Skip to main content

Advertisement

Log in

Fungal Biofilms in the Clinical Lab Setting

  • Published:
Current Fungal Infection Reports Aims and scope Submit manuscript

Abstract

Device-related infections are often associated with biofilms (microbial communities encased within polysaccharide-rich extracellular matrix) formed by pathogens on surfaces of these devices. Candida species are the most common fungi isolated from infections associated with catheters and dentures, and both Candida and Fusarium are commonly isolated from contact lens–related infections such as fungal keratitis. These biofilms exhibit decreased susceptibility to most antimicrobial agents, which contributes to the persistence of infection. Drug resistance in fungal biofilms is multifactorial and phase-dependent; for example, efflux pumps mediate resistance in biofilms during early phase, whereas altered membrane sterol composition contributes to resistance in mature phase. Both substrate type and surface coatings play an important role in the pathogenesis of device-related fungal biofilms. Host immune cells influence the ability of Candida to form biofilms in vitro. This review summarizes recent advances in research on fungal biofilms and discusses their clinical relevance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

Papers of particular interest, published recently, have been highlighted as: • Of importance •• Of major importance

  1. Chandra J, Kuhn DM, Mukherjee PK, et al.: Biofilm formation by the fungal pathogen Candida albicans—development, architecture and drug resistance. J Bacteriol 2001, 183:5385–5394.

    Article  CAS  PubMed  Google Scholar 

  2. Chandra J, Mukherjee PK, Leidich SD, et al.: Antifungal resistance of candidal biofilms formed on denture acrylic in vitro. J Dent Res 2001, 80:903–908.

    Article  CAS  PubMed  Google Scholar 

  3. Nicastri E, Petrosiillo N, Viale P, et al.: Catheter-related bloodstream infections in HIV-infected patients. Ann NY Acad Sci 2001, 946:274–290.

    Article  CAS  PubMed  Google Scholar 

  4. • Hollenbach E: Invasive candidiasis in the ICU: evidence based and on the edge of evidence. Mycoses 2008, 51(Suppl 2):25–45. This article provides the evidence for the invasive candidiasis in ICU settings.

    Article  CAS  PubMed  Google Scholar 

  5. Hollenbach E: To treat or not to treat—critically ill patients with candiduria. Mycoses 2008, 51(Suppl 2):12–24.

    Article  PubMed  Google Scholar 

  6. Donlan RM, Costerton JW: Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 2002, 15:167–193.

    Article  CAS  PubMed  Google Scholar 

  7. Baillie GS, Douglas LJ: Effect of growth rate on resistance of Candida albicans biofilms to antifungal agents. Antimicrob Agents Chemother 1998, 42:1900–1905.

    CAS  PubMed  Google Scholar 

  8. Nikawa H, Yamamoto T, Hamada T, et al. : Commercial denture cleansers—cleansing efficacy against Candida albicans biofilm and compatibility with soft denture-lining materials. Int J Prosthodont 1995, 8:434–444.

    CAS  PubMed  Google Scholar 

  9. Hawser SP, Douglas LJ: Resistance of Candida albicans biofilms to antifungal agents in vitro. Antimicrob Agents Chemother 1995, 39:2128–2131.

    CAS  PubMed  Google Scholar 

  10. •• Imamura Y, Chandra J, Mukherjee PK, et al.: Fusarium and Candida albicans biofilms on soft contact lenses: model development, influence of lens type and susceptibility to lens care solutions. Antimicrob Agents Chemother 2008, 52:171–182. This article describes the formation of Fusarium and Candida albicans biofilms on different soft contact lenses and their susceptibility to different lens care solutions.

    Article  CAS  PubMed  Google Scholar 

  11. Baillie GS, Douglas LJ: Role of dimorphism in the development of Candida albicans biofilms. J Med Microbiol 1999, 48:671–679.

    Article  CAS  PubMed  Google Scholar 

  12. Busscher HJ, Geertsema-Doornbusch GI, van der Mei HC: Adhesion to silicone rubber of yeasts and bacteria isolated from voice prostheses: influence of salivary conditioning films. J Biomed Mater Res 1997, 34:201–209.

    Article  CAS  PubMed  Google Scholar 

  13. Everaert EP, Mahieu HF, Wong Chung RP, et al.: A new method for in vivo evaluation of biofilms on surface-modified silicone rubber voice prostheses. Eur Arch Otorhinolaryngol 1997, 254:261–263.

    Article  CAS  PubMed  Google Scholar 

  14. Zimmermann K, Bernhardt J, Knoke M, et al.: Influence of voriconazole and fluconazole on Candida albicans in long-time continuous flow culture. Mycoses 2002, 45:41–46.

    Article  CAS  PubMed  Google Scholar 

  15. Bernhardt H, Zimmermann K, Knoke M: The continuous flow culture as an in vitro model in experimental mycology. Mycoses 1999, 42(Suppl 2):29–32.

    PubMed  Google Scholar 

  16. Roosjen A, Boks NP, van der Mei HC, et al.: Influence of shear on microbial adhesion to PEO-brushes and glass by convective-diffusion and sedimentation in a parallel plate flow chamber. Colloids Surf B Biointerfaces 2005, 46:1–6.

    Article  CAS  PubMed  Google Scholar 

  17. Tsang C, Ng H, McMillan A: Antifungal susceptibility of Candida albicans biofilms on titanium discs with different surface roughness. Clin Oral Invest 2007, 11:361–368.

    Article  CAS  Google Scholar 

  18. Ramage G, Vande WK, Wickes BL, et al.: Standardized method for in vitro antifungal susceptibility testing of Candida albicans biofilms. Antimicrob Agents Chemother 2001, 45:2475–2479.

    Article  CAS  PubMed  Google Scholar 

  19. Hawser SP, Douglas LJ: Biofilm formation by Candida species on the surface of catheter materials in vitro. Infect Immun 1994, 62:915–921.

    CAS  PubMed  Google Scholar 

  20. •• Chandra J, Mukherjee PK, Ghannoum MA: In vitro growth and analysis of Candida biofilms. Nat Protoc 2008, 3:1909–1924. This article describes detailed protocols for models of Candida biofilms associated with dentures, catheters, and contact lenses.

    Article  CAS  PubMed  Google Scholar 

  21. Jin Y, Yip HK, Samaranayake YH, et al.: Biofilm-forming ability of Candida albicans is unlikely to contribute to high levels of oral yeast carriage in cases of human immunodeficiency virus infection. J Clin Microbiol 2003, 41:2961–2967.

    Article  CAS  PubMed  Google Scholar 

  22. Kuhn DM, Chandra J, Mukherjee PK, Ghannoum MA: Comparison of biofilms formed by Candida albicans and Candida parapsilosis on bioprosthetic surfaces. Infect Immun 2002, 70:878–888.

    Article  CAS  PubMed  Google Scholar 

  23. Perumal P, Mekala S, Chaffin WL: Role for cell density in antifungal drug resistance in Candida albicans biofilms. Antimicrob Agents Chemother 2007, 51:2454–2463.

    Article  CAS  PubMed  Google Scholar 

  24. • Peeters E, Nelis HJ, Coenye T: Comparison of multiple methods for quantification of microbial biofilms grown in microtiter plates. J Microbiol Methods 2008, 72:157–165. This article compares different quantification methods for microbial biofilms.

    Article  CAS  PubMed  Google Scholar 

  25. Kuhn DM, Balkis MM, Chandra J, et al.: Uses and limitations of the XTT assay in studies of Candida growth and metabolism. J Clin Microbiol 2003, 41:506–508.

    Article  CAS  PubMed  Google Scholar 

  26. Chandra J, Patel JD, Li J, et al.: Modification of surface properties of biomaterials influences the ability of C. albicans to form biofilms. Appl Environ Microbiol 2005, 71:8795–8801.

    Article  CAS  PubMed  Google Scholar 

  27. • Mukherjee PK, Chand DV, Chandra J, et al.: Shear stress modulates the thickness and architecture of Candida albicans biofilms in a phase-dependent manner. Mycoses 2009, 52:440–446. This article describes a shear stress model of Candida albicans biofilms.

    Article  PubMed  Google Scholar 

  28. Crabbe A, De Boever P, Van Houdt R, et al.: Use of the rotating wall vessel technology to study the effect of shear stress on growth behaviour of Pseudomonas aeruginosa PA01. Environ Microbiol 2008, 10:2098–2110.

    Article  CAS  PubMed  Google Scholar 

  29. Mukherjee PK, Chandra J, Kuhn DM, et al.: Mechanism of fluconazole resistance in Candida albicans biofilms: phase-specific role of efflux pumps and membrane sterols. Infect Immun 2003, 71:4333–4340.

    Article  CAS  PubMed  Google Scholar 

  30. Mateus C, Crow SA, Jr., Ahearn DG: Adherence of Candida albicans to silicone induces immediate enhanced tolerance to fluconazole. Antimicrob Agents Chemother 2004, 48:3358–3366.

    Article  CAS  PubMed  Google Scholar 

  31. Chandra J, McCormick TS, Imamura Y, et al.: Interaction of Candida albicans with adherent human peripheral blood mononuclear cells increases C. albicans biofilm formation and results in differential expression of pro- and anti-inflammatory cytokines. Infect Immun 2007, 75:2612–2620.

    Article  CAS  PubMed  Google Scholar 

  32. • Sun Y, Chandra J, Mukherjee P, et al.: A murine model of contact lens–associated Fusarium keratitis. Invest Ophthalmol Vis Sci 2010, 51:1511–1516. This article describes Fusarium keratitis associated with contact lens biofilms in a murine model.

    Article  PubMed  Google Scholar 

  33. • Szczotka-Flynn LB, Imamura Y, Chandra J, et al.: Increased resistance of contact lens–related bacterial biofilms to antimicrobial activity of soft contact lens care solutions. Cornea 2009, 28:918–926. This article describes the effect of different lens care solutions on bacterial biofilms associated with contact lenses.

    Article  PubMed  Google Scholar 

Download references

Disclosure

Studies described in this article were funded by the Bristol-Myers Squibb Freedom to Discover Award and National Institutes of Health (NIH/NIDCR) (R01-DE017486-01A1, BRS-ACURE-Q0600136/Oral HIV/AIDS Research Alliance) grants to MAG, and funding from the NIH/National Institute of Allergy and Infectious Diseases (NIAID, R21-AI074077) and the American Heart Association (SDG0335313N) to PKM. MAG has also received fees and honoraria from Pfizer, Merck, and Astellas Pharma. PKM has received fees from Great Lakes Pharmaceuticals, NovaBay Pharmaceuticals, and Astellas Pharma. No other potential conflicts of interest relevant to this article were reported.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mahmoud A. Ghannoum.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chandra, J., Mukherjee, P.K. & Ghannoum, M.A. Fungal Biofilms in the Clinical Lab Setting. Curr Fungal Infect Rep 4, 137–144 (2010). https://doi.org/10.1007/s12281-010-0020-z

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12281-010-0020-z

Keywords

Navigation