Skip to main content
Log in

The role of flow cytometry in medical mycology

  • Published:
Current Fungal Infection Reports Aims and scope Submit manuscript

Abstract

The alarming increase in fungal diseases among hospitalized patients is a serious problem as these infections often have poor prognosis because of delayed diagnosis and lack of proper therapy. The rapid laboratory diagnosis of these diseases still remains problematic. The areas of concern include accurate identification of pathogenic fungi, rapid testing of their susceptibility to antifungals, and reliable determination of their interrelatedness to other clinical isolates. In the past few decades, flow cytometry has proven to be an adaptive technology platform for diagnostics. The applications encompass identification, serotyping, genotyping, susceptibility testing, and molecular pathogenesis studies. The recent revolution in the miniaturizing and customizing of instrumentation has now made this technology more accessible and affordable. In the near future, it is imperative to develop standardized protocols by means of interlaboratory comparisons and to share reagents for reproducibility studies. Flow cytometry remains highly attractive as an integrated application for myriad tasks in medical mycology laboratories.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References and Recommended Reading

  1. O’Gorman MR, Hopfer RL: Amphotericin B susceptibility testing of Candida species by flow cytometry. Cytometry 1991, 12:743–747.

    Article  PubMed  CAS  Google Scholar 

  2. Martin E, Schlasius U, Bhakdi S: Flow cytometric assay for estimating fungicidal activity of amphotericin B in human serum. Med Microbiol Immunol 1992, 181:117–126.

    Article  PubMed  CAS  Google Scholar 

  3. Green L, Petersen B, Steimel L, et al.: Rapid determination of antifungal activity by flow cytometry. J Clin Microbiol 1994, 32:1088–1091.

    PubMed  CAS  Google Scholar 

  4. Taguchi H, Tanaka R, Nishimura K, Miyaji M: Application of flow cytometry to differentiating Exophiala dermatitidis, E. moniliae and E. jeanselmei from each other. Mycopathologia 1988, 103:87–90.

    Article  PubMed  CAS  Google Scholar 

  5. Chaka W, Scharringa J, Verheul AF, et al.: Quantitative analysis of phagocytosis and killing of Cryptococcus neoformans by human peripheral blood mononuclear cells by flow cytometry. Clin Diagn Lab Immunol 1995, 2:753–759.

    PubMed  CAS  Google Scholar 

  6. Polacheck I, Antman A, Barth I, et al.: Adherence of Candida albicans to epithelial cells: studies using fluorescently labelled yeasts and flow cytometry. Microbiology 1995, 141(Pt 7):1523–1533.

    Article  PubMed  CAS  Google Scholar 

  7. Tanaka R, Taguchi H, Takeo K, et al.: Determination of ploidy in Cryptococcus neoformans by flow cytometry. J Med Vet Mycol 1996, 34:299–301.

    Article  PubMed  CAS  Google Scholar 

  8. Page BT, Kurtzman CP: Rapid identification of Candida species and other clinically important yeast species by flow cytometry. J Clin Microbiol 2005, 43:4507–4514.

    Article  PubMed  CAS  Google Scholar 

  9. Diaz MR, Boekhout T, Theelen B, et al.: Microcoding and flow cytometry as a high-throughput fungal identification system for Malassezia species. J Med Microbiol 2006, 55:1197–1209.

    Article  PubMed  CAS  Google Scholar 

  10. Shapiro H: Practical Flow Cytometry, edn 4. Hoboken, NJ: John Wiley & Sons, Inc.; 2003.

    Google Scholar 

  11. Alvarez-Barrientos A, Arroyo J, Canton R, et al.: Applications of flow cytometry to clinical microbiology. Clin Microbiol Rev 2000, 13:167–195.

    Article  PubMed  CAS  Google Scholar 

  12. Hickey P, Swift S, Roca M, Read N: Live-cell imaging of filamentous fungi using vital fluorescent dyes. Methods Microbiol 2005, 34:63–87.

    Article  Google Scholar 

  13. Hector RF, Braun PC: A 96-well epifluorescence assay for rapid assessment of compounds inhibitory to Candida spp. J Clin Microbiol 1986, 24:620–624.

    PubMed  CAS  Google Scholar 

  14. Peter J, Armstrong D, Lyman CA, Walsh TJ: Use of fluorescent probes to determine MICs of amphotericin B and caspofungin against Candida spp. and Aspergillus spp. J Clin Microbiol 2005, 43:3788–3792.

    Article  PubMed  CAS  Google Scholar 

  15. Kapuscinski J, Darzynkiewicz Z: Spectral properties of fluorochromes used in flow cytometry. Methods Cell Biol 1990, 33:655–669.

    Article  PubMed  CAS  Google Scholar 

  16. Petit JM, Denis-Gay M, Ratinaud MH: Assessment of fluorochromes for cellular structure and function studies by flow cytometry. Biol Cell 1993, 78:1–13.

    Article  PubMed  CAS  Google Scholar 

  17. Nolan JP, Mandy F: Multiplexed and microparticle-based analyses: quantitative tools for the large-scale analysis of biological systems. Cytometry A 2006, 69:318–325.

    PubMed  Google Scholar 

  18. Vignali DAA: Multiplexed particle-based flow cytometric assays. J Immunol Methods 2000, 243:243–255.

    Article  PubMed  CAS  Google Scholar 

  19. Diaz MR, Fell JW: Use of a suspension array for rapid identification of the varieties and genotypes of the Cryptococcus neoformans species complex. J Clin Microbiol 2005, 43:3662–3672.

    Article  PubMed  CAS  Google Scholar 

  20. Pore RS: Antibiotic susceptibility testing of Candida albicans by flow cytometry. Curr Microbiol 1990, 20:323–328.

    Article  CAS  Google Scholar 

  21. Ordonez JV, Wehman NM: Amphotericin B susceptibility of Candida species assessed by rapid flow cytometric membrane potential assay. Cytometry 1995, 22:154–157.

    Article  PubMed  CAS  Google Scholar 

  22. Kirk SM, Callister SM, Lim LC, Schell RF: Rapid susceptibility testing of Candida albicans by flow cytometry. J Clin Microbiol 1997, 35:358–363.

    PubMed  CAS  Google Scholar 

  23. Ramani R, Ramani A, Wong SJ: Rapid flow cytometric susceptibility testing of Candida albicans. J Clin Microbiol 1997, 35:2320–2324.

    PubMed  CAS  Google Scholar 

  24. Wenisch C, Linnau KF, Parschalk B, et al.: Rapid susceptibility testing of fungi by flow cytometry using vital staining. J Clin Microbiol 1997, 35:5–10.

    PubMed  CAS  Google Scholar 

  25. Favel A, Peyron F, De Meo M, et al.: Amphotericin B susceptibility testing of Candida lusitaniae isolates by flow cytofluorometry: comparison with the Etest and the NCCLS broth macrodilution method. J Antimicrob Chemother 1999, 43:227–232.

    Article  PubMed  CAS  Google Scholar 

  26. Pina-Vaz C, Costa-de-Oliveira S, Rodrigues AG, Espinel-Ingroff A: Comparison of two probes for testing susceptibilities of pathogenic yeasts to voriconazole, itraconazole, and caspofungin by flow cytometry. J Clin Microbiol 2005, 43:4674–4679.

    Article  PubMed  CAS  Google Scholar 

  27. Mitchell M, Hudspeth M, Wright A: Flow cytometry susceptibility testing for the antifungal caspofungin. J Clin Microbiol 2005, 43:2586–2589.

    Article  PubMed  CAS  Google Scholar 

  28. Parisi-Duchêne E, Reibel C, Grawey I, et al.: Rapid antifungal susceptibility testing of fluconazole and amphotericin B by flow cytometry using FUN-1®: a preliminary study. J Mycol Med 2006, 16:126–133.

    Google Scholar 

  29. Joung YH, Kim HR, Lee MK, Park AJ: Fluconazole susceptibility testing of Candida species by flow cytometry. J Infect 2007, 54:504–508.

    Article  PubMed  Google Scholar 

  30. Balajee SA, Marr KA: Conidial viability assay for rapid susceptibility testing of Aspergillus species. J Clin Microbiol 2002, 40:2741–2745.

    Article  PubMed  CAS  Google Scholar 

  31. Ramani R, Gangwar M, Chaturvedi V: Flow cytometry antifungal susceptibility testing of Aspergillus fumigatus and comparison of mode of action of voriconazole vis-a-vis amphotericin B and itraconazole. Antimicrob Agents Chemother 2003, 47:3627–3629.

    Article  PubMed  CAS  Google Scholar 

  32. Chaturvedi V, Ramani R, Pfaller MA: Collaborative study of the NCCLS and flow cytometry methods for antifungal susceptibility testing of Candida albicans. J Clin Microbiol 2004, 42:2249–2251.

    Article  PubMed  CAS  Google Scholar 

  33. Chaturvedi V, Ramani R, Rex JH: Collaborative study of antibiotic medium 3 and flow cytometry for identification of amphotericin B-resistant Candida isolates. J Clin Microbiol 2004, 42:2252–2254.

    Article  PubMed  CAS  Google Scholar 

  34. Wenisch C, Moore CB, Krause R, et al.: Antifungal susceptibility testing of fluconazole by flow cytometry correlates with clinical outcome. J Clin Microbiol 2001, 39:2458–2462.

    Article  PubMed  CAS  Google Scholar 

  35. Rudensky B, Broide E, Berko N, et al.: Direct fluconazole susceptibility testing of positive Candida blood cultures by flow cytometry. Mycoses 2008, 51:200–204.

    Article  PubMed  CAS  Google Scholar 

  36. Miller JS, Quarles JM: Flow cytometric identification of microorganisms by dual staining with FITC and PI. Cytometry 1990, 11:667–675.

    Article  PubMed  CAS  Google Scholar 

  37. Prigione V, Lingua G, Marchisio VF: Development and use of flow cytometry for detection of airborne fungi. Appl Environ Microbiol 2004, 70:1360–1365.

    Article  PubMed  CAS  Google Scholar 

  38. Li CS, Chia WC, Chen PS: Fluorochrome and flow cytometry to monitor microorganisms in treated hospital wastewater. J Environ Sci Health 2007, 42:195–203.

    Article  CAS  Google Scholar 

  39. Carr J, Shearer G, Jr.: Genome size, complexity, and ploidy of the pathogenic fungus Histoplasma capsulatum. J Bacteriol 1998, 180:6697–6703.

    PubMed  CAS  Google Scholar 

  40. Almeida AJ, Matute DR, Carmona JA, et al.: Genome size and ploidy of Paracoccidioides brasiliensis reveals a haploid DNA content: flow cytometry and GP43 sequence analysis. Fungal Genet Biol 2007, 44:25–31.

    Article  PubMed  CAS  Google Scholar 

  41. Page BT, Shields CE, Merz WG, Kurtzman CP: Rapid identification of ascomycetous yeasts from clinical specimens by a molecular method based on flow cytometry and comparison with identifications from phenotypic assays. J Clin Microbiol 2006, 44:3167–3171.

    Article  PubMed  CAS  Google Scholar 

  42. Bovers M, Diaz MR, Hagen F, et al.: Identification of genotypically diverse Cryptococcus neoformans and Cryptococcus gattii isolates by Luminex xMAP technology. J Clin Microbiol 2007, 45:1874–1883.

    Article  PubMed  CAS  Google Scholar 

  43. O’Donnell K, Sarver BAJ, Brandt M, et al.: Phylogenetic diversity and microsphere array-based genotyping of human pathogenic Fusaria, including isolates from the multistate contact lens-associated U.S. keratitis outbreaks of 2005 and 2006. J Clin Microbiol 2007, 45:2235–2248.

    Article  PubMed  CAS  Google Scholar 

  44. Mercure S, Senechal S, Auger P, et al.: Candida albicans serotype analysis by flow cytometry. J Clin Microbiol 1996, 34:2106–2112.

    PubMed  CAS  Google Scholar 

  45. Rydjord B, Namork E, Nygaard UC, et al.: Quantification and characterisation of IgG binding to mould spores by flow cytometry and scanning electron microscopy. J Immunol Methods 2007, 323:123–131.

    Article  PubMed  CAS  Google Scholar 

  46. Martinez-Esparza M, Sarazin A, Jouy N, et al.: Comparative analysis of cell wall surface glycan expression in Candida albicans and Saccharomyces cerevisiae yeasts by flow cytometry. J Immunol Methods 2006, 314:90–102.

    Article  PubMed  CAS  Google Scholar 

  47. Gottlieb S, Altboum Z, Savage DC, Segal E: Adhesion of Candida albicans to epithelial cells effect of polyoxin D. Mycopathologia 1991, 115:197–205.

    Article  PubMed  CAS  Google Scholar 

  48. Chang WL, van der Heyde HC, Klein BS: Flow cytometric quantitation of yeast a novel technique for use in animal model work and in vitro immunologic assays. J Immunol Methods 1998, 211:51–63.

    Article  PubMed  CAS  Google Scholar 

  49. Marr KA, Koudadoust M, Black M, Balajee SA: Early events in macrophage killing of Aspergillus fumigatus conidia: new flow cytometric viability assay. Clin Diagn Lab Immunol 2001, 8:1240–1247.

    Article  PubMed  CAS  Google Scholar 

  50. Lima OC, Bouchara JP, Renier G, et al.: Immunofluorescence and flow cytometry analysis of fibronectin and laminin binding to Sporothrix schenckii yeast cells and conidia. Microb Pathog 2004, 37:131–140.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vishnu Chaturvedi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chaturvedi, V. The role of flow cytometry in medical mycology. Curr Fungal Infect Rep 2, 143–148 (2008). https://doi.org/10.1007/s12281-008-0021-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12281-008-0021-3

Keywords

Navigation