Skip to main content
Log in

Differences in the methanogen community between the nearshore and offshore sediments of the South Yellow Sea

  • Microbial Ecology and Environmental Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

The differences in methanogen abundance and community composition were investigated between nearshore and offshore sediments in the South Yellow Sea (SYS). Shannon, Simpson, and Chao1 indices revealed a higher diversity of methanogens in the nearshore sediments than in the offshore sediments. The Mann—Whitney U test demonstrated that the relative abundance of Methanococcoides was significantly higher in the offshore sediments, while the relative abundances of Methanogenium, Methanosarcina, Methanosaeta, Methanolinea, and Methanomassiliicoccus were significantly higher in the nearshore sediments (P < 0.05). The abundance of the mcrA gene in the nearshore sediments was significantly higher than that in the offshore sediments. Furthermore, a similar vertical distribution of the methanogen and sulfate-reducing bacteria (SRB) abundances was observed in the SYS sediments, implying there is potential cooperation between these two functional microbes in this environment. Finally, total organic carbon (TOC) was significantly correlated with methanogen community composition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Bakker, D.C.E., Bange, H.W., Gruber, N., Johannessen, T., Upstill-Goddard, R.C., Borges, A.V., Delille, B., Löscher, C.R., Naqvi, S.W.A., Omar, A.M., et al. 2014. Air-sea interactions of natural long-lived greenhouse gases (CO2, N2O, CH4) in a Changing Climate. In Liss, P.S. and Johnson, M.T. (eds.), Advances in Geomorphology and Quaternary Studies in Argentina, pp. 113–169. Springer, Berlin, Heidelberg, Germany.

    Google Scholar 

  • Bange, H.W., Bartell, U.H., Rapsomanikis, S., and Andreae, M.O. 1994. Methane in the Baltic and North Seas and a reassessment of the marine emissions of methane. Global Biogeochem. Cycles 8, 465–480.

    Article  CAS  Google Scholar 

  • Bokulich, N.A., Subramanian, S., Faith, J.J., Gevers, D., Gordon, J.I., Knight, R., Mills, D.A., and Caporaso, J.G. 2013. Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat. Methods 10, 57–59.

    Article  CAS  PubMed  Google Scholar 

  • Chen, Y., Li, S., Xu, X., Ma, M., Mi, T., Zhen, Y., and Yu, Z. 2020. Characterization of microbial communities in sediments of the South Yellow Sea. J. Ocean. Limnol. 39, 846–864.

    Article  Google Scholar 

  • Conrad, R. 2007. Microbial ecology of methanogens and methanotrophs. In Sparks, D.L. (ed.) Advances in Agronomy, vol. 96, pp. 1–63. Academic Press, San Diego, California, USA.

    Google Scholar 

  • Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C., and Knight, R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ferry, J.G. 1993. Methanogenesis: Ecology, Physiology, Biochemistry & Genetics. Chapman & Hall Microbiology Series. Springer, Boston, Massachusetts, USA.

    Book  Google Scholar 

  • Finke, N., Hoehler, T.M., and Jørgensen, B.B. 2007. Hydrogen ‘leakage’ during methanogenesis from methanol and methylamine: implications for anaerobic carbon degradation pathways in aquatic sediments. Environ. Microbiol. 9, 1060–1071.

    Article  CAS  PubMed  Google Scholar 

  • Geets, J., Borremans, B., Diels, L., Springael, D., Vangronsveld, J., van der Lelie, D., and Vanbroekhoven, K. 2006. DsrB gene-based DGGE for community and diversity surveys of sulfate-reducing bacteria. J. Microbiol. Methods 66, 194–205.

    Article  CAS  PubMed  Google Scholar 

  • He, C.P., Wang, Y.X., Lei, Z.Y., and Xu, S. 1959. A preliminary study of the formation of Yellow Sea Cold Water Mass and its properties. Oceanol. Limnol. Sin. 2, 11–15.

    Google Scholar 

  • Holmer, M. and Kristensen, E. 1994. Coexistence of sulfate reduction and methane production in an organic-rich sediment. Mar. Ecol. Prog. Ser. 107, 177–184.

    Article  CAS  Google Scholar 

  • Hu, L., Shi, X., Guo, Z., Wang, H., and Yang, Z. 2013. Sources, dispersal and preservation of sedimentary organic matter in the Yellow Sea: the importance of depositional hydrodynamic forcing. Mar. Geol. 335, 52–63.

    Article  CAS  Google Scholar 

  • Intergovernmental Panel on Climate Change, IPCC. 2015. Climate Change 2014: Mitigation of Climate Change: Working Group III to the Fifth Assessment Report. Cambridge University Press, Cambridge, United Kingdom.

    Book  Google Scholar 

  • Jørgensen, B.B. 2006. Bacteria and marine biogeochemistry. In Schulz, H.D. and Zabel, M. (eds.), Marine Geochemistry, 2nd edn, pp. 169–206. Springer, Berlin, Heidelberg, Germany.

    Chapter  Google Scholar 

  • Kendall, M.M., Wardlaw, G.D., Tang, C.F., Bonin, A.S., Liu, Y., and Valentine, D.L. 2007. Diversity of Archaea in marine sediments from Skan Bay, Alaska, including cultivated methanogens, and description of Methanogenium boonei sp. nov. Appl. Environ. Microbiol. 73, 407–414.

    Article  CAS  PubMed  Google Scholar 

  • Knittel, K. and Boetius, A. 2009. Anaerobic oxidation of methane: progress with an unknown process. Annu. Rev. Microbiol. 63, 311–334.

    Article  CAS  PubMed  Google Scholar 

  • L’Haridon, S., Chalopin, M., Colombo, D., and Toffin, L. 2014. Methanococcoides vulcani sp. nov., a marine methylotrophic methanogen that uses betaine, choline and N,N-dimethylethanolamine for methanogenesis, isolated from a mud volcano, and emended description of the genus Methanococcoides. Int. J. Syst. Evol. Microbiol. 64, 1978–1983.

    Article  PubMed  CAS  Google Scholar 

  • Lazar, C.S., Parkes, R.J., Cragg, B.A., L’Haridon, S., and Toffin, L. 2011. Methanogenic diversity and activity in hypersaline sediments of the centre of the Napoli mud volcano, Eastern Mediterranean Sea. Environ. Microbiol. 13, 2078–2091.

    Article  CAS  PubMed  Google Scholar 

  • Li, Q., Wang, F., Chen, Z., Yin, X., and Xiao, X. 2012. Stratified active archaeal communities in the sediments of Jiulong River Estuary, China. Front. Microbiol. 3, 311.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, H., Xiao, T., Ding, T., and Lü, R. 2006. The distribution of bacterioplankton in the Yellow Sea Cold Water Mass (YSCWM). Acta Ecol. Sin. 26, 1012–1019.

    Article  Google Scholar 

  • Li, H., Yang, Q., and Zhou, H. 2020. Niche differentiation of sulfate- and iron-dependent anaerobic methane oxidation and methylotrophic methanogenesis in deep sea methane seeps. Front. Microbiol. 11, 1409.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, Y. and Whitman, W. 2008. Metabolic, phylogenetic, and ecological diversity of the methanogenic archaea. Ann. N.Y. Acad. Sci. 1125, 171–189.

    Article  CAS  PubMed  Google Scholar 

  • Lyimo, T.J., Pol, A., Jetten, M.S., and den Camp, H.J. 2009. Diversity of methanogenic archaea in a mangrove sediment and isolation of a new Methanococcoides strain. FEMS Microbiol. Lett. 291, 247–253.

    Article  CAS  PubMed  Google Scholar 

  • Ma, T.T., Liu, L.Y., Rui, J.P., Yuan, Q., Feng, D., Zhou, Z., Dai, L.R., Zeng, W.Q., Zhang, H., and Cheng, L. 2017. Coexistence and competition of sulfate-reducing and methanogenic populations in an anaerobic hexadecane-degrading culture. Biotechnol. Biofuels 10, 207.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Magoč, T. and Salzberg, S.L. 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maltby, J., Sommer, S., Dale, A.W., and Treude, T. 2016. Microbial methanogenesis in the sulfate-reducing zone of surface sediments traversing the Peruvian margin. Biogeosciences 13, 283–299.

    Article  Google Scholar 

  • Maltby, J., Steinle, L., Löscher, C., Bange, H., Fischer, M., Schmidt, M., and Treude, T. 2018. Microbial methanogenesis in the sulfate-reducing zone of sediments in the Eckernförde Bay, SW Baltic Sea. Biogeosciences 15, 137–157.

    Article  CAS  Google Scholar 

  • Niu, M., Fan, X., Zhuang, G., Liang, Q., and Wang, F. 2017. Methane-metabolizing microbial communities in sediments of the Haima cold seep area, northwest slope of the South China Sea. FEMS Microbiol. Ecol. 93, fix101.

    Google Scholar 

  • Oremland, R.S. and Polcin, S. 1982. Methanogenesis and sulfate reduction: competitive and noncompetitive substrates in estuarine sediments. Appl. Environ. Microbiol. 44, 1270–1276.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ozuolmez, D., Na, H., Lever, M.A., Kjeldsen, K.U., Jørgensen, B.B., and Plugge, C.M. 2015. Methanogenic archaea and sulfate reducing bacteria co-cultured on acetate: teamwork or coexistence? Front. Microbiol. 6, 492.

    Article  PubMed  PubMed Central  Google Scholar 

  • Reeburgh, W. 2007. Oceanic methane biogeochemistry. Chem. Rev. 107, 486–513.

    Article  CAS  PubMed  Google Scholar 

  • Rooney-Varga, J., Giewat, M., Duddleston, K., Chanton, J., and Hines, M. 2007. Links between archaeal community structure, vegetation type and methanogenic pathway in Alaskan peatlands. FEMS Microbiol. Ecol. 60, 240–251.

    Article  CAS  PubMed  Google Scholar 

  • Smith, K.S. and Ingram-Smith, C. 2007. Methanosaeta, the forgotten methanogen? Trends Microbiol. 15, 150–155.

    Article  CAS  PubMed  Google Scholar 

  • Steinberg, L. and Regan, J. 2008. Phylogenetic comparison of the methanogenic communities from an acidic, oligotrophic fen and an anaerobic digester treating municipal wastewater sludge. Appl. Environ. Microbiol. 74, 6663–6671.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su, J. and Huang, D. 1995. On the current field associated with the Yellow Sea Cold Water Mass. Oceanol. Limnol. Sin 26, 1–7.

    Google Scholar 

  • Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treude, T., Smith, C., Wenzhöefer, F., Carney, E., Bernardino, A., Hannides, A., Krüger, M., and Boetius, A. 2009. Biogeochemistry of a deep-sea whale fall: sulfate reduction, sulfide efflux and methanogenesis. Mar. Ecol. Prog. Ser. 382, 1–21.

    Article  CAS  Google Scholar 

  • Vigneron, A., L’Haridon, S., Godfroy, A., Roussel, E., Cragg, B., Parkes, R., and Toffin, L. 2015. Evidence of active methanogen communities in shallow sediments of the Sonora Margin cold seeps. Appl. Environ. Microbiol. 81, 3451–3459.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Visser, A., Beeksma, I., van der Zee, F., Stams, A., and Lettinga, G. 1993. Anaerobic degradation of volatile fatty acids at different sulfate concentration. Appl. Microbiol. Biotechnol. 40, 549–556.

    Article  CAS  Google Scholar 

  • Wang, Y., Hu, X., Sun, Y., and Wang, C. 2021. Influence of the cold bottom water on taxonomic and functional composition and complexity of microbial communities in the southern Yellow Sea during the summer. Sci. Total Environ. 759, 143496.

    Article  CAS  PubMed  Google Scholar 

  • Wang, B., Liu, F., Zheng, S., and Hao, Q. 2019. Trophic strategy of diverse methanogens across a river-to-sea gradient. J. Microbiol. 57, 470–478.

    Article  CAS  PubMed  Google Scholar 

  • Watkins, A.J., Roussel, E.G., Parkes, R.J., and Sass, H. 2014. Glycine betaine as a direct substrate for methanogens (Methanococcoides spp.). Appl. Environ. Microbiol. 80, 289–293.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wen, X., Yang, S., Horn, F., Winkel, M., Wagner, D., and Liebner, S. 2017. Global biogeographic analysis of methanogenic archaea identifies community-shaping environmental factors of natural environments. Front. Microbiol. 8, 1339.

    Article  PubMed  PubMed Central  Google Scholar 

  • Whiticar, M. 1999. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of methane. Chem. Geol. 161, 291–314.

    Article  CAS  Google Scholar 

  • Xiao, K.Q., Beulig, F., Kjeldsen, K.U., Jørgensen, B.B., and Risgaard-Petersen, N. 2017. Concurrent methane production and oxidation in surface sediment from Aarhus Bay, Denmark. Front. Microbiol. 8, 1198.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xiao, K.Q., Beulig, F., Røy, H., Jørgensen, B.B., and Risgaard-Petersen, N. 2018. Methylotrophic methanogenesis fuels cryptic methane cycling in marine surface sediment. Limnol. Oceanogr. 63, 1519–1527.

    Article  CAS  Google Scholar 

  • Yao, P., Zhao, B., Bianchi, T., Guo, Z., Zhao, M., Li, D., Pan, H., Wang, J., Zhang, T., and Yu, Z. 2014. Remineralization of sedimentary organic carbon in mud deposits of the Changjiang Estuary and adjacent shelf: implications for carbon preservation and authigenic mineral formation. Cont. Shelf Res. 91, 1–11.

    Article  Google Scholar 

  • Zhang, G., Zhang, J., Kang, Y., and Liu, S. 2004. Distributions and fluxes of methane in the East China Sea and the Yellow Sea in Spring. J. Geophys. Res. Oceans 109, C07011.

    Article  Google Scholar 

  • Zhuang, G.C., Elling, F.J., Nigro, L.M., Samarkin, V., Joye, S., Teske, A., and Hinrichs, K.U. 2016. Multiple evidence for methylotrophic methanogenesis as the dominant methanogenic pathway in hypersaline sediments from the Orca Basin, Gulf of Mexico. Geochim. Cosmochim. Acta 187, 1–20.

    Article  CAS  Google Scholar 

  • Zhuang, G.C., Heuer, V.B., Lazar, C.S., Goldhammer, T., Wendt, J., Samarkin, V.A., Elvert, M., Teske, A.P., Joye, S.B., and Hinrichs, K.U. 2018a. Relative importance of methylotrophic methanogenesis in sediments of the Western Mediterranean Sea. Geochim. Cosmochim. Acta 224, 171–186.

    Article  CAS  Google Scholar 

  • Zhuang, G.C., Montgomery, A., Sibert, R.J., Rogener, M.K., Samarkin, V.A., and Joye, S.B. 2018b. Effects of pressure, methane concentration, sulfate reduction activity, and temperature on methane production in surface sediments of the Gulf of Mexico. Limnol. Oceanogr. 63, 2080–2092.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank all of the scientists and crew members on the R/V Ke Xue San Hao for the assistance provided in the collection of samples during the cruise. This work was supported by the National Natural Science Foundation of China (No. 41806131 and 42106137), the Shandong Provincial Natural Science Foundation, China (No. ZR2019QG00) and the Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology(Qingdao) (No. 2021QNLM020002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiezhu Mi.

Ethics declarations

The authors have no conflict of interest to report.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Zhen, Y., Wan, J. et al. Differences in the methanogen community between the nearshore and offshore sediments of the South Yellow Sea. J Microbiol. 60, 814–822 (2022). https://doi.org/10.1007/s12275-022-2022-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-022-2022-2

Keywords

Navigation