Skip to main content

Chryseobacterium paludis sp. nov. and Chryseobacterium foetidum sp. nov. Isolated from the Aquatic Environment, South Korea

Abstract

Two novel bacterial species CJ51T and CJ63T belonging to the genus Chryseobacterium were isolated from the Upo wetland and the Han River, South Korea, respectively. Cells of these strains were Gram-stain-negative, aerobic, non-motile, rod-shaped, and catalase- and oxidase-positive. Both strains were shown to grow optimally at 30 °C and pH 7 in the absence of NaCl on tryptic soy agar. Phylogenetic analysis based on 16S rRNA gene sequences showed that strains CJ51T and CJ63T belonged to the genus Chryseobacterium and were most closely related to Chryseobacterium piperi CTMT and Chryseobacterium piscicola VQ-6316sT with 98.47% and 98.46% 16S rRNA sequence similarities, respectively. The average nucleotide identity values of strains CJ51T and CJ63T with its closely related type strains Chryseobacterium piperi CTMT and Chryseobacterium piscicola VQ-6316sT were 81.9% and 82.1%, respectively. The major fatty acids of strains CJ51T and CJ63T were iso-C15:0, iso-C17:0 3-OH and summed feature 9 (C16:0 10-methyl and/or iso-C17:1ω9c). Menaquinone 6 (MK-6) was identified as the primary respiratory quinone in both strains. The major polar lipids of strains CJ51T and CJ63T were phosphatidylethanolamine and several unidentified amino lipids and lipids. Based on polyphasic taxonomy data, strains CJ51T and CJ63T represent novel species of the genus Chryseobacterium, for which names Chryseobacterium paludis sp. nov. and Chryseobacterium foetidum sp. nov. are proposed respectively. The type strains are CJ51T (= KACC 22749T = JCM 35632T) and CJ63T (= KACC 22750T = JCM 35633T).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

Data availability

The GenBank data were already described in the Materials and Methods and is not necessarily to be mentioned in description.

References

  • Alcock, B. P., Raphenya, A. R., Lau, T. T. Y., Tsang, K. K., Bouchard, M., Edalatmand, A., Huynh, W., Nguyen, A. V., Cheng, A. A., Liu, S., et al. (2020). CARD 2020: Antibiotic resistome surveillance with the comprehensive antibiotic resistance database. Nucleic Acids Research, 48, 517–525.

    Google Scholar 

  • Baker, G. C., Smith, J. J., & Cowan, D. A. (2003). Review and re-analysis of domain-specific 16S primers. Journal of Microbiological Methods, 55, 541–555.

    Article  CAS  PubMed  Google Scholar 

  • Bayliss, S. C., Thorpe, H. A., Coyle, N. M., Sheppard, S. K., & Feil, E. J. (2019). PIRATE: A fast and scalable pangenomics toolbox for clustering diverged orthologues in bacteria. GigaScience, 8, giz119.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, X. Y., Zhao, R., Chen, Z. L., Liu, L., Li, X. D., & Li, Y. H. (2015). Chryseobacterium polytrichastri sp. nov. isolated from a moss (Polytrichastrum formosum) and emended description of the genus Chryseobacterium. Antonie van Leeuwenhoek, 107(2), 403–410.

    Article  CAS  PubMed  Google Scholar 

  • Chin, C.-S., Alexander, D. H., Marks, P., Klammer, A. A., Drake, J., Heiner, C., Clum, A., Copeland, A., Huddleston, J., Eichler, E. E., et al. (2013). Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nature Methods, 10, 563–569.

    Article  CAS  PubMed  Google Scholar 

  • Chun, J., Oren, A., Ventosa, A., Christensen, H., Arahal, D. R., da Costa, M. S., Rooney, A. P., Yi, H., Xu, X.-W., De Meyer, S., et al. (2018). Proposed minimal standards for the use of genome data for the taxonomy of prokaryotes. International Journal of Systematic and Evolutionary Microbiology, 68, 461–466.

    Article  CAS  PubMed  Google Scholar 

  • Collins, M. D. (1985). 11 Analysis of isoprenoid quinones. Methods in Microbiology, 18, 329–366.

    Article  CAS  Google Scholar 

  • Dusa, A. (2021) venn: Draw venn diagrams

  • Edgar, R. C. (2004). MUSCLE: Multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32, 1792–1797.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felsenstein, J. (1985). Confidence limits on phylogenies: An approach using the bootstrap. Evolution, 39, 783–791.

    Article  PubMed  Google Scholar 

  • Hahnke, R. L., Meier-Kolthoff, J. P., Garcia-Lopez, M., Mukherjee, S., Huntemann, M., Ivanova, N. N., et al. (2016). Genome-Based Taxonomic Classification of Bacteroidetes. Frontiers in Microbiology, 7, 2003.

    Article  PubMed  PubMed Central  Google Scholar 

  • Holmes, B., Owen, R. J., Steigerwalt, A. G., & Brenner, D. J. (1984). Flavobacterium gleum, a new species found in human clinical specimens. International Journal of Systematic Bacteriology, 34, 21–25.

    Article  Google Scholar 

  • Hyatt, D., Chen, G. L., Locascio, P. F., Land, M. L., Larimer, F. W., & Hauser, L. J. (2010). Prodigal: Prokaryotic gene recognition and translation initiation site identification. BMC Bioinformatics, 11, 119.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ilardi, P., Fernandez, J., & Avendano-Herrera, R. (2009). Chryseobacterium piscicola sp. nov., isolated from diseased salmonid fish. International Journal of Systematic and Evolutionary Microbiology, 59, 3001–3005.

    Article  CAS  PubMed  Google Scholar 

  • Im, W. T., Yang, J. E., Kim, S. Y., & Yi, T. H. (2011). Chryseobacterium ginsenosidimutans sp. nov., a bacterium with ginsenoside-converting activity isolated from soil of a Rhus vernicifera-cultivated field. International Journal of Systematic and Evolutionary Microbiology, 61, 1430–1435.

    Article  CAS  PubMed  Google Scholar 

  • Jukes, T., & Cantor, C. (1969). Evolution of protein molecules. Mammalian Protein Metabolism, 3, 21–132.

    Article  CAS  Google Scholar 

  • Kämpfer, P., Vaneechoutte, M., Lodders, N., De Baere, T., Avesani, V., Janssens, M., Busse, H. J., & Wauters, G. (2009). Description of Chryseobacterium anthropi sp. nov. to accommodate clinical isolates biochemically similar to Kaistella koreensis and Chryseobacterium haifense proposal to reclassify Kaistella koreensis as Chryseobacterium koreense comb. nov. and emended description of the genus Chryseobacterium. International Journal of Systematic and Evolutionary Microbiology, 59, 2421–2428.

    Article  PubMed  Google Scholar 

  • Kangale, L. J., Raoult, D., Ghigo, E., & Fournier, P.-E. (2021). Chryseobacterium schmidteae sp. nov. a novel bacterial species isolated from planarian Schmidtea mediterranea. Scientific Reports, 11, 11002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, K. K., Lee, K. C., Oh, H. M., & Lee, J. S. (2008). Chryseobacterium aquaticum sp. nov., isolated from a water reservoir. International Journal of Systematic and Evolutionary Microbiology, 58, 533–537.

    Article  CAS  PubMed  Google Scholar 

  • Kim, J., Na, S.-I., Kim, D., & Chun, J. (2021). UBCG2: Up-to-date bacterial core genes and pipeline for phylogenomic analysis. Journal of Microbiology, 59, 609–615.

    Article  CAS  PubMed  Google Scholar 

  • Kim, M., Oh, H.-S., Park, S.-C., & Chun, J. (2014). Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. International Journal of Systematic and Evolutionary Microbiology, 64, 346–351.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, S., Stecher, G., Li, M., Knyaz, C., & Tamura, K. (2018). MEGA X: Molecular evolutionary genetics analysis across computing platforms. Molecular Biology and Evolution, 35, 1547–1549.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee, I., Ouk Kim, Y., Park, S. C., & Chun, J. (2016). OrthoANI: An improved algorithm and software for calculating average nucleotide identity. International Journal of Systematic and Evolutionary Microbiology, 66, 1100–1103.

    Article  CAS  PubMed  Google Scholar 

  • Lucena, T., Ruvira, M. A., Macián, M. C., Arahal, D. R., Aznar, R., & Pujalte, M. J. (2021). Chryseobacterium potabilaquae sp. nov., Chryseobacterium aquaeductus sp. nov. and Chryseobacterium fistulae sp. nov., from drinking water systems. International Journal of Systematic and Evolutionary Microbiology, 71, 005020.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Manni, M., Berkeley, M. R., Seppey, M., & Zdobnov, E. M. (2021). BUSCO: Assessing genomic data quality and beyond. Current Protocols, 1, e323.

    Article  PubMed  Google Scholar 

  • Meier-Kolthoff, J. P., Carbasse, J. S., Peinado-Olarte, R. L., & Göker, M. (2022). TYGS and LPSN: A database tandem for fast and reliable genome-based classification and nomenclature of prokaryotes. Nucleic Acids Research, 50, 801–807.

    Article  Google Scholar 

  • Minnikin, D. E., O’Donnell, A. G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A., & Parlett, J. H. (1984). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. Journal of Microbiological Methods, 2, 233–241.

    Article  CAS  Google Scholar 

  • Montero-Calasanz, M. C., Goker, M., Rohde, M., Sproer, C., Schumann, P., Busse, H. J., Schmid, M., Klenk, H. P., Tindall, B. J., & Camacho, M. (2014). Chryseobacterium oleae sp. nov. an efficient plant growth promoting bacterium in the rooting induction of olive tree (Olea europaea L.) cuttings and emended descriptions of the genus Chryseobacterium, C. daecheongense, C. gambrini, C. gleum, C. joostei, C. jejuense, C. luteum, C. shigense, C. taiwanense, C. ureilyticum, and, C. vrystaatense. Systematic and Applied Microbiology, 37(5), 342–350.

  • Nei, M., & Kumar, S. (2000). Molecular evolution and phylogenetics. Oxford University Press.

    Google Scholar 

  • Nicholson, A. C., Gulvik, C. A., Whitney, A. M., Humrighouse, B. W., Bell, M. E., Holmes, B., Steigerwalt, A. G., Villarma, A., Sheth, M., Batra, D., et al. (2020). Division of the genus Chryseobacterium: Observation of discontinuities in amino acid identity values, a possible consequence of major extinction events, guides transfer of nine species to the genus Epilithonimonas, eleven species to the genus Kaistella, and three species to the genus Halpernia gen. nov., with description of Kaistella daneshvariae sp. nov. and Epilithonimonas vandammei sp. nov. derived from clinical specimens. International Journal of Systematic and Evolutionary Microbiology, 70, 4432–4450.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Park, M. S., Jung, S. R., Lee, K. H., Lee, M. S., Do, J. O., Kim, S. B., & Bae, K. S. (2006). Chryseobacterium soldanellicola sp. nov. and Chryseobacterium taeanense sp. nov., isolated from roots of sand-dune plants. International Journal of Systematic and Evolutionary Microbiology, 56, 433–438.

    Article  CAS  PubMed  Google Scholar 

  • Parte, A. C., SardàCarbasse, J., Meier-Kolthoff, J. P., Reimer, L. C., & Göker, M. (2020). List of prokaryotic names with standing in nomenclature (LPSN) moves to the DSMZ. International Journal of Systematic and Evolutionary Microbiology, 70, 5607–5612.

    Article  PubMed  PubMed Central  Google Scholar 

  • Rhoads, A., & Au, K. F. (2015). PacBio sequencing and its applications. Genomics, Proteomics and Bioinformatics, 13, 278–289.

    Article  PubMed  PubMed Central  Google Scholar 

  • Richter, M., & Rosselló-Móra, R. (2009). Shifting the genomic gold standard for the prokaryotic species definition. Proceedings of the National Academy of Sciences, 106, 19126–19131.

    Article  CAS  Google Scholar 

  • Rosselló-Móra, R., & Amann, R. (2015). Past and future species definitions for Bacteria and Archaea. Systematic and Applied Microbiology, 38, 209–216.

    Article  PubMed  Google Scholar 

  • Sasser, M. (1990). Identification of bacteria by gas chromatography of cellular fatty acids. USFCC Newsletter, 20, 1–6.

    Google Scholar 

  • Seemann, T. (2014). Prokka: Rapid prokaryotic genome annotation. Bioinformatics, 30, 2068–2069.

    Article  CAS  PubMed  Google Scholar 

  • Strahan, B. L., Failor, K. C., Batties, A. M., Hayes, P. S., Cicconi, K. M., Mason, C. T., & Newman, J. D. (2011). Chryseobacterium piperi sp. nov., isolated from a freshwater creek. International Journal of Systematic and Evolutionary Microbiology, 61, 2162–2166.

    Article  CAS  PubMed  Google Scholar 

  • Vandamme, P., Bernardet, J.-F., Segers, P., Kersters, K., & Holmes, B. (1994). NOTES: New perspectives in the classification of the Flavobacteria: Description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev. International Journal of Systematic and Evolutionary Microbiology, 44, 827–831.

    Google Scholar 

  • Wick, R. R., Judd, L. M., Gorrie, C. L., & Holt, K. E. (2017a). Completing bacterial genome assemblies with multiplex MinION sequencing. Microb. Genom., 3, e000132.

    PubMed  PubMed Central  Google Scholar 

  • Wick, R. R., Judd, L. M., Gorrie, C. L., & Holt, K. E. (2017b). Unicycler: Resolving bacterial genome assemblies from short and long sequencing reads. PLoS Computational Biology, 13, e1005595.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wu, Y. F., Wu, Q. L., & Liu, S. J. (2013). Chryseobacterium taihuense sp. nov., isolated from a eutrophic lake, and emended descriptions of the genus Chryseobacterium, Chryseobacterium taiwanense, Chryseobacterium jejuense and Chryseobacterium indoltheticum. International Journal of Systematic and Evolutionary Microbiology, 63, 913–919.

    Article  CAS  PubMed  Google Scholar 

  • Yoon, S. H., Ha, S. M., Kwon, S., Lim, J., Kim, Y., Seo, H., & Chun, J. (2017). Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. International Journal of Systematic and Evolutionary Microbiology, 67, 1613–1617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Institute of Biological Resources funded by the Ministry of Environment (No. NIBR202203205) and by the Korea Ministry of Environment (MOE) as ‘the Environmental Health Action Program (2016001350004)’. This research was supported by the Chung-Ang University Graduate Research Scholarship in 2022. We thank Professor Aharon Oren for his assistance with nomenclature. We thank J. Kim for technical help at the BT research center, Chung-Ang University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang-Jun Cha.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1732 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Kim, YS. & Cha, CJ. Chryseobacterium paludis sp. nov. and Chryseobacterium foetidum sp. nov. Isolated from the Aquatic Environment, South Korea. J Microbiol. 61, 37–47 (2023). https://doi.org/10.1007/s12275-022-00008-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-022-00008-2

Keywords