Skip to main content
Log in

Gain and loss of antibiotic resistant genes in multidrug resistant bacteria: One Health perspective

  • Minireview
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

The emergence of multidrug resistance (MDR) has become a global health threat due to the increasing unnecessary use of antibiotics. Multidrug resistant bacteria occur mainly by accumulating resistance genes on mobile genetic elements (MGEs), made possible by horizontal gene transfer (HGT). Humans and animal guts along with natural and engineered environments such as wastewater treatment plants and manured soils have proven to be the major reservoirs and hotspots of spreading antibiotic resistance genes (ARGs). As those environments support the dissemination of MGEs through the complex interactions that take place at the human-animal-environment interfaces, a growing One Health challenge is for multiple sectors to communicate and work together to prevent the emergence and spread of MDR bacteria. However, maintenance of ARGs in a bacterial chromosome and/or plasmids in the environments might place energy burdens on bacterial fitness in the absence of antibiotics, and those unnecessary ARGs could eventually be lost. This review highlights and summarizes the current investigations into the gain and loss of ARG genes in MDR bacteria among human-animal-environment interfaces. We also suggest alternative treatments such as combinatory therapies or sequential use of different classes of antibiotics/adjuvants, treatment with enzyme-inhibitors, and phage therapy with antibiotics to solve the MDR problem from the perspective of One Health issues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Adamson, D.H., Krikstopaityte, V., and Coote, P.J. 2015. Enhanced efficacy of putative efflux pump inhibitor/antibiotic combination treatments versus MDR strains of Pseudomonas aeruginosa in a Galleria mellonella in vivo infection model. J. Antimicrob. Chemother. 70, 2271–2278.

    Article  CAS  PubMed  Google Scholar 

  • Ahmad, A., Zachariasen, C., Christiansen, L.E., Græsbøll, K., Toft, N., Matthews, L., Olsen, J.E., and Nielsen, S.S. 2016. Multistrain models predict sequential multidrug treatment strategies to result in less antimicrobial resistance than combination treatment. BMC Microbiol. 16, 118.

    Article  PubMed  PubMed Central  Google Scholar 

  • Albalat, R. and Cañestro, C. 2016. Evolution by gene loss. Nat. Rev. Genet. 17, 379–391.

    Article  CAS  PubMed  Google Scholar 

  • Allen, S.E., Boerlin, P., Janecko, N., Lumsden, J.S., Barker, I.K., Pearl, D.L., Reid-Smith, R.J., and Jardine, C. 2011. Antimicrobial resistance in generic Escherichia coli isolates from wild small mammals living in swine farm, residential, landfill, and natural environments in southern Ontario, Canada. Appl. Environ. Microbiol. 77, 882–888.

    Article  CAS  PubMed  Google Scholar 

  • Amachawadi, R.G., Shelton, N.W., Jacob, M.E., Shi, X., Narayanan, S.K., Zurek, L., Dritz, S.S., Nelssen, J.L., Tokach, M.D., and Nagaraja, T.G. 2010. Occurrence of tcrB, a transferable copper resistance gene, in fecal enterococci of swine. Foodborne Pathog. Dis. 7, 1089–1097.

    Article  CAS  PubMed  Google Scholar 

  • Andersson, D. and Hughes, D. 2010. Antibiotic resistance and its cost: is it possible to reverse resistance? Nat. Rev. Microbiol. 8, 260–271.

    Article  CAS  PubMed  Google Scholar 

  • Aslam, B., Wang, W., Arshad, M.I., Khurshid, M., Muzammil, S., Rasool, M.H., Nisar, M.A., Alvi, R.F., Aslam, M.A., Qamar, M.U., et al. 2018. Antibiotic resistance: a rundown of a global crisis. Infect. Drug Resist. 11, 1645–1658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baker-Austin, C., Wright, M.S., Stepanauskas, R., and McArthur, J.V. 2006. Co-selection of antibiotic and metal resistance. Trends Microbiol. 14, 176–182.

    Article  CAS  PubMed  Google Scholar 

  • Balcázar, J.L. 2015. Effect of ciliates in transfer of plasmid-mediated quinolone-resistance genes in bacteria. Emerg. Infect. Dis. 21, 547–549.

    Article  PubMed  PubMed Central  Google Scholar 

  • Barancheshme, F. and Munir, M. 2018. Strategies to combat antibiotic resistance in the wastewater treatment plants. Front. Microbiol. 8, 2603.

    Article  PubMed  PubMed Central  Google Scholar 

  • Beker, M., Rose, S., Lykkebo, C.A., and Douthwaite, S. 2018. Integrative and conjugative elements (ICEs) in Pasteurellaceae species and their detection by multiplex PCR. Front. Microbiol. 9, 1329.

    Article  PubMed  PubMed Central  Google Scholar 

  • Berg, J., Tom-Petersen, A., and Nybroe, O. 2005. Copper amendment of agricultural soil selects for bacterial antibiotic resistance in the field. Lett. Appl. Microbiol. 40, 146–151.

    Article  CAS  PubMed  Google Scholar 

  • Berglund, B. 2015. Environmental dissemination of antibiotic resistance genes and correlation to anthropogenic contamination with antibiotics. Infect. Ecol. Epidemiol. 5, 28564.

    PubMed  Google Scholar 

  • Bielaszewska, M., Daniel, O., Karch, H., and Mellmann, A. 2020. Dissemination of the blaCTX-M-15 gene among Enterobacteriaceae via outer membrane vesicles. J. Antimicrob. Chemother. 75, 2442–2451.

    Article  CAS  PubMed  Google Scholar 

  • Brochado, A.R., Telzerow, A., Bobonis, J., Banzhaf, M., Mateus, A., Selkrig, J., Huth, E., Bassler, S., Zamarreño Beas, J., Zietek, M., et al. 2018. Species-specific activity of antibacterial drug combinations. Nature 559, 259–263.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cadena, M., Durso, L.M., Miller, D.N., Waldrip, H.M., Castleberry, B.L., Drijber, R.A., and Wortmann, C. 2018. Tetracycline and sulfonamide antibiotic resistance genes in soils from Nebraska organic farming operations. Front Microbiol. 9, 1283.

    Article  PubMed  PubMed Central  Google Scholar 

  • Carden, S.E., Walker, G.T., Honeycutt, J., Lugo, K., Pham, T., Jacobson, A., Bouley, D., Idoyaga, J., Tsolis, R.M., and Monack, D. 2017. Pseudogenization of the secreted effector gene sseI confers rapid systemic dissemination of S. Typhimurium ST313 within migratory dendritic cells. Cell Host Microbe 21, 182–194.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chait, R., Craney, A., and Kishony, R. 2007. Antibiotic interactions that select against resistance. Nature 446, 668–671.

    Article  CAS  PubMed  Google Scholar 

  • Chang, Y., Chusri, S., Sangthong, R., McNeil, E., Hu, J., Du, W., Li, D., Fan, X., Zhou, H., Chongsuvivatwong, V., et al. 2019. Clinical pattern of antibiotic overuse and misuse in primary healthcare hospitals in the southwest of China. PLoS ONE 14, e0214779.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chang, J.Y., Shim, K.N., Tae, C.H., Lee, K.E., Lee, J., Lee, K.H., Moon, C.M., Kim, S.E., Jung, H.K., and Jung, S.A. 2017. Triple therapy versus sequential therapy for the first-line Helicobacter pylori eradication. BMC Gastroenterol. 17, 16.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, H. and Zhang, M. 2013. Effects of advanced treatment systems on the removal of antibiotic resistance genes in wastewater treatment plants from Hangzhou, China. Environ. Sci. Technol. 47, 8157–8163.

    CAS  PubMed  Google Scholar 

  • Cheung, T.K.M., Chu, Y.W., Chu, M.Y., Ma, C.H., Yung, R.W.H., and Kam, K.M. 2005. Plasmid-mediated resistance to ciprofloxacin and cefotaxime in clinical isolates of Salmonella enterica serotype Enteritidis in Hong Kong. J. Antimicrob. Chemother. 56, 586–589.

    Article  CAS  PubMed  Google Scholar 

  • Chu, M., Zhang, M.B., Liu, Y.C., Kang, J.R., Chu, Z.Y., Yin, K.L., Ding, L.Y., Ding, R., Xiao, R.X., Yin, Y.N., et al. 2016. Role of berberine in the treatment of methicillin-resistant Staphylococcus aureus infections. Sci. Rep. 22, 24748.

    Article  Google Scholar 

  • de Evgrafov, M.R., Gumpert, H., Munck, C., Thomsen, T.T., and Sommer, M.O. 2015. Collateral resistance and sensitivity modulate evolution of high-level resistance to drug combination treatment in Staphylococcus aureus. Mol. Biol. Evol. 5, 1175–1185.

    Article  Google Scholar 

  • de la Cruz Barrón, M., Merlin, C., Guilloteau, H., Montargès-Pelletier, E., and Bellanger, X. 2018. Suspended materials in river waters differentially enrich class 1 integron- and IncP-1 plasmid-carrying bacteria in sediments. Front. Microbiol. 9, 1443.

    Article  PubMed  PubMed Central  Google Scholar 

  • Dedrick, R.M., Guerrero-Bustamante, C.A., Garlena, R.A., Russell, D.A., Ford, K., Harris, K., Gilmour, K.C., Soothill, J., Jacobs-Sera, D., Schooley, R.T., et al. 2019. Engineered bacteriophages for treatment of a patient with a disseminated drug-resistant Mycobacterium abscessus. Nat. Med. 25, 730–733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diwan, V., Tamhankar, A.J., Khandal, R.K., Sen, S., Aggarwal, M., Marothi, Y., Iyer, R.V., Sundblad-Tonderski, K., and Stålsby-Lundborg, C. 2010. Antibiotics and antibiotic-resistant bacteria in waters associated with a hospital in Ujjain, India. BMC Public Health 10, 414.

    Article  PubMed  PubMed Central  Google Scholar 

  • Domingues, S., Rosário, N., Ben Cheikh, H., and Da Silva, G.J. 2018. ISAba1 and Tn6168 acquisition by natural transformation leads to third-generation cephalosporins resistance in Acinetobacter baumannii. Infect. Genet. Evol. 63, 13–16.

    Article  CAS  PubMed  Google Scholar 

  • Donabedian, S.M., Thal, L.A.T., Hershberger, E., Perri, M.B., Chow, J.W., Bartlett, P., Jones, R., Joyce, K., Rossiter, S., Gay, K., et al. 2003. Molecular characterization of gentamicin-resistant Enterococci in the United States: Evidence of spread from animals to humans through food. J. Clin. Microbiol. 41, 1109–1113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forsberg, K.J., Reyes, A., Wang, B., Selleck, E.M., Sommer, M.O.A., and Dantas, G. 2012. The shared antibiotic resistome of soil bacteria and human pathogens. Science 337, 1107–1111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Forti, F., Roach, D.R., Cafora, M., Pasini, M.E., Horner, D.S., Fiscarelli, E.V., Rossitto, M., Cariani, L., Briani, F., Debarbieux, L., et al. 2018. Design of a broad-range bacteriophage cocktail that reduces Pseudomonas aeruginosa biofilms and treats acute infections in two animal models. Antimicrob. Agents Chemother. 62, e02573–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Furushita, M., Shiba, T., Maeda, T., Yahata, M., Kaneoka, A., Takahashi, Y., Torii, K., Hasegawa, T., and Ohta, M. 2003. Similarity of tetracycline resistance genes isolated from fish farm bacteria to those from clinical isolates. Appl. Environ. Microbiol. 69, 5336–5342.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gillings, M.R., Gaze, W.H., Pruden, A., Smalla, K., Tiedje, J.M., and Zhu, Y.G. 2015. Using the class 1 integron-integrase gene as a proxy for anthropogenic pollution. ISME J. 9, 1269–1279.

    Article  CAS  PubMed  Google Scholar 

  • Girlich, D., Poirel, L., and Nordmann, P. 2009. First isolation of the blaOXA-23 carbapenemase gene from an environmental Acinetobacter baumannii isolate. Antimicrob. Agents Chemother. 54, 578–579.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gómez-Sanz, E., Kadlec, K., Feßler, A.T., Zarazaga, M., Torres, C., and Schwarz, S. 2013. Novel erm(T)-carrying multiresistance plasmids from porcine and human isolates of methicillin-resistant Staphylococcus aureus ST398 that also harbor cadmium and copper resistance determinants. Antimicrob. Agents Chemother. 57, 3275–3282.

    Article  PubMed  PubMed Central  Google Scholar 

  • Grossman, T.H. 2016. Tetracycline antibiotics and resistance. Cold Spring Harb. Perspect. Med. 6, a025387.

    Article  PubMed  PubMed Central  Google Scholar 

  • Guo, X., Liu, S., Wang, Z., Zhang, X., Li, M., and Wu, B. 2014. Metagenomic profiles and antibiotic resistance genes in gut microbiota of mice exposed to arsenic and iron. Chemosphere 112, 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Harmer, C.J. and Hall, R.M. 2016. IS26-mediated formation of transposons carrying antibiotic resistance genes. mSphere 1, e00038–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hawkey, P.M. and Jones, A.M. 2009. The changing epidemiology of resistance. J. Antimicrob. Chemother. 64, i3–i10.

    Article  CAS  PubMed  Google Scholar 

  • He, Y., Yuan, Q., Mathieu, J., Stadler, L., Senehi, N., Sun, R., and Alvarez, P.J.J. 2020. Antibiotic resistance genes from livestock waste: occurrence, dissemination, and treatment. npj Clean Water 3, 4.

    Article  Google Scholar 

  • Heuer, H., Schmitt, H., and Smalla, K. 2011a. Antibiotic resistance gene spread due to manure application on agricultural fields. Curr. Opin. Microbiol. 14, 236–243.

    Article  CAS  PubMed  Google Scholar 

  • Heuer, H., Solehati, Q., Zimmerling, U., Kleineidam, K., Schloter, M., Müller, T., Focks, A., Thiele-Bruhn, S., and Smalla, K. 2011b. Accumulation of sulfonamide resistance genes in arable soils due to repeated application of manure containing sulfadiazine. Appl. Environ. Microbiol. 77, 2527–2530.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong, H., Ko, H.J., Choi, I.G., and Park, W. 2014. Previously undescribed plasmids recovered from activated sludge confer tetracycline resistance and phenotypic changes to Acinetobacter oleivorans DR1. Microb. Ecol. 67, 369–379.

    Article  CAS  PubMed  Google Scholar 

  • Huang, X., Cheng, X., Sun, P., Tang, C., Ni, F., and Liu, G. 2018. Characteristics of NDM-1-producing Klebsiella pneumoniae ST234 and ST1412 isolates spread in a neonatal unit. BMC Microbiol. 18, 186.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Humphries, R.M., Yang, S., Hemarajata, P., Ward, K.W., Hindler, J.A., Miller, S.A., and Gregson, A. 2015. First report of ceftazidimeavibactam resistance in a KPC-3-expressing Klebsiella pneumoniae isolate. Antimicrob. Agents Chemother. 59, 6605–6607.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Isler, B., Doi, Y., Bonomo, R.A., and Paterson, D.L. 2018. New treatment options against carbapenem-resistant Acinetobacter baumannii infections. Antimicrob. Agents Chemother. 63, e01110–18.

    PubMed  PubMed Central  Google Scholar 

  • Jiang, X., Ellabaan, M.M.H., Charusanti, P., Munck, C., Blin, K., Tong, Y., Weber, T., Sommer, M.O.A., and Lee, S.Y. 2017. Dissemination of antibiotic resistance genes from antibiotic producers to pathogens. Nat. Commun. 7, 15784.

    Article  Google Scholar 

  • Juhas, M. 2015. Horizontal gene transfer in human pathogens. Crit. Rev. Microbiol. 41, 101–108.

    Article  CAS  PubMed  Google Scholar 

  • Karkman, A., Pärnänen, K., and Larsson, D.G.J. 2019. Fecal pollution can explain antibiotic resistance gene abundances in anthropogenically impacted environments. Nat. Commun. 10, 80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keen, P.L. and Monforts, M.H.M.M. 2011. Antimicrobial Resistance in the Environment, pp. 9. Wiley-Blackwell, Hoboken, New Sersey, USA.

    Book  Google Scholar 

  • Kim, H.M. and Davey, M.E. 2020. Synthesis of ppGpp impacts type IX secretion and biofilm matrix formation in Porphyromonas gingivalis. npj Biofilms Microbiomes 6, 5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kim, M., Park, J., and Park, W. 2021. Genomic and phenotypic analyses of multidrug-resistant Acinetobacter baumannii NCCP 16007 isolated from a patient with a urinary tract infection. Virulence 12, 150–164.

    Article  CAS  PubMed  Google Scholar 

  • Koch, G., Yepes, A., Förstner, K.U., Wermser, C., Stengel, S.T., Modamio, J., Ohlsen, K., Foster, K.R., and Lopez, D. 2014. Evolution of resistance to a last-resort antibiotic in Staphylococcus aureus via bacterial competition. Cell 158, 1060–1071.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koskiniemi, S., Sun, S., Berg, O.G., and Andersson, D.I. 2012. Selection-driven gene loss in bacteria. PLoS Genet. 8, e1002787.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumarasamy, K.K., Toleman, M.A., Walsh, T.R., Bagaria, J., Butt, F., Balakrishnan, R., Chaudhary, U., Doumith, M., Giske, C.G., Irfan, S., et al. 2010. Emergence of a new antibiotic resistance mechanism in India, Pakistan, and the UK: A molecular, biological, and epidemiological study. Lancet Infect. Dis. 10, 597–602.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lacotte, Y., Ploy, M.C., and Raherison, S. 2017. Class 1 integrons are low-cost structures in Escherichia coli. ISME J. 11, 1535–1544.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lalaoui, R., Djukovic, A., Bakour, S., Sanz, J., Gonzalez-Barbera, E.M., Salavert, M., López-Hontangas, J.L., Sanz, M.A., Xavier, K.B., Kuster, B., et al. 2019. Detection of plasmid-mediated colistin resistance, mcr-1 gene, in Escherichia coli isolated from high-risk patients with acute leukemia in Spain. J. Infect. Chemother. 25, 605–609.

    Article  CAS  PubMed  Google Scholar 

  • Lee, K., Kim, D.W., Lee, D.H., Kim, Y.S., Bu, J.H., Cha, J.H., Thawng, C.N., Hwang, E.M., Seong, H.J., Sul, W.J., et al. 2020. Mobile resistome of human gut and pathogen drives anthropogenic bloom of antibiotic resistance. Microbiome 8, 2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lerner, A., Matthias, T., and Aminov, R. 2017. Potential effects of horizontal gene exchange in the human gut. Front. Immunol. 8, 1630.

    Article  PubMed  PubMed Central  Google Scholar 

  • Li, X.Z., Plésiat, P., and Nikaido, H. 2015. The challenge of efflux-mediated antibiotic resistance in Gram-negative bacteria. Clin. Microbiol. Rev. 28, 337–418.

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu, N., Lewis, C., Zheng, W., and Fu, Z.Q. 2020. Phage cocktail therapy: Multiple ways to suppress pathogenicity. Trends Plant Sci. 25, 315–317.

    Article  CAS  PubMed  Google Scholar 

  • Liu, Y. Y., Wang, Y., Walsh, T.R., Yi, L.X., Zhang, R., Spencer, J., Doi, Y., Tian, G., Dong, B., Huang, X., et al. 2016. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: A microbiological and molecular biological study. Lancet Infect. Dis. 16, 161–168.

    Article  PubMed  Google Scholar 

  • Maamar, S.B., Glawe, A.J., Brown, T.K., Hellgeth, N., Hu, J., Wang, J.P., Huttenhower, C., and Hartmann, E.M. 2020. Mobilizable antibiotic resistance genes are present in dust microbial communities. PLoS Pathog. 16, e1008211.

    Article  PubMed  PubMed Central  Google Scholar 

  • Marshall, B.M. and Levy, S.B. 2011. Food animals and antimicrobials: Impacts on human health. Clin. Microbiol. Rev. 24, 718–733.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mata, M.T., Baquero, F., and Pérez-Díaz, J.C. 2000. A multidrug efflux transporter in Listeria monocytogenes. FEMS Microbiol. Lett. 187, 185–188.

    Article  CAS  PubMed  Google Scholar 

  • McCarthy, A.J., Loeffler, A., Witney, A.A., Gould, K.A., Lloyd, D.H., and Lindsay, J.A. 2014. Extensive horizontal gene transfer during Staphylococcus aureus co-colonization in vivo. Genome Biol. Evol. 6, 2697–2708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McInnes, R.S., McCallum, G.E., Lamberte, L.E., and van Schaik, W. 2020. Horizontal transfer of antibiotic resistance genes in the human gut microbiome. Curr. Opin. Microbiol. 53, 35–43.

    Article  CAS  PubMed  Google Scholar 

  • Mozaheb, N. and Mingeot-Leclercq, M.P. 2020. Membrane vesicle production as a bacterial defense against stress. Front. Microbiol. 11, 600221.

    Article  PubMed  PubMed Central  Google Scholar 

  • Munck, C., Gumpert, H.K., Wallin, A.I.N., Wang, H.H., and Sommer, M.O.A. 2014. Prediction of resistance development against drug combinations by collateral responses to component drugs. Sci. Transl. Med. 6, 262ra156.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nagler, M., Insam, H., Pietramellara, G., and Ascher-Jenull, J. 2018. Extracellular DNA in natural environments: Features, relevance and applications. Appl. Microbiol. Biotechnol. 102, 6343–6356.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Papkou, A., Guzella, T., Yang, W., Koepper, S., Pees, B., Schalkowski, R., Barg, M., Rosenstiel, P.C., Teotónio, H., and Schulenburg, H. 2019. The genomic basis of Red Queen dynamics during rapid reciprocal host-pathogen coevolution. Proc. Natl. Acad. Sci. USA 116, 923–928.

    Article  CAS  PubMed  Google Scholar 

  • Partridge, S.R., Kwong, S.M., Firth, N., and Jensen, S.O. 2018. Mobile genetic elements associated with antimicrobial resistance. Clin. Microbiol. Rev. 31, e00088–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Paul, S., Minnick, M.F., and Chattopadhyay, S. 2016. Mutation-driven divergence and convergence indicate adaptive evolution of the intracellular human-restricted pathogen, Bartonella bacilliformis. PLoS Negl. Trop. Dis. 10, e0004712.

    Article  PubMed  PubMed Central  Google Scholar 

  • Peterson, G., Kumar, A., Gart, E., and Narayanan, S. 2011. Catecholamines increase conjugative gene transfer between enteric bacteria. Microb. Pathog. 51, 1–8.

    Article  CAS  PubMed  Google Scholar 

  • Pfeifer, Y., Wilharm, G., Zander, E., Wichelhaus, T.A., Göttig, S., Hunfeld, K.P., Seifert, H., Witte, W., and Higgins, P.G. 2011. Molecular characterization of blaNDM-1 in an Acinetobacter baumannii strain isolated in Germany in 2007. J. Antimicrob. Chemother. 66, 1998–2001.

    Article  CAS  PubMed  Google Scholar 

  • Poirel, L., Rodriguez-Martinez, J.M., Mammeri, H., Liard, A., and Nordmann, P. 2005. Origin of plasmid-mediated quinolone resistance determinant QnrA. Antimicrob. Agents Chemother. 49, 3523–3525.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pulicharla, R., Hegda, K., Brar, S.K., and Surampalli, R.Y. 2017. Tetracycline metal complexation: Significance and fate of mutual existence in the environment. Environ. Pollut. 221, 1–14.

    Article  CAS  PubMed  Google Scholar 

  • Rhodes, G., Huys, G., Swings, J., McGann, P., Hiney, M., Smith, P., and Pickup, R.W. 2000. Distribution of oxytetracycline resistance plasmids between aeromonads in hospital and aquaculture environments: Implication of Tn1721 in dissemination of the tetracycline resistance determinant Tet A. Appl. Environ. Microbiol. 66, 3883–3890.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rhodes, G., Parkhill, J., Bird, C., Ambrose, K., Jones, M.C., Huys, G., Swings, J., and Pickup, R.W. 2004. Complete nucleotide sequence of the conjugative tetracycline resistance plasmid pFBAOT6, a member of a group of IncU plasmids with global ubiquity. Appl. Environ. Microbiol. 70, 7497–7510.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rios, A.C., Moutinho, C.G., Pinto, F.C., Del Fiol, F.S., Jozala, A., Chaud, M.V., Vila, M.M.D.C., Teixeira, J.A., and Balcão, V.M. 2016. Alternatives to overcoming bacterial resistances: State-of-the-art. Microbiol. Res. 191, 51–80.

    Article  CAS  PubMed  Google Scholar 

  • Roberts, T.C. and Morris, K.V. 2013. Not so pseudo anymore: Pseudogenes as therapeutic targets. Pharmacogenomics 14, 2023–2034.

    Article  CAS  PubMed  Google Scholar 

  • Rumbo, C., Fernández-Moreira, E., Merino, M., Poza, M., Mendez, J.A., Soares, N.C., Mosquera, A., Chaves, F., and Bou, G. 2011. Horizontal transfer of the OXA-24 carbapenemase gene via outer membrane vesicles: a new mechanism of dissemination of carbapenem resistance genes in Acinetobacter baumannii. Antimicrob. Agents Chemother. 55, 3084–3090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Savage, V.J., Chopra, I., and O’Neill, A.J. 2013. Staphylococcus aureus biofilms promote horizontal transfer of antibiotic resistance. Antimicrob. Agents Chemother. 57, 1968–1970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schmid, A., Wolfensberger, A., Nemeth, J., Schreiber, P.W., Sax, H., and Kuster, S.P. 2019. Monotherapy versus combination therapy for multidrug-resistant Gram-negative infections: Systematic review and meta-analysis. Sci. Rep. 9, 15290.

    Article  PubMed  PubMed Central  Google Scholar 

  • Schwechheimer, C. and Kuehn, M.J. 2015. Outer-membrane vesicles from Gram-negative bacteria: Biogenesis and functions. Nat. Rev. Microbiol. 13, 605–619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segura, A., Molina, L., and Ramos, J.L. 2014. Plasmid-mediated tolerance toward environmental pollutants. Microbiol. Spectr. 2, PLAS-0013-2013.

  • Sheu, C.C., Chang, Y.T., Lin, S.Y., Chen, Y.H., and Hsueh, P.R. 2019. Infections caused by carbapenem-resistant Enterobacteriaceae: an update on therapeutic options. Front. Microbiol. 10, 80.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shi, Y., Zhang, H., Tian, Z., Yang, M., and Zhang, Y. 2018. Characteristics of ARG-carrying plasmidome in the cultivable microbial community from wastewater treatment system under high oxytetracycline concentration. Appl. Microbiol. Biotechnol. 102, 1847–1858.

    Article  CAS  PubMed  Google Scholar 

  • Shields, R.K., Iovleva, A., Kline, E.G., Kawai, A., McElheny, C.L., and Doi, Y. 2020. Clinical evolution of AmpC-mediated ceftazidimeavibactam and cefiderocol resistance in Enterobacter cloacae complex following exposure to cefepime. Clin. Infect. Dis. 71, 2713–2716.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shin, B. and Park, W. 2017. Antibiotic resistance of pathogenic Acinetobacter species and emerging combination therapy. J. Microbiol. 55, 837–849.

    Article  CAS  PubMed  Google Scholar 

  • Shin, B. and Park, W. 2018. Zoonotic diseases and phytochemical medicines for microbial infections in veterinary science: current state and future perspective. Front. Vet. Sci. 5, 166.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shin, B., Park, C., Imlay, J.A., and Park, W. 2018. 4-Hydroxybenzaldehyde sensitizes Acinetobacter baumannii to amphenicol. Appl. Microbiol. Biotechnol. 102, 2323–2335.

    Article  CAS  PubMed  Google Scholar 

  • Shkoporov, A.N. and Hill, C. 2019. Bacteriophages of the human gut: The “known unknown” of the microbiome. Cell Host Microbe 25, 195–209.

    Article  CAS  PubMed  Google Scholar 

  • Sitaraman, R. 2018. Prokaryotic horizontal gene transfer within the human holobiont: Ecological-evolutionary inferences, implications and possibilities. Microbiome 6, 163.

    Article  PubMed  PubMed Central  Google Scholar 

  • Soliman, S.S.M., Saeed, B.Q., Elseginy, S.A., Al-Marzooq, F., Ahmady, I.M., El-Keblawy, A.A., and Hamdy, R. 2021. Critical discovery and synthesis of novel antibacterial and resistance-modifying agents inspired by plant phytochemical defense mechanisms. Chem. Biol. Interact. 333, 109318.

    Article  CAS  PubMed  Google Scholar 

  • Son, D.I., Aleta, P., Park, M., Yoon, H., Cho, K.H., Kim, Y.M., and Kim, S. 2018. Seasonal changes in antibiotic resistance genes in rivers and reservoirs in South Korea. J. Environ. Qual. 47, 1079–1085.

    Article  CAS  PubMed  Google Scholar 

  • Song, L., Wang, C., and Wang, Y. 2020. Optimized determination of airborne tetracycline resistance genes in laboratory atmosphere. Front. Environ. Sci. Eng. 14, 95.

    Article  CAS  Google Scholar 

  • Sparo, M., Urbizu, L., Solana, M.V., Pourcel, G., Delpech, G., Confalonieri, A., Ceci, M., and Sánchez Bruni, S.F. 2012. High-level resistance to gentamicin: genetic transfer between Enterococcus faecalis isolated from food of animal origin and human microbiota. Lett. Appl. Microbiol. 54, 119–125.

    Article  CAS  PubMed  Google Scholar 

  • Theuretzbacher, U., Bush, K., Harbarth, S., Paul, M., Rex, J., Tacconellli, E., and Thwaites, G.E. 2020. Critical analysis of antibacterial agents in clinical development. Nat. Rev. Microbiol. 18, 286–298.

    Article  CAS  PubMed  Google Scholar 

  • Todar, K. 2013. The growth of bacterial populations. Todar’s Online Textbook of Bacteriology. Madison, Wisconsin, USA.

  • Tyers, M. and Wright, G.D. 2019. Drug combinations: A strategy to extend the life of antibiotics in the 21st century. Nat. Rev. Microbiol. 17, 141–155.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Q., Liu, L., Hou, Z., Wang, L., Ma, D., Yang, G., Guo, S., Luo, J., Qi, L., and Luo, Y. 2020. Heavy metal copper accelerates the conjugative transfer of antibiotic resistance genes in freshwater microcosms. Sci. Total Environ. 717, 137055.

    Article  CAS  PubMed  Google Scholar 

  • WHO. 2017. Global priority list of antibiotic-resistant bacteria to guide research, discovery, and development of new antibiotics. World Health Organization, Geneva, Switzerland.

    Google Scholar 

  • Xiong, W., Sun, Y., Ding, X., Wang, M., and Zeng, Z. 2015. Selective pressure of antibiotics on ARGs and bacterial communities in manure-polluted freshwater-sediment microcosms. Front. Microbiol. 6, 194.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xu, Y., Li, H., Shi, R., Lv, J., Li, B., Yang, F., Zheng, X., and Xu, J. 2020. Antibiotic resistance genes in different animal manures and their derived organic fertilizer. Environ. Sci. Eur. 32, 102.

    Article  CAS  Google Scholar 

  • Yahav, D., Giske, C.G., Grāmatniece, A., Abodakpi, H., Tam, V.H., and Leibovici, L. 2020. New β-lactam-β-lactamase inhibitor combinations. Clin. Microbiol. Rev. 34, e00115–20.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang, Q.E., Agouri, S.R., Tyrrell, J.M., and Walsh, T.R. 2018. Heavy metal resistance genes are associated with blaNDM-1- and blaCTX-M-15-carrying Enterobacteriaceae. Antimicrob. Agents Chemother. 62, e02642–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo, K., Yoo, H., Lee, J., Choi, E.J., and Park, J. 2020. Exploring the antibiotic resistome in activated sludge and anaerobic digestion sludge in an urban wastewater treatment plant via metagenomic analysis. J. Microbiol. 58, 123–130.

    Article  CAS  PubMed  Google Scholar 

  • Yuan, L., Li, Z.H., Zhang, M.Q., Shao, W., Fan, Y.Y., and Sheng, G.P. 2019. Mercury/silver resistance genes and their association with antibiotic resistance genes and microbial community in a municipal wastewater treatment plant. Sci. Total Environ. 657, 1014–1022.

    Article  CAS  PubMed  Google Scholar 

  • Zając, M., Sztromwasser, P., Bortolaia, V., Leekitcharoenphon, P., Cavaco, L.M., Ziȩtek-Barszcz, A., Hendriksen, R.S., and Wasyl, D. 2019. Occurrence and characterization of mcr-1-positive Escherichia coli isolated from food-producing animals in Poland, 2011–2016. Front. Microbiol. 10, 1753.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, Y.J., Hu, H.W., Chen, Q.L., Singh, B.K., Yan, H., Chen, D., and He, J.Z. 2019. Transfer of antibiotic resistance from manure-amended soils to vegetable microbiomes. Environ. Int. 130, 104912.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, J., Liu, G., Zhang, X., Chang, Y., Wang, S., He, W., Sun, W., Chen, D., and Murchie, A. 2020. Aminoglycoside riboswitch control of the expression of integron associated aminoglycoside resistance adenyltransferases. Virulence 11, 1432–1442.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu, Y.G., Johnson, T.A., Su, J.Q., Qiao, M., Guo, G.X., Stedtfeld, R.D., Hashsham, S.A., and Tiedje, J.M. 2013. Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc. Natl. Acad. Sci. USA 110, 3435–3440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) Grant (NRF-2020M3A9H5104237).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woojun Park.

Ethics declarations

The authors declare no competing interests.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, M., Park, J., Kang, M. et al. Gain and loss of antibiotic resistant genes in multidrug resistant bacteria: One Health perspective. J Microbiol. 59, 535–545 (2021). https://doi.org/10.1007/s12275-021-1085-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-021-1085-9

Keywords

Navigation