Skip to main content
Log in

Prions in Microbes: The Least in the Most

  • Minireview
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Prions are infectious proteins that mostly replicate in self-propagating amyloid conformations (filamentous protein polymers) and consist of structurally altered normal soluble proteins. Prions can arise spontaneously in the cell without any clear reason and are generally considered fatal disease-causing agents that are only present in mammals. However, after the seminal discovery of two prions, [PSI+] and [URE3], in the eukaryotic model microorganism Saccharomyces cerevisiae, at least ten more prions have been discovered, and their biological and pathological effects on the host, molecular structure, and the relationship between prions and cellular components have been studied. In a filamentous fungus model, Podospora anserina, a vegetative incomparability-related [Het-s] prion that directly triggers cell death during anastomosis (hyphal fusion) was discovered. These prions in eukaryotic microbes have extended our understanding to overcome most fatal human prion/amyloid diseases. A prokaryotic microorganism (Clostridium botulinum) was reported to have a prion analog. The transcriptional regulators of C. botulinum-Rho can be converted into the self-replicating prion form ([RHO-X-C+]), which may affect global transcription. Here, we outline the major issues with prions in microbes and the lessons learned from the relatively uncovered microbial prion world.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Data availability

All data generated during this study are included in this published article.

References

  • Alberti, S., Halfmann, R., King, O., Kapila, A., & Lindquist, S. (2009). A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell, 137, 146–158.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alper, T., Haig, D. A., & Clarke, M. C. (1966). The exceptionally small size of the scrapie agent. Biochemical and Biophysical Research Communications, 22, 278–284.

    Article  CAS  PubMed  Google Scholar 

  • Amor, A. J., Castanzo, D. T., Delany, S. P., Selechnik, D. M., van Ooy, A., & Cameron, D. M. (2015). The ribosome-associated complex antagonizes prion formation in yeast. Prion, 9, 144–164.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bach, S., Talarek, N., Andrieu, T., Vierfond, J. M., Mettey, Y., Galons, H., Dormont, D., Meijer, L., Cullin, C., & Blondel, M. (2003). Isolation of drugs active against mammalian prions using a yeast-based screening assay. Nature Biotechnology, 21, 1075–1081.

    Article  CAS  PubMed  Google Scholar 

  • Baxa, U., Wickner, R. B., Steven, A. C., Anderson, D., Marekov, L., Yau, W. M., & Tycko, R. (2007). Characterization of β-sheet structure in Ure2p1-89 yeast prion fibrils by solid state nuclear magnetic resonance. Biochemistry, 46, 13149–13162.

    Article  CAS  PubMed  Google Scholar 

  • Bolton, D. C., McKinley, M. P., & Prusiner, S. B. (1982). Identification of a protein that purifies with the scrapie prion. Science, 218, 1309–1311.

    Article  CAS  PubMed  Google Scholar 

  • Chakravarty, A. K., Smejkal, T., Itakura, A. K., Garcia, D. M., & Jarosz, D. F. (2020). A non-amyloid prion particle that activates a heritable gene expression program. Molecular Cell, 77, 251–265.

    Article  CAS  PubMed  Google Scholar 

  • Chernoff, Y. O., & Kiktev, D. A. (2016). Dual role of ribosome-associated chaperones in prion formation and propagation. Current Genetics, 62, 677–685.

    Article  CAS  PubMed  Google Scholar 

  • Chernoff, Y. O., & Ono, B. I. (1992). Dosage-dependent modifiers of Psi-dependent omnipotent suppression in yeast. In A. J. P. Brown, M. F. Tuite, & J. E. G. McCarthy (Eds.), Protein synthesis and targeting in yeast (pp. 101–107). Berlin: Springer.

    Google Scholar 

  • Chernoff, Y. O., Lindquist, S. L., Ono, B. I., Inge-Vechtomov, S. G., & Liebman, S. W. (1995). Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science, 268, 880–884.

    Article  CAS  PubMed  Google Scholar 

  • Chernoff, Y. O., Newnam, G. P., Kumar, J., Allen, K., & Zink, A. D. (1999). Evidence for a protein mutator in yeast: Role of the Hsp70-related chaperone ssb in formation, stability and toxicity of the [PSI+] prion. Molecular and Cellular Biology, 19, 8103–8112.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chernova, T. A., Wilkinson, K. D., & Chernoff, Y. O. (2017). Prions, chaperones, and proteostasis in yeast. Cold Spring Harbor Perspectives in Biology, 9, a023663.

    Article  PubMed  PubMed Central  Google Scholar 

  • Collinge, J., Gorham, M., Hudson, F., Kennedy, A., Keogh, G., Pal, S., Rossor, M., Rudge, P., Siddique, D., Spyer, M., et al. (2009). Safety and efficacy of quinacrine in human prion disease (PRION-1 study): A patient-preference trial. The Lancet Neurology, 8, 334–344.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coustou, V., Deleu, C., Saupe, S., & Begueret, J. (1997). The protein product of the het-s heterokaryon incompatibility gene of the fungus Podospora anserina behaves as a prion analog. Proceedings of the National Academy of Sciences of the United States of America, 94, 9773–9778.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cox, B. S. (1965). Ψ, a cytoplasmic suppressor of super-suppressor in yeast. Heredity, 20, 505–521.

    Article  Google Scholar 

  • D’Angelo, F., Vignaud, H., Di Martino, J., Salin, B., Devin, A., Cullin, C., & Marchal, C. (2013). A yeast model for amyloid-β aggregation exemplifies the role of membrane trafficking and PICALM in cytotoxicity. Disease Models & Mechanisms, 6, 206–216.

    Google Scholar 

  • Dergalev, A. A., Alexandrov, A. I., Ivannikov, R. I., Ter-Avanesyan, M. D., & Kushnirov, V. V. (2019). Yeast Sup35 prion structure: Two types, four parts, many variants. International Journal of Molecular Sciences, 20, 2633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Derkatch, I. L., Bradley, M. E., Hong, J. Y., & Liebman, S. W. (2001). Prions affect the appearance of other prions: the story of [PIN+]. Cell, 106, 171–182.

    Article  CAS  PubMed  Google Scholar 

  • Diringer, H., Gelderblom, H., Hilmert, H., Özel, M., Edelbluth, C., & Kimberlin, R. H. (1983). Scrapie infectivity, fibrils and low molecular weight protein. Nature, 306, 476–478.

    Article  CAS  PubMed  Google Scholar 

  • Du, Z., Park, K. W., Yu, H., Fan, Q., & Li, L. (2008). Newly identified prion linked to the chromatin-remodeling factor Swi1 in Saccharomyces cerevisiae. Nature Genetics, 40, 460–465.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Du, Z., Valtierra, S., Cardona, L. R., Dunne, S. F., Luan, C. H., & Li, L. (2019). Identifying anti-prion chemical compounds using a newly established yeast high-throughput screening system. Cell Chemical Biology, 26, 1664–1680.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duennwald, M. L. (2013). Yeast as a platform to explore polyglutamine toxicity and aggregation. In D. Hatters & A. Hannan (Eds.), Tandem repeats in genes, proteins, and Disease: Methods and protocols (pp. 153–161). Totowa: Humana Press.

    Chapter  Google Scholar 

  • Edskes, H. K., Mukhamedova, M., Edskes, B. K., & Wickner, R. B. (2018). Hermes transposon mutagenesis shows [URE3] prion pathology prevented by a ubiquitin-targeting protein: Evidence for carbon/nitrogen assimilation cross-talk and a second function for Ure2p in Saccharomyces cerevisiae. Genetics, 209, 789–800.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Faria, C., Jorge, C. D., Borges, N., Tenreiro, S., Outeiro, T. F., & Santos, H. (2013). Inhibition of formation of α-synuclein inclusions by mannosylglycerate in a yeast model of Parkinson’s disease. Biochimica et biophysica acta, 1830, 4065–4072.

    Article  CAS  PubMed  Google Scholar 

  • Fleming, E., Yuan, A. H., Heller, D. M., & Hochschild, A. (2019). A bacteria-based genetic assay detects prion formation. Proceedings of the National Academy of Sciences of the United States of America, 116, 4605–4610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gautschi, M., Lilie, H., Fünfschilling, U., Mun, A., Ross, S., Lithgow, T., Rücknagel, P., & Rospert, S. (2001). RAC, a stable ribosome-associated complex in yeast formed by the DnaK-DnaJ homologs Ssz1p and zuotin. Proceedings of the National Academy of Sciences of the United States of America, 98, 3762–3767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gautschi, M., Mun, A., Ross, S., & Rospert, S. (2002). A functional chaperone triad on the yeast ribosome. Proceedings of the National Academy of Sciences of the United States of America, 99, 4209–4214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gorkovskiy, A., Thurber, K. R., Tycko, R., & Wickner, R. B. (2014). Locating folds of the in-register parallel β-sheet of the Sup35p prion domain infectious amyloid. Proceedings of the National Academy of Sciences of the United States of America, 111, E4615–E4622.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gorkovskiy, A., Reidy, M., Masison, D. C., & Wickner, R. B. (2017). Hsp104 at normal levels cures many [PSI+] variants in a process promoted by Sti1p, Hsp90 and Sis1p. Proceedings of the National Academy of Sciences of the United States of America, 114, E4193–E4202.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Griffith, J. S. (1967). Nature of the scrapie agent: Self-replication and scrapie. Nature, 215, 1043–1044.

    Article  CAS  PubMed  Google Scholar 

  • Groveman, B. R., Dolan, M. A., Taubner, L. M., Kraus, A., Wickner, R. B., & Caughey, B. (2014). Parallel in-register intermolecular β-sheet architectures for prion-seeded prion protein (PrP) amyloids. The Journal of Biological Chemistry, 289, 24129–24142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hung, G. C., & Masison, D. C. (2006). N-terminal domain of yeast Hsp104 chaperone is dispensable for thermotolerance and prion propagation but necessary for curing prions by Hsp104 overexpression. Genetics, 173, 611–620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Itakura, A. K., Chakravarty, A. K., Jakobson, C. M., & Jarosz, D. F. (2020). Widespread prion-based control of growth and differentiation strategies in Saccharomyces cerevisiae. Molecular Cell, 77, 266–278.

    Article  CAS  PubMed  Google Scholar 

  • Jaunmuktane, Z., & Brandner, S. (2020). Invited review: The role of prion-like mechanisms in neurodegenerative diseases. Neuropathology and Applied Neurobiology, 46, 522–545.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jaunmuktane, Z., Mead, S., Ellis, M., Wadsworth, J. D., Nicoll, A. J., Kenny, J., Launchbury, F., Linehan, J., Richard-Loendt, A., Walker, A. S., et al. (2015). Evidence for human transmission of amyloid-β pathology and cerebral amyloid angiopathy. Nature, 525, 247–250.

    Article  CAS  PubMed  Google Scholar 

  • Johnson, B. S., McCaffery, J. M., Lindquist, S., & Gitler, A. D. (2008). A yeast TDP-43 proteinopathy model: Exploring the molecular determinants of TDP-43 aggregation and cellular toxicity. Proceedings of the National Academy of Sciences of the United States of America, 105, 6439–6444.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ju, S., Tardiff, D. F., Han, H., Divya, K., Zhong, Q., Maquat, L. E., Bosco, D. A., Hayward, L. J., Brown, R. H., Jr, Lindquist, S., et al. (2011). A yeast model of FUS/TLS-dependent cytotoxicity. PLoS Biology, 9, e1001052.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kiktev, D. A., Melomed, M. M., Lu, C. D., Newnam, G. P., & Chernoff, Y. O. (2015). Feedback control of prion formation and propagation by the ribosome-associated chaperone complex. Molecular Microbiology, 96, 621–632.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, S., Kwon, S. H., Kam, T. I., Panicker, N., Karuppagounder, S. S., Lee, S., Lee, J. H., Kim, W. R., Kook, M., Foss, C. A., et al. (2019). Transneuronal propagation of pathologic α-synuclein from the gut to the brain models Parkinson’s disease. Neuron, 103, 627–641.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kirkland, P. A., Reidy, M., & Masison, D. C. (2011). Functions of yeast Hsp40 chaperone Sis1p dispensable for prion propagation but important for prion curing and protection from prion toxicity. Genetics, 188, 565–577.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Korth, C., May, B. C., Cohen, F. E., & Prusiner, S. B. (2001). Acridine and phenothiazine derivatives as pharmacotherapeutics for prion disease. Proceedings of the National Academy of Sciences of the United States of America, 98, 9836–9841.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kryndushkin, D., Shewmaker, F., & Wickner, R. B. (2008). Curing of the [URE3] prion by Btn2p, a Batten disease-related protein. The EMBO Journal, 27, 2725–2735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacroute, F. (1971). Non-mendelian mutation allowing ureidosuccinic acid uptake in yeast. Journal of Bacteriology, 106, 519–522.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Levkovich, S. A., Rencus-Lazar, S., Gazit, E., & Bar-Yosef, L., D (2021). Microbial prions: Dawn of a new era. Trends in Biochemical Sciences, 46, 391–405.

    Article  CAS  PubMed  Google Scholar 

  • Manogaran, A. L., Kirkland, K. T., & Liebman, S. W. (2006). An engineered nonsense URA3 allele provides a versatile system to detect the presence, absence and appearance of the [PSI+] prion in Saccharomyces cerevisiae. Yeast, 23, 141–147.

    Article  CAS  PubMed  Google Scholar 

  • Masison, D. C., & Reidy, M. (2015). Yeast prions are useful for studying protein chaperones and protein quality control. Prion, 9, 174–183.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Masison, D. C., & Wickner, R. B. (1995). Prion-inducing domain of yeast Ure2p and protease resistance of Ure2p in prion-containing cells. Science, 270, 93–95.

    Article  CAS  PubMed  Google Scholar 

  • Masters, C. L., Gajdusek, D. C., & Gibbs, C. J. (1981). Creutzfeldt-Jakob disease virus isolations from the Gerstmann-Sträussler syndrome with an analysis of the various forms of amyloid plaque deposition in the virus-induced spongiform encephalopathies. Brain, 104, 559–588.

    Article  CAS  PubMed  Google Scholar 

  • McKinley, M. P., Bolton, D. C., & Prusiner, S. B. (1983). A protease-resistant protein is a structural component of the scrapie prion. Cell, 35, 57–62.

    Article  CAS  PubMed  Google Scholar 

  • Mukherjee, A., Morales-Scheihing, D., Salvadores, N., Moreno-Gonzales, I., Gonzales, C., Taylor-Presse, K., Mendez, N., Shahnawaz, M., Gaber, A. O., Sabek, O. M., et al. (2017). Inductionn of IAPP amyloid deposition and associated diabetic abnormalities by a prion-like mechanism. The Journal of Experimental Medicine, 214, 2591–2610.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nakayashiki, T., Ebihara, K., Bannai, H., & Nakamura, Y. (2001). Yeast [PSI+] “prions” that are crosstransmissible and susceptible beyond a species barrier through a quasi-prion state. Molecular Cell, 7, 1121–1130.

    Article  CAS  PubMed  Google Scholar 

  • Nakayashiki, T., Kurtzman, C. P., Edskes, H. K., & Wickner, R. B. (2005). Yeast prions [URE3] and [PSI+] are diseases. Proceedings of the National Academy of Sciences of the United States of America, 102, 10575–10580.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, S. K., Park, S., Pentek, C., & Liebman, S. W. (2020). Tumor suppressor protein p53 expressed in yeast can remain diffuse, form a prion, or form unstable liquid-like droplets. iScience, 24, 102000.

    Article  PubMed  PubMed Central  Google Scholar 

  • Parry, H. B. (1983). Scrapie disease in sheep: Historical, clinical, epidemiological, pathological and practical aspects of the natural disease. Academic Press.

  • Prusiner, S. B. (1982). Novel proteinaceous infectious particles cause scrapie. Science, 216, 136–144.

    Article  CAS  PubMed  Google Scholar 

  • Prusiner, S. B., McKinley, M. P., Bowman, K. A., Bolton, D. C., Bendheim, P. E., Groth, D. F., & Glenner, G. G. (1983). Scrapie prions aggregate to form amyloid-like birefringent rods. Cell, 35, 349–358.

    Article  CAS  PubMed  Google Scholar 

  • Roberts, B. T., & Wickner, R. B. (2003). A class of prions that propagate via covalent auto-activation. Genes & Development, 17, 2083–2087.

    Article  CAS  Google Scholar 

  • Sampson, T. R., Challis, C., Jain, N., Moiseyenko, A., Ladinsky, M. S., Shastri, G. G., Thron, T., Needham, B. D., Horvath, I., Debelius, J. W., et al. (2020). A gut bacterial amyloid promotes a-synuclein aggregation and motor impairment in mice. eLife, 9, e53111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saupe, S. J. (2000). Molecular genetics of heterokaryon incompatibility in filamentous ascomycetes. Microbiology and Molecular Biology Reviews, 64, 489–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saupe, S. J. (2007). A short history of small s: A prion of the fungus Podospora anserina. Prion, 1, 110–115.

    Article  PubMed  PubMed Central  Google Scholar 

  • Saupe, S. J., & Daskalov, A. (2012). The [Het-s] prion, an amyloid fold as a cell death activation trigger. PLoS Pathogens, 8, e1002687.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saupe, S., Descamps, C., Turcq, B., & Begueret, J. (1994). Inactivation of the Podospora anserina vegetative incompatibility locus het-c, whose product resembles a glycolipid transfer protein, drastically impairs ascospore production. Proceedings of the National Academy of Sciences of the United States of America, 91, 5927–5931.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saupe, S. J., Jarosz, D. F., & True, H. L. (2016). Amyloid prions in fungi. Microbiology. Spectrum, 4, 10.

    Google Scholar 

  • Shewmaker, F., Wickner, R. B., & Tycko, R. (2006). Amyloid of the prion domain of Sup35p has an in-register parallel β-sheet structure. Proceedings of the National Academy of Sciences of the United States of America, 103, 19754–19759.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Son, M., & Wickner, R. B. (2018). Nonsense-mediated mRNA decay factors cure most [PSI+] prion variants. Proceedings of the National Academy of Sciences of the United States of America, 115, E1184–E1193.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Son, M., & Wickner, R. B. (2020). Normal levels of ribosome-associated chaperones cure two groups of [PSI+] prion variants. Proceedings of the National Academy of Sciences of the United States of America, 117, 26298–26306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Son, M., & Wickner, R. B. (2022a). Anti-prion systems in Saccharomyces cerevisiae turn an avalanche of prions into a flurry. Viruses, 14, 1945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Son, M., & Wickner, R. B. (2022b). Antiprion systems in yeast cooperate to cure or prevent the generation of nearly all [PSI+] and [URE3] prions. Proceedings of the National Academy of Sciences of the United States of America, 119, e2205500119.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steidle, E. A., Chong, L. S., Wu, M., Crooke, E., Fiedler, D., Resnick, A. C., & Rolfes, R. J. (2016). A novel inositol pyrophosphate phosphatase in Saccharomyces cerevisiae. The Journal of Biological Chemistry, 291, 6772–6783.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suzuki, G., Shimazu, N., & Tanaka, M. (2012). A yeast prion, Mod5, promotes acquired drug resistance and cell survival under environmental stress. Science, 336, 355–359.

    Article  CAS  PubMed  Google Scholar 

  • Tuite, M. F., Mundy, C. R., & Cox, B. S. (1981). Agents that cause a high frequency of genetic change from [psi+] to [psi] in Saccharomyces cerevisiae. Genetics, 98, 691–711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tycko, R. (2014). Physical and structural basis for polymorphism in amyloid fibrils. Protein Science, 23, 1528–1539.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tycko, R., & Wickner, R. B. (2013). Molecular structures of amyloid and prion fibrils: Consensus vs. controversy. Accounts of Chemical Research, 46, 1487–1496.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, J., Park, G., Lee, Y. K., Nguyen, M., San Fung, T., Lin, T. Y., Hsu, F., & Guo, Z. (2020). Spin label scanning reveals likely locations of β-strands in the amyloid fibrils of the Ure2 prion domain. ACS Omega, 5, 5984–5993.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wickner, R. B. (1994). [URE3] as an altered URE2 protein: Evidence for a prion analog in Saccharomyces cerevisiae. Science, 264, 566–569.

    Article  CAS  PubMed  Google Scholar 

  • Wickner, R. B., Dyda, F., & Tycko, R. (2008). Amyloid of Rnq1p, the basis of the [PIN+] prion, has a parallel in-register β-sheet structure. Proceedings of the National Academy of Sciences of the United States of America, 105, 2403–2408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wickner, R. B., Edskes, H. K., Bateman, D. A., Kelly, A. C., Gorkovskiy, A., Dayani, Y., & Zhou, A. (2013). Amyloids and yeast prion biology. Biochemistry, 52, 1514–1527.

    Article  CAS  PubMed  Google Scholar 

  • Wickner, R. B., Beszonov, E., & Bateman, D. A. (2014). Normal levels of the antiprion proteins Btn2 and Cur1 cure most newly formed [URE3] prion variants. Proceedings of the National Academy of Sciences of the United States of America, 111, E2711–E2720.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wickner, R. B., Shewmaker, F., Bateman, D. A., Edskes, H. E., Gorkovskiy, A., Dayani, Y., & Bezsonov, E. E. (2015). Yeast prions: Structure, biology and prion-handling systems. Microbiology and Molecular Biology Reviews, 79, 1–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wickner, R. B., Kelly, A. C., Bezsonov, E. E., & Edskes, H. E. (2017). [PSI+] prion propagation is controlled by inositol polyphosphates. Proceedings of the National Academy of Sciences of the United States of America, 114, E8402–E8410.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wickner, R. B., Bezsonov, E. E., Son, M., Ducatez, M., DeWilde, M., & Edskes, H. E. (2018). Anti-prion systems in yeast and inositol polyphosphates. Biochemistry, 57, 1285–1292.

    Article  CAS  PubMed  Google Scholar 

  • Wickner, R. B., Son, M., & Edskes, B. K. (2019). Prion variants of yeast are numerous, mutable, and segregate on growth, affecting prion pathogenesis, transmission barriers and sensitivity to anti-prioin systems. Viruses, 11, 238.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wickner, R. B., Edskes, H. K., Son, M., Wu, S., & Niznikiewicz, M. (2021). Innate immunity to prions: Anti-prion systems turn a tsunami of prions into a slow drip. Current Genetics, 67, 833–847.

    Article  CAS  PubMed  Google Scholar 

  • Wong, S. H., & King, C. Y. (2015). Amino acid proximities in two Sup35 prion strains revealed by chemical cross-linking. The Journal of Biological Chemistry, 290, 25062–25071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan, A. H., & Hochschild, A. (2017). A bacterial global regulator forms a prion. Science, 355, 198–201.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This study was supported by the BK21 Four Program (Education/Research Group of Longevity and Marine Biotechnology for Innovative Talent) of Pusan National University (S.H. and S.L.), and a National Research Foundation of Korea (NRF) grant funded by the Korean government (MSIT) (2022R1A2C1092397) (M.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moonil Son.

Ethics declarations

Conflict of Interest

The authors have no conflict of interest to report.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Son, M., Han, S. & Lee, S. Prions in Microbes: The Least in the Most. J Microbiol. 61, 881–889 (2023). https://doi.org/10.1007/s12275-023-00070-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-023-00070-4

Keywords

Navigation