Skip to main content

Advertisement

Springer Nature Link
Log in
Menu
Find a journal Publish with us Track your research
Search
Cart
  1. Home
  2. Journal of Microbiology
  3. Article

COVID-19 vaccine development based on recombinant viral and bacterial vector systems: combinatorial effect of adaptive and trained immunity

  • Review
  • Published: 14 February 2022
  • Volume 60, pages 321–334, (2022)
  • Cite this article
Download PDF
Journal of Microbiology
COVID-19 vaccine development based on recombinant viral and bacterial vector systems: combinatorial effect of adaptive and trained immunity
Download PDF
  • Mi-Hyun Lee1,2,6 &
  • Bum-Joon Kim1,2,3,4,5,6 
  • 1667 Accesses

  • 3 Altmetric

  • Explore all metrics

Abstract

Severe acute respiratory syndrome coronavirus 2 virus (SARS-CoV-2) infection, which causes coronavirus disease 2019 (COVID-19), has led to many cases and deaths worldwide. Therefore, a number of vaccine candidates have been developed to control the COVID-19 pandemic. Of these, to date, 21 vaccines have received emergency approval for human use in at least one country. However, the recent global emergence of SARS-CoV-2 variants has compromised the efficacy of the currently available vaccines. To protect against these variants, the use of vaccines that modulate T cell-mediated immune responses or innate immune cell memory function, termed trained immunity, is needed. The major advantage of a vaccine that uses bacteria or viral systems for the delivery of COVID-19 antigens is the ability to induce both T cell-mediated and humoral immune responses. In addition, such vaccine systems can also exert off-target effects via the vector itself, mediated partly through trained immunity; compared to other vaccine platforms, suggesting that this approach can provide better protection against even vaccine escape variants. This review presents the current status of the development of COVID-19 vaccines based on recombinant viral and bacterial delivery systems. We also discuss the current status of the use of licensed live vaccines for other infections, including BCG, oral polio and MMR vaccines, to prevent COVID-19 infections.

Article PDF

Download to read the full article text

Similar content being viewed by others

COVID-19 vaccines: where we stand and challenges ahead

Article 21 January 2021

The way of SARS-CoV-2 vaccine development: success and challenges

Article Open access 09 November 2021

Status Report on COVID-19 Vaccines Development

Article Open access 14 April 2021

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.
  • Cell vaccines
  • DNA vaccines
  • Inactivated vaccines
  • Recombinant Vaccine
  • RNA Vaccines
  • Vaccines
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

References

  • Abdulla, Z.A., Al-Bashir, S.M., Al-Salih, N.S., Aldamen, A.A., and Abdulazeez, M.Z. 2021. A summary of the SARS-CoV-2 vaccines and technologies available or under development. Pathogens 10, 788.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Agrawal, B. 2019. Heterologous immunity: role in natural and vaccine-induced resistance to infections. Front. Immunol. 10, 2631.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Altenburg, A.F., Kreijtz, J.H.C.M., De Vries, R.D., Song, F., Fux, R., Rimmelzwaan, G.F., Sutter, G., and Volz, A. 2014. Modified vaccinia virus ankara (MVA) as production platform for vaccines against influenza and other viral respiratory diseases. Viruses 6, 2735–2761.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Álvarez-Argüelles, M.E., Rojo-Alba, S., Martínez, Z.P., Negredo, Á.L., Riveiro, J.A.B., Álvarez, M.A.A., Súarez, J.R., de Oña Navarro, M., and García, S.M. 2018. New clinical and seasonal evidence of infections by Human Parainfluenzavirus. Eur. J. Clin. Microbiol. Infect. Dis. 37, 2211–2217.

    PubMed  PubMed Central  Google Scholar 

  • An, D., Li, K., Rowe, D.K., Diaz, M.C.H., Griffin, E.F., Beavis, A.C., Johnson, S.K., Padykula, I., Jones, C.A., Briggs, K., et al. 2021. Protection of K18-hACE2 mice and ferrets against SARS-CoV-2 challenge by a single-dose mucosal immunization with a parainfluenza virus 5-based COVID-19 vaccine. Sci. Adv. 7, eabi5246.

    PubMed  Google Scholar 

  • Anbarasu, A., Ramaiah, S., and Livingstone, P. 2020. Vaccine repurposing approach for preventing COVID 19: can MMR vaccines reduce morbidity and mortality? Hum. Vaccin. Immunother. 16, 2217–2218.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen, A., Fisker, A.B., Rodrigues, A., Martins, C., Ravn, H., Lund, N., Biering-Sørensen, S., Benn, C.S., and Aaby, P. 2018. National immunization campaigns with oral polio vaccine reduce all-cause mortality: a natural experiment within seven randomized trials. Front. Public Health 6, 13.

    PubMed  PubMed Central  Google Scholar 

  • Bache, B.E., Grobusch, M.P., and Agnandji, S.T. 2020. Safety, immunogenicity and risk-benefit analysis of rVSV-ΔG-ZEBOV-GP (V920) Ebola vaccine in Phase I–III clinical trials across regions. Future Microbiol. 15, 85–106.

    CAS  PubMed  Google Scholar 

  • Barría, M.I., Garrido, J.L., Stein, C., Scher, E., Ge, Y., Engel, S.M., Kraus, T.A., Banach, D., and Moran, T.M. 2013. Localized mucosal response to intranasal live attenuated influenza vaccine in adults. J. Infect. Dis. 207, 115–124.

    PubMed  Google Scholar 

  • Barry, M.A., Barry, M., Parrett, B., Lu, S.C., Zell, B., and Matchett, W. 2020. Single-cycle adenoviruses (SC-Ads) as platforms for immunostimulation. J. Immnol. 204, Supplement 166.30.

  • Basak, P., Sachdeva, N., and Dayal, D. 2021. Can BCG vaccine protect against COVID-19 via trained immunity and tolerogenesis? BioEssays 43, e2000200.

    PubMed  Google Scholar 

  • Bezbaruah, R., Borah, P., Kakoti, B.B., Al-Shar’I, N.A., Chandrasekaran, B., Jaradat, D.M.M., Al-Zeer, M.A., and Abu-Romman, S. 2021. Developmental landscape of potential vaccine candidates based on viral vector for prophylaxis of COVID-19. Front. Mol. Biosci. 8, 635337.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bull, J.J., Nuismer, S.L., and Antia, R. 2019. Recombinant vector vaccine evolution. PLoS Comput. Biol. 15, e1006857.

    PubMed  PubMed Central  Google Scholar 

  • Capone, S., Raggioli, A., Gentile, M., Battella, S., Lahm, A., Sommella, A., Contino, A.M., Urbanowicz, R.A., Scala, R., and Barra, F. 2021. Immunogenicity of a new gorilla adenovirus vaccine candidate for COVID-19. Mol. Ther. 29, 2412–2423.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Case, J.B., Rothlauf, P.W., Chen, R.E., Kafai, N.M., Fox, J.M., Smith, B.K., Shrihari, S., McCune, B.T., Harvey, I.B., Keeler, S.P., et al. 2020. Replication-competent vesicular stomatitis virus vaccine vector protects against SARS-CoV-2-mediated pathogenesis in mice. Cell Host Microbe 28, 465–474.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chamekh, M. 2015. Genetically engineered bacteria in gene therapy—hopes and challenges. In Hashad, D. (ed.), Gene Therapy—Principles and Challenges. IntechOpen, Rijeka, Croatia. doi: 10.5772/61042. Available from: https://www.intechopen.com/chapters/48719.

  • Chen, Z., Gupta, T., Xu, P., Phan, S., Pickar, A., Yau, W., Karls, R.K., Quinn, F.D., Sakamoto, K., and He, B. 2015. Efficacy of parainfluenza virus 5 (PIV5)-based tuberculosis vaccines in mice. Vaccine 33, 7217–7224.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chin’ombe, N. 2013. Recombinant Salmonella enterica serovar Typhimurium as a vaccine vector for HIV-1 Gag. Viruses 5, 2062–2078.

    PubMed  PubMed Central  Google Scholar 

  • Choi, Y. and Chang, J. 2013. Viral vectors for vaccine applications. Clin. Exp. Vaccine Res. 2, 97–105.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clark-Curtiss, J.E. and Curtiss, R. 2018. Salmonella vaccines: conduits for protective antigens. J. Immunol. 200, 39–48.

    CAS  PubMed  Google Scholar 

  • Comunale, B.A., Engineer, L., Jiang, Y., Andrews, J.C., Liu, Q., Ji, L., Yurkovich, J.T., Comunale, R.A., and Xie, Q. 2021. Poliovirus vaccination induces a humoral immune response that cross reacts with SARS-CoV-2. Front. Med. 8, 710010.

    Google Scholar 

  • Covián, C., Fernández-Fierro, A., Retamal-Díaz, A., Díaz, F.E., Vasquez, A.E., Lay, M.K., Riedel, C.A., González, P.A., Bueno, S.M., and Kalergis, A.M. 2019. BCG-induced cross-protection and development of trained immunity: implication for vaccine design. Front. Immunol. 10, 2806.

    PubMed  PubMed Central  Google Scholar 

  • Covián, C., Ríos, M., Berríos-Rojas, R.V., Bueno, S.M., and Kalergis, A.M. 2021. Induction of trained immunity by recombinant vaccines. Front. Immunol. 11, 611946.

    PubMed  PubMed Central  Google Scholar 

  • Crosby, C.M., Nehete, P., Sastry, K.J., and Barry, M.A. 2015. Amplified and persistent immune responses generated by single-cycle replicating adenovirus vaccines. J. Virol. 89, 669–675.

    PubMed  Google Scholar 

  • Detmer, A. and Glenting, J. 2006. Live bacterial vaccines-a review and identification of potential hazards. Microb. Cell Fact. 5, 23.

    PubMed  PubMed Central  Google Scholar 

  • Dolzhikova, I.V., Gushchin, V.A., Shcheblyakov, D.V., Tsybin, A.N., Shchetinin, A.M., Pochtovyi, A.A., Komissarov, A.B., Kleymenov, D.A., Kuznetsova, N.A., Tukhvatulin, A., et al. 2021. One-shot immunization with Sputnik Light (the first component of Sputnik V vaccine) is effective against SARS-CoV-2 Delta variant: efficacy data on the use of the vaccine in civil circulation in Moscow. medRxiv. doi: https://doi.org/10.1101/2021.10.08.21264715.

  • Falsey, A.R., Sobieszczyk, M.E., Hirsch, I., Sproule, S., Robb, M.L., Corey, L., Neuzil, K.M., Hahn, W., Hunt, J., Mulligan, M.J., et al. 2021. Phase 3 safety and efficacy of AZD1222 (ChAdOx1 nCoV-19) COVID-19 vaccine. N. Eng. J. Med. 385, 2348–2360.

    CAS  Google Scholar 

  • FDA, US Food and Drug Administration. 2021. Shingrix. Available from: https://www.fda.gov/vaccines-blood-biologics/vaccines/shingrix.

  • Feldman, K.A., Enscore, R.E., Lathrop, S.L., Matyas, B.T., McGuill, M., Schriefer, M.E., Stiles-Enos, D., Dennis, D.T., Petersen, L.R., and Hayes, E.B. 2001. An outbreak of primary pneumonic tularemia on Martha’s Vineyard. N. Eng. J. Med. 345, 1601–1606.

    CAS  Google Scholar 

  • Francis, A.I., Ghany, S., Gilkes, T., and Umakanthan, S. 2021. Review of COVID-19 vaccine subtypes, efficacy and geographical distributions. Postgrad. Med. J. In press. doi: https://doi.org/10.1136/postgradmedj-2021-140654.

  • Frantz, P.N., Teeravechyan, S., and Tangy, F. 2018. Measles-derived vaccines to prevent emerging viral diseases. Microbes Infect. 20, 493–500.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gallo, O., Locatello, L.G., Mazzoni, A., Novelli, L., and Annunziato, F. 2021. The central role of the nasal microenvironment in the transmission, modulation, and clinical progression of SARS-CoV-2 infection. Mucosal Immunol. 14, 305–316.

    CAS  PubMed  Google Scholar 

  • García-Arriaza, J., Garaigorta, U., Pérez, P., Lázaro-Frías, A., Zamora, C., Gastaminza, P., Del Fresno, C., Casasnovas, J.M., Sorzano, C.Ó.S., Sancho, D., et al. 2021. COVID-19 vaccine candidates based on modified vaccinia virus Ankara expressing the SARS-CoV-2 spike protein induce robust T-and B-cell immune responses and full efficacy in mice. J. Virol. 95, e02260–20.

    PubMed  PubMed Central  Google Scholar 

  • Gold, J.E., Baumgartl, W.H., Okyay, R.A., Licht, W.E., Fidel, P.L. Jr, Noverr, M.C., Tilley, L.P., Hurley, D.J., Rada, B., and Ashford, J.W. 2020. Analysis of measles-mumps-rubella (MMR) titers of recovered COVID-19 patients. mBio 11, e02628–20.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Goodridge, H.S., Ahmed, S.S., Curtis, N., Kollmann, T.R., Levy, O., Netea, M.G., Pollard, A.J., van Crevel, R., and Wilson, C.B. 2016. Harnessing the beneficial heterologous effects of vaccination. Nat. Rev. Immunol. 16, 392–400.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grifoni, A., Sidney, J., Vita, R., Peters, B., Crotty, S., Weiskopf, D., and Sette, A. 2021. SARS-CoV-2 human T cell epitopes: adaptive immune response against COVID-19. Cell Host Microbe 29, 1076–1092.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grifoni, A., Weiskopf, D., Ramirez, S.I., Mateus, J., Dan, J.M., Moderbacher, C.R., Rawlings, S.A., Sutherland, A., Premkumar, L., Jadi, R.S., et al. 2020. Targets of T cell responses to SARS-CoV-2 coronavirus in humans with COVID-19 disease and unexposed individuals. Cell 181, 1489–1501.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Groisman, E.A., Chiao, E., Lipps, C.J., and Heffron, F. 1989. Salmonella typhimurium phoP virulence gene is a transcriptional regulator. Proc. Natl. Acad. Sci. USA 86, 7077–7081.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gyssens, I.C. and Netea, M.G. 2019. Heterologous effects of vaccination and trained immunity. Clin. Microbiol. Infect. 25, 1457–1458.

    CAS  PubMed  Google Scholar 

  • Heppner, D.G. Jr, Kemp, T.L., Martin, B.K., Ramsey, W.J., Nichols, R., Dasen, E.J., Link, C.J., Das, R., Xu, Z.J., Sheldon, E.A., et al. 2017. Safety and immunogenicity of the rVSVΔ G-ZEBOV-GP Ebola virus vaccine candidate in healthy adults: a phase 1b randomised, multicentre, double-blind, placebo-controlled, dose-response study. Lancet Infect. Dis. 17, 854–866.

    CAS  PubMed  Google Scholar 

  • Ho, D.T., Hatabu, T., Sunada, Y., and Kondo, Y. 2020. Oral administration of the probiotic bacterium Lactobacillus acidophilus strain L-55 modulates the immunological parameters of the laying hen inoculated with a Newcastle disease virus-based live attenuated vaccine. Biosci. Microbiota Food Health 39, 117–122.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hörner, C., Schürmann, C., Auste, A., Ebenig, A., Muraleedharan, S., Dinnon, K.H., Scholz, T., Herrmann, M., Schnierle, B.S., Baric, R.S., et al. 2020. A highly immunogenic and effective measles virus-based Th1-biased COVID-19 vaccine. Proc. Natl. Acad. Sci. USA 117, 32657–32666.

    PubMed  PubMed Central  Google Scholar 

  • Hu, Z., Ni, J., Cao, Y., and Liu, X. 2020. Newcastle disease virus as a vaccine vector for 20 years: a focus on maternally derived antibody interference. Vaccines 8, 222.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Huang, Y., Yang, C., Xu, X., Xu, W., and Liu, S. 2020. Structural and functional properties of SARS-CoV-2 spike protein: potential antivirus drug development for COVID-19. Acta Pharmacol. Sin. 41, 1141–1149.

    PubMed  PubMed Central  Google Scholar 

  • Jakhmola, S., Baral, B., and Jha, H.C. 2021. A comparative analysis of COVID-19 outbreak on age groups and both the sexes of population from India and other countries. J. Infect. Dev. Ctries. 15, 333–341.

    CAS  PubMed  Google Scholar 

  • Jia, Q., Bielefeldt-Ohmann, H., Maison, R.M., Masleša-Galić, S., Cooper, S.K., Bowen, R.A., and Horwitz, M.A. 2021. Replicating bacterium-vectored vaccine expressing SARS-CoV-2 Membrane and Nucleocapsid proteins protects against severe COVID-19-like disease in hamsters. npj Vaccines 6, 47.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jia, Q., Lee, B.Y., Bowen, R., Dillon, B.J., Som, S.M., and Horwitz, M.A. 2010. A Francisella tularensis live vaccine strain (LVS) mutant with a deletion in capB, encoding a putative capsular biosynthesis protein, is significantly more attenuated than LVS yet induces potent protective immunity in mice against F. tularensis challenge. Infect. Immun. 78, 4341–4355.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jia, Q., Lee, B.Y., Clemens, D.L., Bowen, R.A., and Horwitz, M.A. 2009. Recombinant attenuated Listeria monocytogenes vaccine expressing Francisella tularensis IglC induces protection in mice against aerosolized Type A F. tularensis. Vaccine 27, 1216–1229.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, I. and Roy, P. 2021. Sputnik V COVID-19 vaccine candidate appears safe and effective. Lancet 397, 642–643.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, B.J., Jeong, H., Seo, H., Lee, M.H., Shin, H.M., and Kim, B.J. 2021. Recombinant Mycobacterium paragordonae expressing SARS-CoV-2 receptor-binding domain as a vaccine candidate against SARS-CoV-2 infections. Front. Immunol. 12, 712274.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, B.J., Kim, B.R., Kook, Y.H., and Kim, B.J. 2017. A temperature sensitive Mycobacterium paragordonae induces enhanced protective immune responses against mycobacterial infections in the mouse model. Sci. Rep. 7, 15230.

    PubMed  PubMed Central  Google Scholar 

  • Kim, B.J., Kim, B.R., Kook, Y.H., and Kim, B.J. 2019. Potential of recombinant Mycobacterium paragordonae expressing HIV-1 Gag as a prime vaccine for HIV-1 infection. Sci. Rep. 9, 15515.

    PubMed  PubMed Central  Google Scholar 

  • Koonpaew, S., Kaewborisuth, C., Srisutthisamphan, K., Wanitchang, A., Thaweerattanasinp, T., Saenboonrueng, J., Poonsuk, S., Jengarn, J., Viriyakitkosol, R., Kramyu, J., et al. 2021. A single-cycle influenza a virus-based SARS-CoV-2 vaccine elicits potent immune responses in a mouse model. Vaccines 9, 850.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ku, M.W., Authié, P., Nevo, F., Souque, P., Bourgine, M., Romano, M., Charneau, P., and Majlessi, L. 2021a. Lentiviral vector induces high-quality memory T cells via dendritic cells transduction. Commun. Biol. 4, 713.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ku, M.W., Bourgine, M., Authié, P., Lopez, J., Nemirov, K., Moncoq, F., Noirat, A., Vesin, B., Nevo, F., Blanc, C., et al. 2021b. Intranasal vaccination with a lentiviral vector protects against SARS-CoV-2 in preclinical animal models. Cell Host Microbe 29, 236–249.

    CAS  PubMed  Google Scholar 

  • Kumar, A., Misra, S., Verma, V., Vishwakarma, R.K., Kamal, V.K., Nath, M., Prakash, K., Upadhyay, A.D., and Sahu, J.K. 2020. Global impact of environmental temperature and BCG vaccination coverage on the transmissibility and fatality rate of COVID-19. PLoS ONE 15, e0240710.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li, M., Guo, J., Lu, S., Zhou, R., Shi, H., Shi, X., Cheng, L., Liang, Q., Liu, H., Wang, P., et al. 2021a. Single-dose immunization with a chimpanzee adenovirus-based vaccine induces sustained and protective immunity against SARS-CoV-2 infection. Front. Immunol. 12, 697074.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li, Y., Tenchov, R., Smoot, J., Liu, C., Watkins, S., and Zhou, Q. 2021b. A comprehensive review of the global efforts on COVID-19 vaccine development. ACS Cent. Sci. 7, 512–533.

    PubMed  PubMed Central  Google Scholar 

  • Lin, I.Y., Van, T.T.H., and Smooker, P.M. 2015. Live-attenuated bacterial vectors: tools for vaccine and therapeutic agent delivery. Vaccines 3, 940–972.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu, R., Americo, J.L., Cotter, C.A., Earl, P.L., Erez, N., Peng, C., and Moss, B. 2021. One or two injections of MVA-vectored vaccine shields hACE2 transgenic mice from SARS-CoV-2 upper and lower respiratory tract infection. Proc. Natl. Acad. Sci. USA 118, e2026785118.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Loes, A.N., Gentles, L.E., Greaney, A.J., Crawford, K.H.D., and Bloom, J.D. 2020. Attenuated influenza virions expressing the SARS-CoV-2 receptor-binding domain induce neutralizing antibodies in mice. Viruses 12, 987.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Logunov, D.Y., Dolzhikova, I.V., Shcheblyakov, D.V., Tukhvatulin, A.I., Zubkova, O.V., Dzharullaeva, A.S., Kovyrshina, A.V., Lubenets, N.L., Grousova, D.M., Erokhova, A.S., et al. 2021. Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. Lancet 397, 671–681.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lu, M., Dravid, P., Zhang, Y., Trivedi, S., Li, A., Harder, O., Mahesh, K., Chaiwatpongsakorn, S., Zani, A., Kenney, A., et al. 2021. A safe and highly efficacious measles virus-based vaccine expressing SARS-CoV-2 stabilized prefusion spike. Proc. Natl. Acad. Sci. USA 118, e2026153118.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lundberg, L., Bygdell, M., von Feilitzen, G.S., Woxenius, S., Ohlsson, C., Kindblom, J.M., and Leach, S. 2021. Recent MMR vaccination in health care workers and Covid-19: a test negative case-control study. Vaccine 39, 4414–4418.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marín-Hernández, D., Nixon, D.F., and Hupert, N. 2021. Heterologous vaccine interventions: boosting immunity against future pandemics. Mol. Med. 27, 54.

    PubMed  PubMed Central  Google Scholar 

  • Mascellino, M.T., Di Timoteo, F., De Angelis, M., and Oliva, A. 2021. Overview of the main anti-SARS-CoV-2 vaccines: mechanism of action, efficacy and safety. Infect. Drug Resist. 14, 3459–3476.

    PubMed  PubMed Central  Google Scholar 

  • Mendonça, S.A., Lorincz, R., Boucher, P., and Curiel, D.T. 2021. Adenoviral vector vaccine platforms in the SARS-CoV-2 pandemic. npj Vaccines 6, 97.

    PubMed  PubMed Central  Google Scholar 

  • Methner, U., Barrow, P.A., Gregorova, D., and Rychlik, I. 2004. Intestinal colonisation-inhibition and virulence of Salmonella phoP, rpoS and ompC deletion mutants in chickens. Vet. Microbiol. 98, 37–43.

    CAS  PubMed  Google Scholar 

  • Moradi-Kalbolandi, S., Majidzadeh-A, K., Abdolvahab, M.H., Jalili, N., and Farahmand, L. 2021. The role of mucosal immunity and recombinant probiotics in SARS-CoV2 vaccine development. Probiotics Antimicrob. Proteins 13, 1239–1253.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Motin, V.L. and Torres, A.G. 2009. Molecular approaches to bacterial vaccines. In Barrett, A.D.T. and Stanberry, L.R. (eds.), Vaccines for biodefense and emerging and neglected diseases, 1st edn., pp. 63–76. Academic Press, Amsterdam, The Netherland.

    Google Scholar 

  • Nagy, A. and Alhatlani, B. 2021. An overview of current COVID-19 vaccine platforms. Comput. Struct. Biotechnol. J. 19, 2508–2517.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nascimento, L.V., Santos, C.C., Leite, L.C., and Nascimento, I.P. 2020. Characterisation of alternative expression vectors for recombinant Bacillus Calmette-Guérin as live bacterial delivery systems. Mem. Inst. Oswaldo Cruz 115, e190347.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Netea, M.G., Domínguez-Andrés, J., Barreiro, L.B., Chavakis, T., Divangahi, M., Fuchs, E., Joosten, L.A., van der Meer, J.W., Mhlanga, M.M., Mulder, W.J., et al. 2020a. Defining trained immunity and its role in health and disease. Nat. Rev. Immunol. 20, 375–388.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Netea, M.G., Giamarellos-Bourboulis, E.J., Domínguez-Andrés, J., Curtis, N., van Crevel, R., van de Veerdonk, F.L., and Bonten, M. 2020b. Trained immunity: a tool for reducing susceptibility to and the severity of SARS-CoV-2 infection. Cell 181, 969–977.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Netea, M.G., Joosten, L.A., Latz, E., Mills, K.H., Natoli, G., Stunnenberg, H.G., O’Neill, L.A., and Xavier, R.J. 2016. Trained immunity: a program of innate immune memory in health and disease. Science 352, aaf1098.

    PubMed  PubMed Central  Google Scholar 

  • Nielsen, S., Khalek, M.A., Benn, C.S., Aaby, P., and Hanifi, S.M.A. 2021a. National immunisation campaigns with oral polio vaccine may reduce all-cause mortality: analysis of 2004–2019 demographic surveillance data in rural Bangladesh. EClinicalMedicine 36, 100886.

    PubMed  PubMed Central  Google Scholar 

  • Nielsen, S., Sujan, H.M., Benn, C.S., Aaby, P., and Hanifi, S.M.A. 2021b. Oral Polio vaccine campaigns may reduce the risk of death from respiratory infections. Vaccines 9, 1133.

    PubMed  PubMed Central  Google Scholar 

  • Nieuwenhuizen, N.E., Kulkarni, P.S., Shaligram, U., Cotton, M.F., Rentsch, C.A., Eisele, B., Grode, L., and Kaufmann, S.H. 2017. The recombinant Bacille Calmette-Guérin vaccine VPM1002: ready for clinical efficacy testing. Front. Immunol. 8, 1147.

    PubMed  PubMed Central  Google Scholar 

  • Nuwarda, R.F., Alharbi, A.A., and Kayser, V. 2021. An overview of influenza viruses and vaccines. Vaccines 9, 1032.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pasco, S.T. and Anguita, J. 2020. Lessons from Bacillus Calmette-Guérin: harnessing trained immunity for vaccine development. Cells 9, 2109.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pereira, A.C., Ramos, B., Reis, A.C., and Cunha, M.V. 2020. Non-tuberculous mycobacteria: Molecular and physiological bases of virulence and adaptation to ecological niches. Microorganisms 8, 1380.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pérez-Girón, J.V., Belicha-Villanueva, A., Hassan, E., Gómez-Medina, S., Cruz, J.L., Lüdtke, A., Ruibal, P., Albrecht, R.A., García-Sastre, A., and Muñoz-Fontela, C. 2014. Mucosal polyinosinic-polycy-tidylic acid improves protection elicited by replicating influenza vaccines via enhanced dendritic cell function and T cell immunity. J. Immunol. 193, 1324–1332.

    PubMed  Google Scholar 

  • Rambaut, A., Loman, N., Pybus, O., Barclay, W., Barrett, J., Carabelli, A., Connor, T., Peacock, T., Robertson, D.L., and Volz, E. 2020. Preliminary genomic characterisation of an emergent SARS-CoV-2 lineage in the UK defined by a novel set of spike mutations. Genom. Epidemiol.https://virological.org/t/preliminary-genomic-characterisation-of-an-emergent-sars-cov-2-lineage-in-the-uk-defined-by-a-novel-set-of-spike-mutations/563/5.

  • Robert-Guroff, M. 2007. Replicating and non-replicating viral vectors for vaccine development. Curr. Opin. Biotechnol. 18, 546–556.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roland, K.L. and Brenneman, K.E. 2013. Salmonella as a vaccine delivery vehicle. Expert Rev. Vaccines 12, 1033–1045.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sánchez-Ramón, S., Conejero, L., Netea, M.G., Sancho, D., Palomares, Ó., and Subiza, J.L. 2018. Trained immunity-based vaccines: a new paradigm for the development of broad-spectrum anti-infectious formulations. Front. Immunol. 9, 2936.

    PubMed  PubMed Central  Google Scholar 

  • Sauer, K. and Harris, T. 2020. An effective COVID-19 vaccine needs to engage T cells. Front. Immunol. 11, 581807.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shirley, J.L., de Jong, Y.P., Terhorst, C., and Herzog, R.W. 2020. Immune responses to viral gene therapy vectors. Mol. Ther. 28, 709–722.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silva, A.J., Zangirolami, T.C., Novo-Mansur, M.T.M., Giordano, R.C., and Martins, E.A.L. 2014. Live bacterial vaccine vectors: an overview. Braz. J. Microbiol. 45, 1117–1129.

    PubMed  Google Scholar 

  • Steiner, D.J., Furuya, Y., and Metzger, D.W. 2014. Host-pathogen interactions and immune evasion strategies in Francisella tularensis pathogenicity. Infect. Drug Resist. 7, 239–251.

    PubMed  PubMed Central  Google Scholar 

  • Su, W.J., Chang, C.H., Wang, J.L., Chen, S.F., and Yang, C.H. 2021. Covid-19 severity and neonatal BCG vaccination among young population in Taiwan. Int. J. Environ. Res. Public Health 18, 4303.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, W., Leist, S.R., McCroskery, S., Liu, Y., Slamanig, S., Oliva, J., Amanat, F., Schäfer, A., Dinnon, K.H.3rd, García-Sastre, A., et al. 2020a. Newcastle disease virus (NDV) expressing the spike protein of SARS-CoV-2 as a live virus vaccine candidate. EBio-Medicine 62, 103132.

    CAS  Google Scholar 

  • Sun, W., McCroskery, S., Liu, W.C., Leist, S.R., Liu, Y., Albrecht, R.A., Slamanig, S., Oliva, J., Amanat, F., Schäfer, A., et al. 2020b. A Newcastle disease virus (NDV) expressing a membrane-anchored spike as a cost-effective inactivated SARS-CoV-2 vaccine. Vaccines 8, 771.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Thysen, S.M., Benn, C.S., Gomes, V.F., Rudolf, F., Wejse, C., Roth, A., Kallestrup, P., Aaby, P., and Fisker, A. 2020. Neonatal BCG vaccination and child survival in TB-exposed and TB-unexposed children: a prospective cohort study. BMJ Open 10, e035595.

    PubMed  PubMed Central  Google Scholar 

  • Tober, R., Banki, Z., Egerer, L., Muik, A., Behmüller, S., Kreppel, F., Greczmiel, U., Oxenius, A., von Laer, D., and Kimpel, J. 2014. VSV-GP: a potent viral vaccine vector that boosts the immune response upon repeated applications. J. Virol. 88, 4897–4907.

    PubMed  PubMed Central  Google Scholar 

  • Tracker, C.V. 2021. COVID19 vaccine traker. https://covid19.track-vaccines.org/vaccines/. Accessed Oct 2021.

  • Tscherne, A., Schwarz, J.H., Rohde, C., Kupke, A., Kalodimou, G., Limpinsel, L., Okba, N.M.A., Bošnjak, B., Sandrock, I., Halwe, S., et al. 2021. Immunogenicity and efficacy of the COVID-19 candidate vector vaccine MVA SARS 2 S in preclinical vaccination. Proc. Natl. Acad. Sci. USA 118, e2026207118.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ura, T., Okuda, K., and Shimada, M. 2014. Developments in viral vector-based vaccines. Vaccines 2, 624–641.

    PubMed  PubMed Central  Google Scholar 

  • Verheust, C., Goossens, M., Pauwels, K., and Breyer, D. 2012. Biosafety aspects of modified vaccinia virus Ankara (MVA)-based vectors used for gene therapy or vaccination. Vaccine 30, 2623–2632.

    CAS  PubMed  Google Scholar 

  • Vrba, S.M., Kirk, N.M., Brisse, M.E., Liang, Y., and Ly, H. 2020. Development and applications of viral vectored vaccines to combat zoonotic and emerging public health threats. Vaccines 8, 680.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, M., Fu, T., Hao, J., Li, L., Tian, M., Jin, N., Ren, L., and Li, C. 2020. A recombinant Lactobacillus plantarum strain expressing the spike protein of SARS-CoV-2. Int. J. Biol. Macromol. 160, 736–740.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, D., Phan, S., DiStefano, D.J., Citron, M.P., Callahan, C.L., Indrawati, L., Dubey, S.A., Heidecker, G.J., Govindarajan, D., Liang, X., et al. 2017. A single-dose recombinant parainfluenza virus 5-vectored vaccine expressing respiratory syncytial virus (RSV) F or G protein protected cotton rats and African green monkeys from RSV challenge. J. Virol. 91, e00066–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  • WHO, World Health Organizaion. 2021a. The Janssen Ad26.COV2.S COVID-19 vaccine: What you need to know. https://www.who.int/news-room/feature-stories/detail/the-j-j-covid-19-vaccine-what-you-need-to-know.

  • WHO, World Health Organizaion. 2021b. Live Attenuated Vaccines (LAV). https://vaccine-safety-training.org/live-attenuated-vaccines.html. Accessed Oct 2021.

  • Wibmer, C.K., Ayres, F., Hermanus, T., Madzivhandila, M., Kgagudi, P., Oosthuysen, B., Lambson, B.E., De Oliveira, T., Vermeulen, M., Van der Berg, K., et al. 2021. SARS-CoV-2 501Y. V2 escapes neutralization by South African COVID-19 donor plasma. Nat. Med. 27, 622–625.

    CAS  PubMed  Google Scholar 

  • Worldometer. 2021. COVID-19 Coronavirus Pandemic. https://www.worldometers.info/coronavirus/.

  • Xiao, P., Dienger-Stambaugh, K., Chen, X., Wei, H., Phan, S., Beavis, A.C., Singh, K., Deb Adhikary, N.R., Tiwari, P.M., He, B., et al. 2021. Parainfluenza Virus 5 (PIV5) priming followed by SIV/HIV viruslike-particle boosting induces potent and durable immune responses in nonhuman primates. Front. Immunol. 12, 623996.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yahalom-Ronen, Y., Tamir, H., Melamed, S., Politi, B., Shifman, O., Achdout, H., Vitner, E.B., Israeli, O., Milrot, E., Stein, D., et al. 2020. A single dose of recombinant VSV-ΔG-spike vaccine provides protection against SARS-CoV-2 challenge. Nat. Commun. 11, 6402.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang, Y. and Du, L. 2021. SARS-CoV-2 spike protein: a key target for eliciting persistent neutralizing antibodies. Sig. Transduct. Target. Ther. 6, 95.

    CAS  Google Scholar 

  • Yang, W.T., Yang, G.L., Yang, X., Shonyela, S.M., Zhao, L., Jiang, Y.L., Huang, H.B., Shi, C.W., Wang, J.Z., Wang, G., et al. 2017. Recombinant Lactobacillus plantarum expressing HA2 antigen elicits protective immunity against H9N2 avian influenza virus in chickens. Appl. Microbiol. Biotechnol. 101, 8475–8484.

    CAS  PubMed  Google Scholar 

  • Yao, Y., Jeyanathan, M., Haddadi, S., Barra, N.G., Vaseghi-Shanjani, M., Damjanovic, D., Lai, R., Afkhami, S., Chen, Y., Dvorkin-Gheva, A., et al. 2018. Induction of autonomous memory alveolar macrophages requires T cell help and is critical to trained immunity. Cell 175, 1634–1650.

    CAS  PubMed  Google Scholar 

  • Yengil, E., Onlen, Y., Ozer, C., Hambolat, M., and Ozdogan, M. 2021. Effectiveness of booster measles-mumps-rubella vaccination in lower COVID-19 infection rates: a retrospective cohort study in Turkish adults. Int. J. Gen. Med. 14, 1757–1762.

    PubMed  PubMed Central  Google Scholar 

  • Zhou, D., Dejnirattisai, W., Supasa, P., Liu, C., Mentzer, A.J., Ginn, H.M., Zhao, Y., Duyvesteyn, H.M., Tuekprakhon, A., Nutalai, R., et al. 2021. Evidence of escape of SARS-CoV-2 variant B. 1.351 from natural and vaccine-induced sera. Cell 184, 2348–2361.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, Y., Geng, S., Li, Q., and Jiang, H. 2020a. Transplantation of mesenchymal stem cells: a potential adjuvant therapy for COVID-19. Front. Bioeng. Biotechnol. 8, 557652.

    PubMed  PubMed Central  Google Scholar 

  • Zhu, D., Meng, Y., Qimuge, A., Bilige, B., Baiyin, T., Temuqile, T., Chen, S., Bao, S., Borjigen, S., Baigude, H., et al. 2020b. Oral delivery of SARS-CoV-2 DNA vaccines using attenuated Salmonella typhimurium} as a carrier in rat. bioRxiv}. doi: https://doi.org/10.1101/2020.07.23.217174.

  • Zuniga, A., Wang, Z., Liniger, M., Hangartner, L., Caballero, M., Pavlovic, J., Wild, P., Viret, J.F., Glueck, R., Billeter, M.A., et al. 2007. Attenuated measles virus as a vaccine vector. Vaccine 25, 2974–2983.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant of the Korea Health Technology R&D Project through the Korea Health Industry Development Institute (KHIDI), funded by the Ministry of Health & Welfare, Republic of Korea (Grant No. HV20C0147). The funder was not involved in the analysis, interpretation of data, the writing of this article or the decision for publication.

Author information

Authors and Affiliations

  1. Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea

    Mi-Hyun Lee & Bum-Joon Kim

  2. Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea

    Mi-Hyun Lee & Bum-Joon Kim

  3. Liver Research Institute, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea

    Bum-Joon Kim

  4. Cancer Research Institute, College of Medicine, Seoul National University, Seoul, 03080, Republic of Korea

    Bum-Joon Kim

  5. Seoul National University Medical Research Center (SNUMRC), Seoul, 03080, Republic of Korea

    Bum-Joon Kim

  6. BK21 FOUR Biomedical Science Project, Seoul National University College of Medicine, Seoul, 03080, Republic of Korea

    Mi-Hyun Lee & Bum-Joon Kim

Authors
  1. Mi-Hyun Lee
    View author publications

    Search author on:PubMed Google Scholar

  2. Bum-Joon Kim
    View author publications

    Search author on:PubMed Google Scholar

Corresponding author

Correspondence to Bum-Joon Kim.

Additional information

Conflicts of Interest

The authors declare that the article have no potential conflicts of interest to disclose.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, MH., Kim, BJ. COVID-19 vaccine development based on recombinant viral and bacterial vector systems: combinatorial effect of adaptive and trained immunity. J Microbiol. 60, 321–334 (2022). https://doi.org/10.1007/s12275-022-1621-2

Download citation

  • Received: 30 November 2021

  • Revised: 30 December 2021

  • Accepted: 31 December 2021

  • Published: 14 February 2022

  • Issue Date: March 2022

  • DOI: https://doi.org/10.1007/s12275-022-1621-2

Share this article

Anyone you share the following link with will be able to read this content:

Sorry, a shareable link is not currently available for this article.

Provided by the Springer Nature SharedIt content-sharing initiative

Keywords

  • heterologous vaccine
  • trained immunity
  • bacterial vector vaccine
  • viral vector vaccine
  • COVID-19
Use our pre-submission checklist

Avoid common mistakes on your manuscript.

Advertisement

Search

Navigation

  • Find a journal
  • Publish with us
  • Track your research

Discover content

  • Journals A-Z
  • Books A-Z

Publish with us

  • Journal finder
  • Publish your research
  • Language editing
  • Open access publishing

Products and services

  • Our products
  • Librarians
  • Societies
  • Partners and advertisers

Our brands

  • Springer
  • Nature Portfolio
  • BMC
  • Palgrave Macmillan
  • Apress
  • Discover
  • Your US state privacy rights
  • Accessibility statement
  • Terms and conditions
  • Privacy policy
  • Help and support
  • Legal notice
  • Cancel contracts here

152.53.39.118

Not affiliated

Springer Nature

© 2025 Springer Nature