Skip to main content
Log in

Discovery of novel glycoside hydrolases from C-glycoside-degrading bacteria using sequence similarity network analysis

  • Microbial Genetics, Genomics and Molecular Biology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

ab]Abstract

C-Glycosides are an important type of natural product with significant bioactivities, and the C-glycosidic bonds of C-glycosides can be cleaved by several intestinal bacteria, as exemplified by the human faeces-derived puerarin-degrading bacterium Dorea strain PUE. However, glycoside hydrolases in these bacteria, which may be involved in the C-glycosidic bond cleavage of C-glycosides, remain largely unknown. In this study, the genomes of the closest phylogenetic neighbours of five puerarin-degrading intestinal bacteria (including Dorea strain PUE) were retrieved, and the protein-coding genes in the genomes were subjected to sequence similarity network (SSN) analysis. Only four clusters of genes were annotated as glycoside hydrolases and observed in the genome of D. longicatena DSM 13814T (the closest phylogenetic neighbour of Dorea strain PUE); therefore, genes from D. longicatena DSM 13814T belonging to these clusters were selected to overexpress recombinant proteins (CG1, CG2, CG3, and CG4) in Escherichia coli BL21(DE3). In vitro assays indicated that CG4 efficiently cleaved the O-glycosidic bond of daidzin and showed moderate β-D-glucosidase and β-D-xylosidase activity. CG2 showed weak activity in hydrolyzing daidzin and pNP-β-D-fucopyranoside, while CG3 was identified as a highly selective and efficient α-glycosidase. Interestingly, CG3 and CG4 could be selectively inhibited by daidzein, explaining their different performance in kinetic studies. Molecular docking studies predicted the molecular determinants of CG2, CG3, and CG4 in substrate selectivity and inhibition propensity. The present study identified three novel and distinctive glycoside hydrolases, highlighting the potential of SSN in the discovery of novel enzymes from genomic data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Atkinson, H.J., Morris, J.H., Ferrin, T.E., and Babbitt, P.C. 2009. Using sequence similarity networks for visualization of relationships across diverse protein superfamilies. PLoS ONE 4, e4345.

    Article  Google Scholar 

  • Bhandari, P., Tingley, J.P., Palmer, D.R., Abbott, D.W., and Hill, J.E. 2021. Characterization of an α-glucosidase enzyme conserved in Gardnerella spp. isolated from the human vaginal microbiome. J. Bacteriol. 203, e0021321.

    Article  Google Scholar 

  • Braune, A. and Blaut, M. 2011. Deglycosylation of puerarin and other aromatic C-glucosides by a newly isolated human intestinal bacterium. Environ. Microbiol. 13, 482–494.

    Article  CAS  Google Scholar 

  • Braune, A. and Blaut, M. 2012. Intestinal bacterium Eubacterium cellulosolvens deglycosylates flavonoid C- and O-glucosides. Appl. Environ. Microbiol. 78, 8151–8153.

    Article  CAS  Google Scholar 

  • Braune, A., Engst, W., and Blaut, M. 2016. Identification and functional expression of genes encoding flavonoid O- and C-glycosidases in intestinal bacteria. Environ. Microbiol. 18, 2117–2129.

    Article  CAS  Google Scholar 

  • Brown, S. and Babbitt, P. 2012. Inference of functional properties from large-scale analysis of enzyme superfamilies. J. Biol. Chem. 287, 35–42.

    Article  CAS  Google Scholar 

  • Chassard, C. and Lacroix, C. 2013. Carbohydrates and the human gut microbiota. Curr. Opin. Clin. Nutr. Metab. Care 16, 453–460.

    Article  CAS  Google Scholar 

  • Dong, J., Liang, Q., Niu, Y., Jiang, S., Zhou, L., Wang, J., Ma, C., and Kang, W. 2020. Effects of Nigella sativa seed polysaccharides on type 2 diabetic mice and gut microbiota. Int. J. Biol. Macromol. 159, 725–738.

    Article  CAS  Google Scholar 

  • Gerlt, J.A., Bouvier, J.T., Davidson, D.B., Imker, H.J., Sadkhin, B., Slater, D.R., and Whalen, K.L. 2015. Enzyme Function Initiative-Enzyme Similarity Tool (EFI-EST): a web tool for generating protein sequence similarity networks. Biochim. Biophys. Acta 1854, 1019–1037.

    Article  CAS  Google Scholar 

  • Hattori, M., Kanda, T., Shu, Y., Akao, T., Kobashi, K., and Namba, T. 1988a. Metabolism of barbaloin by intestinal bacteria. Chem. Pharm. Bull. 36, 4462–4466.

    Article  CAS  Google Scholar 

  • Hattori, M., Shu, Y.Z., el-Sedawy, A.I., Namba, T., Kobashi, K., and Tomimori, T. 1988b. Metabolism of homoorientin by human intestinal bacteria. J. Nat. Prod. 51, 874–878.

    Article  CAS  Google Scholar 

  • Hollman, P.C.H. 2001. Evidence for health benefits of plant phenols: local or systemic effects? J. Sci. Food Agric. 81, 842–852.

    Article  CAS  Google Scholar 

  • Huang, L., Zhang, H., Wu, P., Entwistle, S., Li, X., Yohe, T., Yi, H., Yang, Z., and Yin, Y. 2018. dbCAN-seq: a database of carbohydrate-active enzyme (CAZyme) sequence and annotation. Nucleic Acids Res. 46, D516–D521.

    Article  CAS  Google Scholar 

  • Ito, T., Fujimoto, S., Shimosaka, M., and Taguchi, G. 2014. Production of C-glucosides of flavonoids and related compounds by Escherichia coli expressing buckwheat C-glucosyltransferase. Plant Biotechnol. 31, 519–524.

    Article  CAS  Google Scholar 

  • Jin, J.S., Nishihata, T., Kakiuchi, N., and Hattori, M. 2008. Biotransformation of C-glucosylisoflavone puerarin to estrogenic (3S)-equol in co-culture of two human intestinal bacteria. Biol. Pharm. Bull. 31, 1621–1625.

    Article  CAS  Google Scholar 

  • Jyotshna, Khare, P., and Shanker, K. 2016. Mangiferin: a review of sources and interventions for biological activities. Biofactors 42, 504–514.

    Article  CAS  Google Scholar 

  • Kim, M., Lee, J., and Han, J. 2015. Deglycosylation of isoflavone C-glycosides by newly isolated human intestinal bacteria. J. Sci. Food Agric. 95, 1925–1931.

    Article  CAS  Google Scholar 

  • Kim, Y.S., Yeom, S.J., and Oh, D.K. 2011. Characterization of a GH3 family β-glucosidase from Dictyoglomus turgidum and its application to the hydrolysis of isoflavone glycosides in spent coffee grounds. J. Agric. Food Chem. 59, 11812–11818.

    Article  CAS  Google Scholar 

  • Levin, B.J., Huang, Y.Y., Peck, S.C., Wei, Y., Martínez-del Campo, A., Marks, J.A., Franzosa, E.A., Huttenhower, C., and Balskus, E.P. 2017. A prominent glycyl radical enzyme in human gut microbiomes metabolizes trans-4-hydroxy-L-proline. Science 355, eaai8386.

    Article  Google Scholar 

  • Ley, R.E., Turnbaugh, P.J., Klein, S., and Gordon, J.I. 2006. Human gut microbes associated with obesity. Nature 444, 1022–1023.

    Article  CAS  Google Scholar 

  • Li, X., Xia, W., Bai, Y., Ma, R., Yang, H., Luo, H., and Shi, P. 2018. A novel thermostable GH3 β-glucosidase from Talaromyce leycettanus with broad substrate specificity and significant soybean isoflavone glycosides-hydrolyzing capability. BioMed Res. Int. 2018, 4794690.

    PubMed  PubMed Central  Google Scholar 

  • Nakamura, K., Komatsu, K., Hattori, M., and Iwashima, M. 2013. Enzymatic cleavage of the C-glucosidic bond of puerarin by three proteins, Mn2+, and oxidized form of nicotinamide adenine dinucleotide. Biol. Pharm. Bull. 36, 635–640.

    Article  CAS  Google Scholar 

  • Nakamura, K., Nishihata, T., Jin, J.S., Ma, C.M., Komatsu, K., Iwashima, M., and Hattori, M. 2011. The C-glucosyl bond of puerarin was cleaved hydrolytically by a human intestinal bacterium strain PUE to yield its aglycone daidzein and an intact glucose. Chem. Pharm. Bull. 59, 23–27.

    Article  CAS  Google Scholar 

  • Nakamura, K., Zhu, S., Komatsu, K., Hattori, M., and Iwashima, M. 2019. Expression and characterization of the human intestinal bacterial enzyme which cleaves the C-glycosidic bond in 3″-oxopuerarin. Biol. Pharm. Bull. 42, 417–423.

    Article  CAS  Google Scholar 

  • Nakamura, K., Zhu, S., Komatsu, K., Hattori, M., and Iwashima, M. 2020. Deglycosylation of the isoflavone C-glucoside puerarin by a combination of two recombinant bacterial enzymes and 3-oxoglucose. Appl. Environ. Microbiol. 86, e00607–20.

    Article  CAS  Google Scholar 

  • Pei, X., Zhao, J., Cai, P., Sun, W., Ren, J., Wu, Q., Zhang, S., and Tian, C. 2016. Heterologous expression of a GH3 β-glucosidase from Neurospora crassa in Pichia pastoris with high purity and its application in the hydrolysis of soybean isoflavone glycosides. Protein Expr. Purif. 119, 75–84.

    Article  CAS  Google Scholar 

  • Qu, X., Ding, B., Li, J., Liang, M., Du, L., Wei, Y., Huang, R., and Pang, H. 2020. Characterization of a GH3 halophilic β-glucosidase from Pseudoalteromonas and its NaCl-induced activity toward isoflavones. Int. J. Biol. Macromol. 164, 1392–1398.

    Article  CAS  Google Scholar 

  • Seong, S.H., Roy, A., Jung, H.A., Jung, H.J., and Choi, J.S. 2016. Protein tyrosine phosphatase 1B and α-glucosidase inhibitory activities of Pueraria lobata root and its constituents. J. Ethnopharmacol. 194, 706–716.

    Article  CAS  Google Scholar 

  • Thursby, E. and Juge, N. 2017. Introduction to the human gut microbiota. Biochem. J. 474, 1823–1836.

    Article  CAS  Google Scholar 

  • Valles-Colomer, M., Falony, G., Darzi, Y., Tigchelaar, E., Wang, J., Tito, R.Y., Schiweck, C., Kurilshikov, A., Joossens, M., Wijmenga, C., et al. 2019. The neuroactive potential of the human gut microbiota in quality of life and depression. Nat. Microbiol. 4, 623–632.

    Article  CAS  Google Scholar 

  • Wang, S., Zhang, S., Wang, S., Gao, P., and Dai, L. 2020. A comprehensive review on Pueraria: Insights on its chemistry and medicinal value. Biomed. Pharmacother. 131, 110734.

    Article  CAS  Google Scholar 

  • Wei, B., Wang, Y.K., Qiu, W.H., Wang, S.J., Wu, Y.H., Xu, X.W., and Wang, H. 2020. Discovery and mechanism of intestinal bacteria in enzymatic cleavage of C-C glycosidic bonds. Appl. Microbiol. Biotechnol. 104, 1883–1890.

    Article  CAS  Google Scholar 

  • Wei, B., Yang, W., Yan, Z.X., Zhang, Q.W., and Yan, R. 2018. Prenyl-flavonoids sanggenon C and kuwanon G from mulberry (Morus alba L.) as potent broad-spectrum bacterial β-glucuronidase inhibitors: biological evaluation and molecular docking studies. J. Funct. Foods 48, 210–219.

    Article  CAS  Google Scholar 

  • Wei, J., Zhang, X.Y., Deng, S., Cao, L., Xue, Q.H., and Gao, J.M. 2017. α-Glucosidase inhibitors and phytotoxins from Streptomyces xanthophaeus. Nat. Prod. Res. 31, 2062–2066.

    Article  CAS  Google Scholar 

  • Wu, H., Rebello, O., Crost, E.H., Owen, C.D., Walpole, S., Bennati-Granier, C., Ndeh, D., Monaco, S., Hicks, T., Colvile, A., et al. 2020. Fucosidases from the human gut symbiont Ruminococcus gnavus. Cell. Mol. Life Sci. 78, 675–693.

    Article  Google Scholar 

  • Xu, J., Qian, D., Jiang, S., Guo, J., Shang, E., Duan, J., and Yang, J. 2014. Application of ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry to determine the metabolites of orientin produced by human intestinal bacteria. J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. 944, 123–127.

    Article  CAS  Google Scholar 

  • Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA and whole genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613–1617.

    Article  CAS  Google Scholar 

  • Zallot, R., Oberg, N., and Gerlt, J.A. 2019. The EFI web resource for genomic enzymology tools: leveraging protein, genome, and metagenome databases to discover novel enzymes and metabolic pathways. Biochemistry 58, 4169–4182.

    Article  CAS  Google Scholar 

  • Zhou, T.S., Wei, B., He, M., Li, Y.S., Wang, Y.K., Wang, S.J., Chen, J.W., Zhang, H.W., Cui, Z.N., and Wang, H. 2020. Thiazolidin-2-cyanamides derivatives as novel potent Escherichia coli β-glucuronidase inhibitors and their structure-inhibitory activity relationships. J. Enzyme Inhib. Med. Chem. 35, 1736–1742.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program (2017YFE0103100), the programs of the National Natural Science Foundation of China (No. 81903534, No. 81773628, and No. 81741165), the High-Level Talent Special Support Plan of Zhejiang Province (No. 2019R52009) and the Scientific Research Fund of Second Institute of Oceanography, State Oceanic Administration (JB2002).

Author information

Authors and Affiliations

Authors

Contributions

HW and XX conceived and designed the study. BW and YW conducted experiments and wrote the manuscript. JY and SW contributed analytical tools and analyzed data. YY revised the manuscript. All the authors read and approved the manuscript.

Corresponding authors

Correspondence to Xue-Wei Xu or Hong Wang.

Ethics declarations

All authors declare no conflicts of interest. This article does not contain any studies with human participants performed by any of the authors.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, B., Wang, YK., Yu, JB. et al. Discovery of novel glycoside hydrolases from C-glycoside-degrading bacteria using sequence similarity network analysis. J Microbiol. 59, 931–940 (2021). https://doi.org/10.1007/s12275-021-1292-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-021-1292-4

Keywords

Navigation