitis V, Petraitiene R, Hope WW, et al. Combination therapy in treatment of experimental pulmonary aspergillosis: in vitro and in vivo correlations of the concentration- and dose- dependent interactions between anidulafungin and voriconazole by Bliss independence drug interaction analysis. Antimicrob Agents Chemother. 2009;53:2382–91.

    Article  PubMed  CAS  Google Scholar 

  35. Andes D, Forrest A, Lepak A, et al. Impact of antimicrobial dosing regimen on evolution of drug resistance in vivo: fluconazole and Candida albicans. Antimicrob Agents Chemother. 2006;50:2374–83.

    Article  PubMed  CAS  Google Scholar 

  36. Andes D, Craig WA. Animal model pharmacokinetics and pharmacodynamics: a critical review. Int J Antimicrob Agents. 2002;19:261–8.

    Article  PubMed  CAS  Google Scholar 

  37. Craig WA, Redington J, Ebert SC. Pharmacodynamics of amikacin in vitro and in mouse thigh and lung infections. J Antimicrob Chemother. 1991;27(Suppl C):29–40.

    PubMed  CAS  Google Scholar 

  38. Wiederhold NP, Kontoyiannis DP, Chi J, et al. Pharmacodynamics of caspofungin in a murine model of invasive pulmonary aspergillosis: evidence of concentration-dependent activity. J Infect Dis. 2004;190:1464–71.

    Article  PubMed  CAS  Google Scholar 

  39. Lewis RE, Albert ND, Kontoyiannis DP. Comparison of the dose-dependent activity and paradoxical effect of caspofungin and micafungin in a neutropenic murine model of invasive pulmonary aspergillosis. J Antimicrob Chemother. 2008;61:1140–4.

    Article  PubMed  CAS  Google Scholar 

  40. Betts RF, Nucci M, Talwar D, et al. A multicenter, double-blind trial of a high-dose caspofungin treatment regimen versus a standard caspofungin treatment regimen for adult patients with invasive candidiasis. Clin Infect Dis. 2009;48:1676–84.

    Article  PubMed  CAS  Google Scholar 

  41. Pappas PG, Rotstein CM, Betts RF, et al. Micafungin versus caspofungin for treatment of candidemia and other forms of invasive candidiasis. Clin Infect Dis. 2007;45:883–93.

    Article  PubMed  CAS  Google Scholar 

  42. Louie A, Deziel M, Liu W, et al. Pharmacodynamics of caspofungin in a murine model of systemic candidiasis: importance of persistence of caspofungin in tissues to understanding drug activity. Antimicrob Agents Chemother. 2005;49:5058–68.

    Article  PubMed  CAS  Google Scholar 

  43. Warn PA, Sharp A, Parmar A, et al. Pharmacokinetics and pharmacodynamics of a novel triazole, isavuconazole: mathematical modeling, importance of tissue concentrations, and impact of immune status on antifungal effect. Antimicrob Agents Chemother. 2009;53:3453–61.

    Article  PubMed  CAS  Google Scholar 

  44. Wiederhold NP, Najvar LK, Vallor AC, et al. Assessment of serum (1- > 3)-beta-D-glucan concentration as a measure of disease burden in a murine model of invasive pulmonary aspergillosis. Antimicrob Agents Chemother. 2008;52:1176–8.

    Article  PubMed  CAS  Google Scholar 

  45. Ibrahim AS, Gebremariam T, Husseiny MI, et al. Comparison of lipid amphotericin B preparations in treating murine zygomycosis. Antimicrob Agents Chemother. 2008;52:1573–6.

    Article  PubMed  CAS  Google Scholar 

  46. Deitch EA. Animal models of sepsis and shock: a review and lessons learned. Shock. 1998;9:1–11.

    Article  PubMed  CAS  Google Scholar 

  47. Klevay MJ, Horn DL, Neofytos D, et al. Initial treatment and outcome of Candida glabrata versus Candida albicans bloodstream infection. Diagn Microbiol Infect Dis. 2009;64:152–7.

    Article  PubMed  Google Scholar 

  48. Andes D, Pascual A, Marchetti O. Antifungal therapeutic drug monitoring: established and emerging indications. Antimicrob Agents Chemother. 2009;53:24–34.

    Article  PubMed  CAS  Google Scholar 

  49. Gumbo T, Drusano GL, Liu W, et al. Anidulafungin pharmacokinetics and microbial response in neutropenic mice with disseminated candidiasis. Antimicrob Agents Chemother. 2006;50:3695–700.

    Article  PubMed  CAS  Google Scholar 

  50. Andes D, Diekema DJ, Pfaller MA, et al. In vivo pharmacodynamic characterization of anidulafungin in a neutropenic murine candidiasis model. Antimicrob Agents Chemother. 2008;52:539–50.

    Article  PubMed  CAS  Google Scholar 

Download references

Disclosure

Conflicts of Interest : S. Mueller: none; T. Kiser: grants from Pfizer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tyree H. Kiser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mueller, S.W., Kiser, T.H. Pros and Cons of Extrapolating Animal Data on Antifungal Pharmacodynamics to Humans. Curr Fungal Infect Rep 5, 59–66 (2011). https://doi.org/10.1007/s12281-011-0051-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12281-011-0051-0

Keywords

Navigation