Genetic changes in plaque-purified varicella vaccine strain Suduvax during in vitro propagation in cell culture

Abstract

Infection by varicella-zoster virus (VZV) can be prevented by using live attenuated vaccines. VZV vaccine strains are known to evolve rapidly in vivo, however, their genetic and biological effects are not known. In this study, the plaque-purified vaccine strain Suduvax (PPS) was used to understand the genetic changes that occur during the process of propagation in in vitro cell culture. Full genome sequences of three different passages (p4, p30, and p60) of PPS were determined and compared for genetic changes. Mutations were found at 59 positions. The number of genetically polymorphic sites (GPS) and the average of minor allele frequency (MAF) at GPSs were not significantly altered after passaging in cell culture up to p60. The number of variant nucleotide positions (VNPs), wherein GPS was found in at least one passage of PPS, was 149. Overall, MAF changed by less than 5% at 52 VNPs, increased by more than 5% at 42 VNPs, and decreased by more than 5% at 55 VNPs in p60, compared with that seen in p4. More complicated patterns of changes in MAF were observed when genetic polymorphism at 149 VNPs was analyzed among the three passages. However, MAF decreased and mixed genotypes became unequivocally fixed to vaccine type in 23 vaccine-specific positions in higher passages of PPS. Plaque-purified Suduvax appeared to adapt to better replication during in vitro cell culture. Further studies with other vaccine strains and in vivo studies will help to understand the evolution of the VZV vaccine.

This is a preview of subscription content, access via your institution.

References

  1. Andino, R. and Domingo, E. 2015. Viral quasispecies. Virology 479–480, 46–51.

    Article  Google Scholar 

  2. Arvin, A.M., Moffat, J.F., Sommer, M., Oliver, S., Che, X., Vleck, S., Zerboni, L., and Ku, C.C. 2010. Varicella-zoster virus T cell tropism and the pathogenesis of skin infection. Curr. Top. Microbiol. Immunol. 342, 182–209.

    Google Scholar 

  3. Baudoux, L., Defechereux, P., Schoonbroodt, S., Merville, M.P., Rentier, B., and Piette, J. 1995. Mutational analysis of varicella-zoster virus major immediate-early protein IE62. Nucleic Acids Res. 23, 1341–1349.

    CAS  Article  Google Scholar 

  4. Breuer, J. and Schmid, D.S. 2008. Vaccine Oka variants and sequence variability in vaccine-related skin lesions. J. Infect. Dis. 197, S54–S57.

    Article  Google Scholar 

  5. Brown, T.C. and Jiricny, J. 1988. Different base/base mispairs are corrected with different efficiencies and specificities in monkey kidney cells. Cell 54, 705–711.

    CAS  Article  Google Scholar 

  6. Bukh, J., Pietschmann, T., Lohmann, V., Krieger, N., Faulk, K., Engle, R.E., Govindarajan, S., Shapiro, M., St Claire, M., and Bartenschlager, R. 2002. Mutations that permit efficient replication of hepatitis C virus RNA in Huh-7 cells prevent productive replication in chimpanzees. Proc. Natl. Acad. Sci. USA 99, 14416–14421.

    CAS  Article  Google Scholar 

  7. Depledge, D.P., Yamanishi, K., Gomi, Y., Gershon, A.A., and Breuer, J. 2016. Deep sequencing of distinct preparations of the live attenuated varicella-zoster virus vaccine reveals a conserved core of attenuating single-nucleotide polymorphisms. J. Virol. 90, 8698–8704.

    CAS  Article  Google Scholar 

  8. Galtier, N., Piganeau, G., Mouchiroud, D., and Duret, L. 2001. GC-content evolution in mammalian genomes: the biased gene conversion hypothesis. Genetics 159, 907–911.

    CAS  Article  Google Scholar 

  9. Gershon, A.A., Gershon, M.D., Breuer, J., Levin, M.J., Oaklander, A.L., and Griffiths, P.D. 2010. Advances in the understanding of the pathogenesis and epidemiology of herpes zoster. J. Clin. Virol. 48, S2–S7.

    CAS  Article  Google Scholar 

  10. Gomi, Y., Sunamachi, H., Mori, Y., Nagaike, K., Takahashi, M., and Yamanishi, K. 2002. Comparison of the complete DNA sequences of the Oka varicella vaccine and its parental virus. J. Virol. 76, 11447–11459.

    CAS  Article  Google Scholar 

  11. Gregori, J., Perales, C., Rodriguez-Frias, F., Esteban, J.I., Quer, J., and Domingo, E. 2016. Viral quasispecies complexity measures. Virology 493, 227–237.

    CAS  Article  Google Scholar 

  12. Hwang, H.R., Kim, S.C., Kang, S.H., and Lee, C.H. 2019. Increase in the genetic polymorphism of varicella-zoster virus after passaging in in vitro cell culture. J. Microbiol. 57, 1033–1039.

    CAS  Article  Google Scholar 

  13. Jeon, J.S., Won, Y.H., Kim, I.K., Ahn, J.H., Shin, O.S., Kim, J.H., and Lee, C.H. 2016. Analysis of single nucleotide polymorphism among varicella-zoster virus and identification of vaccine-specific sites. Virology 496, 277–286.

    CAS  Article  Google Scholar 

  14. Kanda, R.K., Quinlivan, M.L., Gershon, A.A., Nichols, R.A., and Breuer, J. 2011. Population diversity in batches of the varicella Oka vaccine. Vaccine 29, 3293–3298.

    CAS  Article  Google Scholar 

  15. Kennedy, P.G.E. and Gershon, A.A. 2018. Clinical features of varicella-zoster virus infection. Viruses 10, 609.

    CAS  Article  Google Scholar 

  16. Khalil, M.I., Che, X., Sung, P., Sommer, M.H., Hay, J., and Arvin, A.M. 2016. Mutational analysis of varicella-zoster virus (VZV) immediate early protein (IE62) subdomains and their importance in viral replication. Virology 492, 82–91.

    CAS  Article  Google Scholar 

  17. Kuter, B.J., Weibel, R.E., Guess, H.A., Matthews, H., Morton, D.H., Neff, B.J., Provost, P.J., Watson, B.A., Starr, S.E., and Plotkin, S.A. 1991. Oka/Merck varicella vaccine in healthy children: final report of a 2-year efficacy study and 7-year follow-up studies. Vaccine 9, 643–647.

    CAS  Article  Google Scholar 

  18. Loparev, V.N., Rubtcova, E., Seward, J.F., Levin, M.J., and Schmid, D.S. 2007. DNA sequence variability in isolates recovered from patients with postvaccination rash or herpes zoster caused by Oka varicella vaccine. J. Infect. Dis. 195, 502–510.

    CAS  Article  Google Scholar 

  19. Quinlivan, M., Breuer, J., and Schmid, D.S. 2011. Molecular studies of the Oka varicella vaccine. Expert Rev. Vaccines 10, 1321–1336.

    CAS  Article  Google Scholar 

  20. Renner, D.W. and Szpara, M.L. 2018. Impacts of genome-wide analyses on our understanding of human herpesvirus diversity and evolution. J. Virol. 92, e00908–17.

    PubMed  Google Scholar 

  21. Sen, N., Sommer, M., Che, X., White, K., Ruyechan, W.T., and Arvin, A.M. 2010. Varicella-zoster virus immediate-early protein 62 blocks interferon regulatory factor 3 (IRF3) phosphorylation at key serine residues: a novel mechanism of IRF3 inhibition among herpesviruses. J. Virol. 84, 9240–9253.

    CAS  Article  Google Scholar 

  22. Sohn, Y.M., Park, C.Y., Hwang, K.K., Woo, G.J., and Park, S.Y. 1994. Safety and immunogenicity of live attenuated varicella virus vaccine (MAV/06 strain). Clin. Exp. Pediatr. 37, 1405–1413.

    Google Scholar 

  23. Takahashi, M., Otsuka, T., Okuno, Y., Asano, Y., Yazaki, T., and Isomura, S. 1974. Live vaccine used to prevent the spread of varicella in children in hospital. Lancet 304, 1288–1290.

    Article  Google Scholar 

  24. Tillieux, S.L., Halsey, W.S., Thomas, E.S., Voycik, J.J., Sathe, G.M., and Vassilev, V. 2008. Complete DNA sequences of two Oka strain varicella-zoster virus genomes. J. Virol. 82, 11023–11044.

    CAS  Article  Google Scholar 

  25. Vigiliant, L., Stoneking, M., Harpending, H., Hawkes, K., and Wilson A.C. 1991. African population and the evolution of human mitochondrial DNA. Science 253, 1503–1507.

    Article  Google Scholar 

  26. Wakeley, J. 1996. The excess of transitions among nucleotide substitutions: new methods of estimating transition bias underscore its significance. Trends Ecol. Evol. 11, 158–162.

    CAS  Article  Google Scholar 

  27. Weinert, L.A., Depledge, D.P., Kundu, S., Gershon, A.A., Nichols, R.A., Balloux, F., Welch, J.J., and Breuer, J. 2015. Rates of vaccine evolution show strong effects of latency: implications for varicella zoster virus epidemiology. Mol. Biol. Evol. 32, 1020–1028.

    CAS  Article  Google Scholar 

  28. Xie, L., Han, Y., Ma, Y., Yuan, M., Li, W., Li, L.F., Li, M., Sun, Y., Luo, Y., Li, S., et al. 2020. P108 and T109 on E2 glycoprotein domain I are critical for the adaptation of classical swine fever virus to rabbits but not for virulence in pigs. J. Virol. 94, e01104–20.

    CAS  Article  Google Scholar 

  29. Yamanishi, K. 2008. Molecular analysis of the Oka vaccine strain of varicella-zoster virus. J. Infect. Dis. 197, S45–S48.

    CAS  Article  Google Scholar 

  30. Zerboni, L., Sen, N., Oliver, S.J., and Arvin, A.M. 2014. Molecular mechanisms of varicella zoster virus pathogenesis. Nat. Rev. Microbiol. 12, 197–210.

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by funding from GC Pharma.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Chan Hee Lee.

Ethics declarations

The authors have no conflicts of interest to report.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

12275_2021_1062_MOESM1_ESM.pdf

Supplementary data Fig. S1. Distribution of genetically polymorphic sites (GPS) on the genome of the three different passages of Suduvax-PP3.

Supplementary material, approximately 38.6 KB.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hwang, H.R., Kang, S.H. & Lee, C.H. Genetic changes in plaque-purified varicella vaccine strain Suduvax during in vitro propagation in cell culture. J Microbiol. 59, 702–707 (2021). https://doi.org/10.1007/s12275-021-1062-3

Download citation

Keywords

  • varicella vaccine
  • evolution in vitro
  • mutation
  • genetic polymorphism
  • genetic fixation