Skip to main content
Log in

Syntaxin17 Restores Lysosomal Function and Inhibits Pyroptosis Caused by Acinetobacter baumannii

  • Microbial Pathogenesis and Host-Microbe Interaction
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Acinetobacter baumannii (A. baumannii) causes autophagy flux disorder by degrading STX17, resulting in a serious inflammatory response. It remains unclear whether STX17 can alter the inflammatory response process by controlling autolysosome function. This study aimed to explore the role of STX17 in the regulation of pyroptosis induced by A. baumannii. Our findings indicate that overexpression of STX17 enhances autophagosome degradation, increases LAMP1 expression, reduces Cathepsin B release, and improves lysosomal function. Conversely, knockdown of STX17 suppresses autophagosome degradation, reduces LAMP1 expression, augments Cathepsin B release, and accelerates lysosomal dysfunction. In instances of A. baumannii infection, overexpression of STX17 was found to improve lysosomal function and reduce the expression of mature of GSDMD and IL-1β, along with the release of LDH, thus inhibiting pyroptosis caused by A. baumannii. Conversely, knockdown of STX17 led to increased lysosomal dysfunction and further enhanced the expression of mature of GSDMD and IL-1β, and increased the release of LDH, exacerbating pyroptosis induced by A. baumannii. These findings suggest that STX17 regulates pyroptosis induced by A. baumannii by modulating lysosomal function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  • An, Z., & Ding, W. (2021). Acinetobacter baumannii up-regulates LncRNA-GAS5 and promotes the degradation of STX17 by blocking the activation of YY1. Virulence, 12, 1965–1979.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • An, Z., Huang, X., Zheng, C., & Ding, W. (2019). Acinetobacter baumannii outer membrane protein A induces HeLa cell autophagy via MAPK/JNK signaling pathway. International Journal of Medical Microbiology, 309, 97–107.

    Article  CAS  PubMed  Google Scholar 

  • Bernard, A., & Klionsky, D. J. (2015). Toward an understanding of autophagosome-lysosome fusion: The unsuspected role of ATG14. Autophagy, 11, 583–584.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Campden, R. I., & Zhang, Y. (2019). The role of lysosomal cysteine cathepsins in NLRP3 inflammasome activation. Archives of Biochemistry and Biophysics, 670, 32–42.

    Article  CAS  PubMed  Google Scholar 

  • Chang, K. C., Liu, P. F., Chang, C. H., Lin, Y. C., Chen, Y. J., & Shu, C. W. (2022). The interplay of autophagy and oxidative stress in the pathogenesis and therapy of retinal degenerative diseases. Cell & Bioscience, 12, 1.

    Article  Google Scholar 

  • Chen, L., Xia, Y. F., Shen, S. F., Tang, J., Chen, J. L., Qian, K., Chen, Z., Qin, Z. H., & Sheng, R. (2020). Syntaxin 17 inhibits ischemic neuronal injury by resuming autophagy flux and ameliorating endoplasmic reticulum stress. Free Radical Biology & Medicine, 160, 319–333.

    Article  CAS  Google Scholar 

  • Doi, Y., Murray, G. L., & Peleg, A. Y. (2015). Acinetobacter baumannii: Evolution of antimicrobial resistance-treatment options. Seminars in Respiratory and Critical Care Medicine, 36, 85–98.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eskelinen, E. L. (2006). Roles of LAMP-1 and LAMP-2 in lysosome biogenesis and autophagy. Molecular Aspects of Medicine, 27, 495–502.

    Article  CAS  PubMed  Google Scholar 

  • Gong, W., Shi, Y., & Ren, J. (2020). Research progresses of molecular mechanism of pyroptosis and its related diseases. Immunobiology, 225, 151884.

    Article  CAS  PubMed  Google Scholar 

  • Hennig, P., Di Filippo, M., Bilfeld, G., Mellett, M., & Beer, H. D. (2022). High p62 expression suppresses the NLRP1 inflammasome and increases stress resistance in cutaneous SCC cells. Cell Death & Disease, 13, 1077.

    Article  CAS  Google Scholar 

  • Jiao, Y., & Sun, J. (2019). Bacterial manipulation of autophagic responses in infection and inflammation. Frontiers in Immunology, 10, 2821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kang, M. J., Jo, S. G., Kim, D. J., & Park, J. H. (2017). NLRP3 inflammasome mediates interleukin-1β production in immune cells in response to Acinetobacter baumannii and contributes to pulmonary inflammation in mice. Immunology, 150, 495–505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, J. Y., & Ozato, K. (2009). The sequestosome 1/p62 attenuates cytokine gene expression in activated macrophages by inhibiting IFN regulatory factor 8 and TNF receptor-associated factor 6/NF-κB activity. Journal of Immunology, 182, 2131–2140.

    Article  CAS  Google Scholar 

  • Kumar, S., Jain, A., Farzam, F., Jia, J., Gu, Y., Choi, S. W., Mudd, M. H., Claude-Taupin, A., Wester, M. J., Lidke, K. A., et al. (2018). Mechanism of Stx17 recruitment to autophagosomes via IRGM and mammalian Atg8 proteins. The Journal of Cell Biology, 217, 997–1013.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, S., Anwer, R., & Azzi, A. (2021). Virulence potential and treatment options of multidrug-resistant (MDR) Acinetobacter baumannii. Microorganisms, 9, 2104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liang, W., Sagar, S., Ravindran, R., Najor, R. H., Quiles, J. M., Chi, L., Diao, R. Y., Woodall, B. P., Leon, L. J., Zumaya, E., et al. (2023). Mitochondria are secreted in extracellular vesicles when lysosomal function is impaired. Nature Communications, 14, 5031.

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao, Z., Li, S., Liu, R., Feng, X., Shi, Y., Wang, K., Li, S., Zhang, Y., Wu, X., & Yang, C. (2021). Autophagic degradation of gasdermin D protects against nucleus pulposus cell pyroptosis and retards intervertebral disc degeneration in vivo. Oxidative Medicine and Cellular Longevity, 2021, 5584447.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, T. (2019). Regulation of Inflammasome by Autophagy. Advances in Experimental Medicine and Biology, 1209, 109–123.

    Article  CAS  PubMed  Google Scholar 

  • Mahapatra, K. K., Mishra, S. R., Behera, B. P., Patil, S., Gewirtz, D. A., & Bhutia, S. K. (2021). The lysosome as an imperative regulator of autophagy and cell death. Cellular and Molecular Life Sciences, 78, 7435–7449.

    Article  CAS  PubMed  Google Scholar 

  • Man, S. M., Karki, R., & Kanneganti, T.-D. (2017). Molecular mechanisms and functions of pyroptosis, inflammatory caspases and inflammasomes in infectious diseases. Immunological Reviews, 277, 61–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nguyen, M., & Joshi, S. G. (2021). Carbapenem resistance in Acinetobacter baumannii, and their importance in hospital-acquired infections: A scientific review. Journal of Applied Microbiology, 131, 2715–2738.

    Article  CAS  PubMed  Google Scholar 

  • Pasquier, B. (2016). Autophagy inhibitors. Cellular and Molecular Life Sciences, 73, 985–1001.

    Article  CAS  PubMed  Google Scholar 

  • Qi, X., Man, S. M., Malireddi, R. K., Karki, R., Lupfer, C., Gurung, P., Neale, G., Guy, C. S., Lamkanfi, M., & Kanneganti, T. D. (2016). Cathepsin B modulates lysosomal biogenesis and host defense against Francisella novicida infection. The Journal of Experimental Medicine, 213, 2081–2097.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ren, H., & Wang, G. (2020). Autophagy and lysosome storage disorders. Advances in Experimental Medicine and Biology, 1207, 87–102.

    Article  CAS  PubMed  Google Scholar 

  • Rumbo, C., Tomás, M., Fernández Moreira, E., Soares, N. C., Carvajal, M., Santillana, E., Beceiro, A., Romero, A., & Bou, G. (2014). The Acinetobacter baumannii Omp33-36 porin is a virulence factor that induces apoptosis and modulates autophagy in human cells. Infection and Immunity, 82, 4666–4680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Semino, C., Carta, S., Gattorno, M., Sitia, R., & Rubartelli, A. (2018). Progressive waves of IL-1β release by primary human monocytes via sequential activation of vesicular and gasdermin D-mediated secretory pathways. Cell Death & Disease, 9, 1088.

    Article  Google Scholar 

  • Sitia, R., & Rubartelli, A. (2018). The unconventional secretion of IL-1β: Handling a dangerous weapon to optimize inflammatory responses. Seminars in Cell & Developmental Biology, 83, 12–21.

    Article  CAS  Google Scholar 

  • Sitia, R., & Rubartelli, A. (2020). Evolution, role in inflammation, and redox control of leaderless secretory proteins. The Journal of Biological Chemistry, 295, 7799–7811.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi, D., & Arimoto, H. (2021). Selective autophagy as the basis of autophagy-based degraders. Cell Chemical Biology, 28, 1061–1071.

    Article  CAS  PubMed  Google Scholar 

  • Tang, D., Kang, R., Berghe, T. V., Vandenabeele, P., & Kroemer, G. (2019). The molecular machinery of regulated cell death. Cell Research, 29, 347–364.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian, L., Yang, Y., Li, C., Chen, J., Li, Z., Li, X., Li, S., Wu, F., Hu, Z., & Yang, Z. (2018). The cytotoxicity of coxsackievirus B3 is associated with a blockage of autophagic flux mediated by reduced syntaxin 17 expression. Cell Death & Disease, 9, 242.

    Article  Google Scholar 

  • Tian, X., Teng, J., & Chen, J. (2021). New insights regarding SNARE proteins in autophagosome-lysosome fusion. Autophagy, 17, 2680–2688.

    Article  CAS  PubMed  Google Scholar 

  • Tiku, V., Kofoed, E. M., Yan, D., Kang, J., Xu, M., Reichelt, M., Dikic, I., & Tan, M. W. (2021). Outer membrane vesicles containing OmpA induce mitochondrial fragmentation to promote pathogenesis of Acinetobacter baumannii. Scientific Reports, 11, 618.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vural, A., & Kehrl, J. H. (2014). Autophagy in macrophages: Impacting inflammation and bacterial infection. Scientifica, 2014, 825463.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang, Y., Zhang, K., Shi, X., Wang, C., Wang, F., Fan, J., Shen, F., Xu, J., Bao, W., Liu, M., et al. (2016). Critical role of bacterial isochorismatase in the autophagic process induced by Acinetobacter baumannii in mammalian cells. FASEB Journal, 30, 3563–3577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, B., Xiao, X., Huang, F., & Liu, R. (2019). Syntaxin-17-dependent mitochondrial dynamics is essential for protection against oxidative-stress-induced apoptosis. Antioxidants, 8, 522.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wen, X., & Klionsky, D. J. (2020). At a glance: A history of autophagy and cancer. Seminars in Cancer Biology, 66, 3–11.

    Article  PubMed  Google Scholar 

  • Wu, W., Luo, X., & Ren, M. (2022). Clearance or hijack: Universal interplay mechanisms between viruses and host autophagy from plants to animals. Frontiers in Cellular and Infection Microbiology, 11, 786348.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xia, Y., Chen, S., Zhu, G., Huang, R., Yin, Y., & Ren, W. (2018). Betaine inhibits interleukin-1β production and release: Potential mechanisms. Frontiers in Immunology, 9, 2670.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (No. 81900074)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiyuan An.

Ethics declarations

Conflict of Interest

The authors declare that there are no conflict of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 351 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

An, Z., Ding, W. Syntaxin17 Restores Lysosomal Function and Inhibits Pyroptosis Caused by Acinetobacter baumannii. J Microbiol. (2024). https://doi.org/10.1007/s12275-024-00109-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12275-024-00109-0

Keywords

Navigation