Skip to main content
Log in

Genomic Evolution and Recombination Dynamics of Human Adenovirus D Species: Insights from Comprehensive Bioinformatic Analysis

  • Virology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Human adenoviruses (HAdVs) can infect various epithelial mucosal cells, ultimately causing different symptoms in infected organ systems. With more than 110 types classified into seven species (A–G), HAdV-D species possess the highest number of viruses and are the fastest proliferating. The emergence of new adenovirus types and increased diversity are driven by homologous recombination (HR) between viral genes, primarily in structural elements such as the penton base, hexon and fiber proteins, and the E1 and E3 regions. A comprehensive analysis of the HAdV genome provides valuable insights into the evolution of human adenoviruses and identifies genes that display high variation across the entire genome to determine recombination patterns. Hypervariable regions within genetic sequences correlate with functional characteristics, thus allowing for adaptation to new environments and hosts. Proteotyping of newly emerging and already established adenoviruses allows for prediction of the characteristics of novel viruses. HAdV-D species evolved in a direction that increased diversity through gene recombination. Bioinformatics analysis across the genome, particularly in highly variable regions, allows for the verification or re-evaluation of recombination patterns in both newly introduced and pre-existing viruses, ultimately aiding in tracing various biological traits such as virus tropism and pathogenesis. Our research does not only assist in predicting the emergence of new adenoviruses but also offers critical guidance in regard to identifying potential regulatory factors of homologous recombination hotspots.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The supporting data for this study can be obtained from the corresponding authors upon a reasonable request.

References

  • Avvakumov, N., Wheeler, R., D’Halluin, J. C., & Mymryk, J. S. (2002). Comparative sequence analysis of the largest e1a proteins of human and simian adenoviruses. Journal of Virology, 76, 7968–7975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bagga, S., & Bouchard, M. J. (2014). Cell cycle regulation during viral infection. In E. Noguchi & M. Gadaleta (Eds.), Cell cycle control. Methods in molecular biology. (Vol. 1170). Humana Press.

    Google Scholar 

  • Bair, C. R., Zhang, W., Gonzalez, G., Kamali, A., Stylos, D., Blanco, J. C. G., & Kajon, A. E. (2022). Human adenovirus type 4 comprises two major phylogroups with distinct replicative fitness and virulence phenotypes. Journal of Virology, 96, e0109021.

    Article  PubMed  Google Scholar 

  • Baker, A. T., Greenshields-Watson, A., Coughlan, L., Davies, J. A., Uusi-Kerttula, H., Cole, D. K., Rizkallah, P. J., & Parker, A. L. (2019). Diversity within the adenovirus fiber knob hypervariable loops influences primary receptor interactions. Nature Communications, 10, 741.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Bondesson, M., Mannervik, M., Akusjärvi, G., & Svensson, C. (1994). An adenovirus E1A transcriptional repressor domain functions as an activator when tethered to a promoter. Nucleic Acids Research, 22, 3053–3060.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bordin, N., Sillitoe, I., Lees, J. G., & Orengo, C. (2021). Tracing evolution through protein structures: Nature captured in a few thousand folds. Frontiers in Molecular Biosciences, 8, 668184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bos, R., Rutten, L., van der Lubbe, J. E. M., Bakkers, M. J. G., Hardenberg, G., Wegmann, F., Zuijdgeest, D., de Wilde, A. H., Koornneef, A., Verwilligen, A., et al. (2020). Ad26 vector-based COVID-19 vaccine encoding a prefusion-stabilized SARS-CoV-2 spike immunogen induces potent humoral and cellular immune responses. Npj Vaccines, 5, 91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butt, A. L., & Chodosh, J. (2006). Adenoviral keratoconjunctivitis in a tertiary care eye clinic. Cornea, 25, 199–202.

    Article  PubMed  Google Scholar 

  • Chaitanya, K. V. (2019). Structure and organization of virus genomes. In K. V. Chaitanya (Ed.), Genome and genomics: From archaea to eukaryotes. Springer.

    Chapter  Google Scholar 

  • Charman, M., Herrmann, C., & Weitzman, M. D. (2019). Viral and cellular interactions during adenovirus DNA replication. FEBS Letters, 593, 3531–3550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chodosh, J., Singh, G., Robinson, C., Lee, J. Y., Rajaiya, J., Jones, M., Dyer, D., & Seto, D. (2015). Proteotyping as a tool to study the evolution of human adenoviruses associated with epidemic keratoconjunctivitis. Investigative Ophthalmology & Visual Science, 56, 4843.

    Google Scholar 

  • Dehghan, S., Seto, J., Jones, M. S., Dyer, D. W., Chodosh, J., & Seto, D. (2013a). Simian adenovirus type 35 has a recombinant genome comprising human and simian adenovirus sequences, which predicts its potential emergence as a human respiratory pathogen. Virology, 447, 265–273.

    Article  CAS  PubMed  Google Scholar 

  • Dehghan, S., Seto, J., Liu, E. B., Walsh, M. P., Dyer, D. W., Chodosh, J., & Seto, D. (2013b). Computational analysis of four human adenovirus type 4 genomes reveals molecular evolution through two interspecies recombination events. Virology, 443, 197–207.

    Article  CAS  PubMed  Google Scholar 

  • Dicks, M. D., Spencer, A. J., Edwards, N. J., Wadell, G., Bojang, K., Gilbert, S. C., Hill, A. V., & Cottingham, M. G. (2012). A novel chimpanzee adenovirus vector with low human seroprevalence: Improved systems for vector derivation and comparative immunogenicity. PLoS ONE, 7, e40385.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Dimitrov, D. S. (2004). Virus entry: Molecular mechanisms and biomedical applications. Nature Reviews Microbiology, 2, 109–122.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ebner, K., Pinsker, W., & Lion, T. (2005). Comparative sequence analysis of the hexon gene in the entire spectrum of human adenovirus serotypes: Phylogenetic, taxonomic, and clinical implications. Journal of Virology, 79, 12635–12642.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ehrenfeld, M., Segeth, F., Mantwill, K., Brockhaus, C., Zhao, Y., Ploner, C., Kolk, A., Gschwend, J. E., Nawroth, R., & Holm, P. S. (2023). Targeting cell cycle facilitates E1A-independent adenoviral replication. Journal of Virology, 97, e0037023.

    Article  PubMed  Google Scholar 

  • Fausther-Bovendo, H., & Kobinger, G. (2021). Vaccine innovation spurred by the long wait for an Ebola virus vaccine. The Lancet Infectious Diseases, 21, 440–441.

    Article  PubMed  Google Scholar 

  • Florescu, D. F., & Schaenman, J. M. (2019). Adenovirus in solid organ transplant recipients: Guidelines from the american society of transplantation infectious diseases community of practice. Clinical Transplantation, 33, e13527.

    Article  PubMed  Google Scholar 

  • Frisch, S. M., & Mymryk, J. S. (2002). Adenovirus-5 E1A: Paradox and paradigm. Nature Reviews Molecular Cell Biology, 3, 441–452.

    Article  CAS  PubMed  Google Scholar 

  • Gahéry-Ségard, H., Farace, F., Godfrin, D., Gaston, J., Lengagne, R., Tursz, T., Boulanger, P., & Guillet, J. G. (1998). Immune response to recombinant capsid proteins of adenovirus in humans: Antifiber and anti-penton base antibodies have a synergistic effect on neutralizing activity. Journal of Virology, 72, 2388–2397.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ginsberg, H. S., Lundholm-Beauchamp, U., Horswood, R. L., Pernis, B., Wold, W. S., Chanock, R. M., & Prince, G. A. (1989). Role of early region 3 (E3) in pathogenesis of adenovirus disease. Proceedings of the National Academy of Sciences of the United States of America, 86, 3823–3827.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Greene, E. C. (2016). DNA sequence alignment during homologous recombination. Journal of Biological Chemistry, 291, 11572–11580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gregory, T. R. (2009). Understanding natural selection: essential concepts and common misconceptions. Evolution: Education and Outreach, 2, 156–175.

    Google Scholar 

  • Han, J., Sabbatini, P., Perez, D., Rao, L., Modha, D., & White, E. (1996). The E1B 19K protein blocks apoptosis by interacting with and inhibiting the p53-inducible and death-promoting Bax protein. Genes & Development, 10, 461–477.

    Article  CAS  Google Scholar 

  • Harro, C., Sun, X., Stek, J. E., Leavitt, R. Y., Mehrotra, D. V., Wang, F., Bett, A. J., Casimiro, D. R., Shiver, J. W., DiNubile, M. J., et al. (2009). Safety and immunogenicity of the Merck adenovirus serotype 5 (MRKAd5) and MRKAd6 human immunodeficiency virus type 1 trigene vaccines alone and in combination in healthy adults. Clinical and Vaccine Immunology, 16, 1285–1292.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashimoto, S., Gonzalez, G., Harada, S., Oosako, H., Hanaoka, N., Hinokuma, R., & Fujimoto, T. (2018). Recombinant type human mastadenovirus D85 associated with epidemic keratoconjunctivitis since 2015 in Japan. Journal of Medical Virology, 90, 881–889.

    Article  CAS  PubMed  Google Scholar 

  • Hassan, A. O., Dmitriev, I. P., Kashentseva, E. A., Zhao, H., Brough, D. E., Fremont, D. H., Curiel, D. T., & Diamond, M. S. (2019). A gorilla adenovirus-based vaccine against zika virus induces durable immunity and confers protection in pregnancy. Cell Reports, 28, 2634–2646.

    Article  CAS  PubMed  Google Scholar 

  • Hidalgo, P., Ip, W. H., Dobner, T., & Gonzalez, R. A. (2019). The biology of the adenovirus E1B 55K protein. FEBS Letters, 593, 3504–3517.

    Article  CAS  PubMed  Google Scholar 

  • Horwitz, M. S. (2004). Function of adenovirus E3 proteins and their interactions with immunoregulatory cell proteins. The Journal of Gene Medicine, 6, S172–S183.

    Article  CAS  PubMed  Google Scholar 

  • Huang, G., Yao, W., Yu, W., Mao, L., Sun, H., Yao, W., Tian, J., Wang, L., Bo, Z., Zhu, Z., et al. (2014). Outbreak of epidemic keratoconjunctivitis caused by human adenovirus type 56, China, 2012. PLoS ONE, 9, e110781.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Ismail, A. M., Lee, J. S., Lee, J. Y., Singh, G., Dyer, D. W., Seto, D., Chodosh, J., & Rajaiya, J. (2018). Adenoviromics: Mining the human adenovirus species D genome. Frontiers in Microbiology, 9, 2178.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ismail, A. M., Zhou, X., Dyer, D. W., Seto, D., Rajaiya, J., & Chodosh, J. (2019). Genomic foundations of evolution and ocular pathogenesis in human adenovirus species D. FEBS Letters, 593, 3583–3608.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ison, M. G., & Hayden, R. T. (2016). Adenovirus. Microbiol Spectrum. https://doi.org/10.1128/microbiolspec.DMIH2-0020-2015

    Article  Google Scholar 

  • Jennings, M. R., & Parks, R. J. (2023). Human adenovirus gene expression and replication is regulated through dynamic changes in nucleoprotein structure throughout infection. Viruses, 15, 161.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kaneko, H., Iida, T., Ishiko, H., Ohguchi, T., Ariga, T., Tagawa, Y., Aoki, K., Ohno, S., & Suzutani, T. (2009). Analysis of the complete genome sequence of epidemic keratoconjunctivitis-related human adenovirus type 8, 19, 37 and a novel serotype. Journal of General Virology, 90, 1471–1476.

    Article  CAS  PubMed  Google Scholar 

  • Kang, J., Ismail, A. M., Dehghan, S., Rajaiya, J., Allard, M. W., Lim, H. C., Dyer, D. W., Chodosh, J., & Seto, D. (2020). Genomics-based re-examination of the taxonomy and phylogeny of human and simian Mastadenoviruses: An evolving whole genomes approach, revealing putative zoonosis, anthroponosis, and amphizoonosis. Cladistics, 36, 358–373.

    Article  PubMed  PubMed Central  Google Scholar 

  • Khan, R. H., Siddiqi, M. K., & Salahuddin, P. (2017). Protein structure and function. In W. A. Khan (Ed.), Basic Biochemistry (pp. 1–39). Austin Publishing Group.

    Google Scholar 

  • Lange, C. E., Niama, F. R., Cameron, K., Olson, S. H., Aime Nina, R., Ondzie, A., Bounga, G., Smith, B. R., Pante, J., Reed, P., et al. (2019). First evidence of a new simian adenovirus clustering with human mastadenovirus f viruses. Virology Journal, 16, 147.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, J. Y., Lee, J. S., Materne, E. C., Rajala, R., Ismail, A. M., Seto, D., Dyer, D. W., Rajaiya, J., & Chodosh, J. (2018). Bacterial RecA protein promotes adenoviral recombination during in vitro infection. mSphere, 3, e00105-e118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, S. W., Markham, P. F., Coppo, M. J. C., Legione, A. R., Markham, J. F., Noormohammadi, A. H., Browning, G. F., Ficorilli, N., Hartley, C. A., & Devlin, J. M. (2012). Attenuated vaccines can recombine to form virulent field viruses. Science, 337, 188.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Lenaerts, L., De Clercq, E., & Naesens, L. (2008). Clinical features and treatment of adenovirus infections. Reviews in Medical Virology, 18, 357–374.

    Article  CAS  PubMed  Google Scholar 

  • Li, E., Stupack, D., Klemke, R., Cheresh, D. A., & Nemerow, G. R. (1998). Adenovirus endocytosis via αvintegrins requires phosphoinositide-3-OH kinase. Journal of Virology, 72, 2055–2061.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lion, T. (2014). Adenovirus infections in immunocompetent and immunocompromised patients. Clinical Microbiology Reviews, 27, 441–462.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, E. B., Ferreyra, L., Fischer, S. L., Pavan, J. V., Nates, S. V., Hudson, N. R., Tirado, D., Dyer, D. W., Chodosh, J., Seto, D., et al. (2011). Genetic analysis of a novel human adenovirus with a serologically unique hexon and a recombinant fiber gene. PLoS ONE, 6, e24491.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Liu, J., Nian, Q. G., Zhang, Y., Xu, L. J., Hu, Y., Li, J., Deng, Y. Q., Zhu, S. Y., Wu, X. Y., et al. (2014). In vitro characterization of human adenovirus type 55 in comparison with its parental adenoviruses, types 11 and 14. PLoS ONE, 9, e100665.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Lynch, M. (2005). Simple evolutionary pathways to complex proteins. Protein Science, 14, 2217–2225.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maginnis, M. S. (2018). Virus-receptor interactions: The key to cellular invasion. Journal of Molecular Biology, 430, 2590–2611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsushita, T., Ozawa, K., & Colosi, P. (2002). 129. The adenovirus E1B 19K gene but not the E1B 55K gene mediates high efficiency AAV vector production. Molecular Therapy, 5, S44.

    Article  Google Scholar 

  • Moutinho, A. F., Trancoso, F. F., & Dutheil, J. Y. (2019). The impact of protein architecture on adaptive evolution. Molecular Biology and Evolution, 36, 2013–2028.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nevins, J. R., Ginsberg, H. S., Blanchard, J. M., Wilson, M. C., & Darnell, J. E., Jr. (1979). Regulation of the primary expression of the early adenovirus transcription units. Journal of Virology, 32, 727–733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Novikov, I. B., Wilkins, A. D., & Lichtarge, O. (2020). An evolutionary trace method defines functionally important bases and sites common to RNA families. PLoS Computational Biology, 16, e1007583.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Oman, M., Alam, A., & Ness, R. W. (2022). How sequence context-dependent mutability drives mutation rate variation in the genome. Genome Biology and Evolution, 14, evac032.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pauly, M., Hoppe, E., Mugisha, L., Petrzelkova, K., Akoua-Koffi, C., Couacy-Hymann, E., Anoh, A. E., Mossoun, A., Schubert, G., Wiersma, L., et al. (2014). High prevalence and diversity of species D adenoviruses (HAdV-D) in human populations of four Sub-Saharan countries. Virology Journal, 11, 25.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pelka, P., Ablack, J. N. G., Torchia, J., Turnell, A. S., Grand, R. J. A., & Mymryk, J. S. (2009). Transcriptional control by adenovirus E1A conserved region 3 via p300/CBP. Nucleic Acids Research, 37, 1095–1106.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Perricaudet, M., Akusjärvi, G., Virtanen, A., & Pettersson, U. (1979). Structure of two spliced mRNAs from the transforming region of human subgroup C adenoviruses. Nature, 281, 694–696.

    Article  CAS  PubMed  ADS  Google Scholar 

  • Radke, J. R., & Cook, J. L. (2018). Human adenovirus infections: Update and consideration of mechanisms of viral persistence. Current Opinion in Infectious Diseases, 31, 251–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajaiya, J., Saha, A., Zhou, X., & Chodosh, J. (2021). Human adenovirus species D interactions with corneal stromal cells. Viruses, 13, 2505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson, C. M., Seto, D., Jones, M. S., Dyer, D. W., & Chodosh, J. (2011a). Molecular evolution of human species D adenoviruses. Infection, Genetics and Evolution, 11, 1208–1217.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robinson, C. M., Shariati, F., Gillaspy, A. F., Dyer, D. W., & Chodosh, J. (2008). Genomic and bioinformatics analysis of human adenovirus type 37: New insights into corneal tropism. BMC Genomics, 9, 213.

    Article  PubMed  PubMed Central  Google Scholar 

  • Robinson, C. M., Singh, G., Henquell, C., Walsh, M. P., Peigue-Lafeuille, H., Seto, D., Jones, M. S., Dyer, D. W., & Chodosh, J. (2011b). Computational analysis and identification of an emergent human adenovirus pathogen implicated in a respiratory fatality. Virology, 409, 141–147.

    Article  CAS  PubMed  Google Scholar 

  • Robinson, C. M., Singh, G., Lee, J. Y., Dehghan, S., Rajaiya, J., Liu, E. B., Yousuf, M. A., Betensky, R. A., Jones, M. S., Dyer, D. W., et al. (2013). Molecular evolution of human adenoviruses. Scientific Reports, 3, 1812.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Schaack, J., Bennett, M. L., Colbert, J. D., Torres, A. V., Clayton, G. H., Ornelles, D., & Moorhead, J. (2004). E1A and E1B proteins inhibit inflammation induced by adenovirus. Proceedings of the National Academy of Sciences of the USA, 101, 3124–3129.

    Article  CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Singh, G., Ismail, A. M., Lee, J. Y., Ramke, M., Lee, J. S., Dyer, D. W., Seto, D., Rajaiya, J., & Chodosh, J. (2019). Divergent evolution of E1A CR3 in human adenovirus species D. Viruses, 11, 143.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, G., Robinson, C. M., Dehghan, S., Jones, M. S., Dyer, D. W., Seto, D., & Chodosh, J. (2013). Homologous recombination in E3 genes of human adenovirus species D. Journal of Virology., 87, 12481–12488.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Singh, G., Zhou, X., Lee, J. Y., Yousuf, M. A., Ramke, M., Ismail, A. M., Lee, J. S., Robinson, C. M., Seto, D., Dyer, D. W., et al. (2015). Recombination of the epsilon determinant and corneal tropism: Human adenovirus species D types 15, 29, 56, and 69. Virology, 485, 452–459.

    Article  CAS  PubMed  Google Scholar 

  • Stasiak, A. C., & Stehle, T. (2020). Human adenovirus binding to host cell receptors: A structural view. Medical Microbiology and Immunology, 209, 325–333.

    Article  PubMed  Google Scholar 

  • Steffen, T., Hassert, M., Hoft, S. G., Stone, E. T., Zhang, J., Geerling, E., Grimberg, B. T., Roberts, M. S., Pinto, A. K., & Brien, J. D. (2020). Immunogenicity and efficacy of a recombinant human adenovirus type 5 vaccine against zika virus. Vaccines, 8, 170.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tapia, M. D., Sow, S. O., Mbaye, K. D., Thiongane, A., Ndiaye, B. P., Ndour, C. T., Mboup, S., Keshinro, B., Kinge, T. N., Vernet, G., et al. (2020). Safety, reactogenicity, and immunogenicity of a chimpanzee adenovirus vectored Ebola vaccine in children in Africa: A randomised, observer-blind, placebo-controlled, phase 2 trial. The Lancet Infectious Diseases, 20, 719–730.

    Article  CAS  PubMed  Google Scholar 

  • Torres, S., Chodosh, J., Seto, D., & Jones, M. S. (2010). The revolution in viral genomics as exemplified by the bioinformatic analysis of human adenoviruses. Viruses, 2, 1367–1381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Villanueva, R. A., Rouillé, Y., & Dubuisson, J. (2005). Interactions between virus proteins and host cell membranes during the viral life cycle. International Review of Cytology, 245, 171–244.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Walsh, M. P., Chintakuntlawar, A., Robinson, C. M., Madisch, I., Harrach, B., Hudson, N. R., Schnurr, D., Heim, A., Chodosh, J., Seto, D., et al. (2009). Evidence of molecular evolution driven by recombination events influencing tropism in a novel human adenovirus that causes epidemic keratoconjunctivitis. PLoS ONE, 4, e5635.

    Article  PubMed  PubMed Central  ADS  Google Scholar 

  • Wei, F., Wang, H., Chen, X., Li, C., & Huang, Q. (2014). Dissecting the roles of E1A and E1B in adenoviral replication and RCAd-enhanced RDAd transduction efficacy on tumor cells. Cancer Biology & Therapy, 15, 1358–1366.

    Article  CAS  Google Scholar 

  • Weitzman, M. D. (2005). Functions of the adenovirus E4 proteins and their impact on viral vectors. Frontiers in Bioscience-Landmark, 10, 1106–1117.

    Article  CAS  Google Scholar 

  • White, E. (2001). Regulation of the cell cycle and apoptosis by the oncogenes of adenovirus. Oncogene, 20, 7836–7846.

    Article  CAS  PubMed  Google Scholar 

  • Wu, E., Pache, L., Von Seggern, D. J., Mullen, T. M., Mikyas, Y., Stewart, P. L., & Nemerow, G. R. (2003). Flexibility of the adenovirus fiber is required for efficient receptor interaction. Journal of Virology, 77, 7225–7235.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Research Foundation of Korea (NRF) grant funded by the Korean Government (MSIT) (2021R1F1A1063240).

Author information

Authors and Affiliations

Authors

Contributions

A.P. collected adenovirus sequences from NCBI, performed all bioinformatics analyses, and wrote the manuscript; C.L. contributed to proteotyping and virus sequence collection; J. L. supervised the writing and experiments.

Corresponding author

Correspondence to Jeong Yoon Lee.

Ethics declarations

Conflict of interest

The authors have no financial conflicts of interest to declare.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 306 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, A., Lee, C. & Lee, J.Y. Genomic Evolution and Recombination Dynamics of Human Adenovirus D Species: Insights from Comprehensive Bioinformatic Analysis. J Microbiol. (2024). https://doi.org/10.1007/s12275-024-00112-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12275-024-00112-5

Keywords

Navigation