Skip to main content

Comparative genomics analysis of Pediococcus acidilactici species

Abstract

Pediococcus acidilactici is a reliable bacteriocin producer and a promising probiotic species with wide application in the food and health industry. However, the underlying genetic features of this species have not been analyzed. In this study, we performed a comprehensive comparative genomic analysis of 41 P. acidilactici strains from various ecological niches. The bacteriocin production of 41 strains were predicted and three kinds of bacteriocin encoding genes were identified in 11 P. acidilactici strains, namely pediocin PA-1, enterolysin A, and colicin-B. Moreover, whole-genome analysis showed a high genetic diversity within the population, mainly related to a large proportion of variable genomes, mobile elements, and hypothetical genes obtained through horizontal gene transfer. In addition, comparative genomics also facilitated the genetic explanation of the adaptation for host environment, which specify the protection mechanism against the invasion of foreign DNA (i.e. CRISPR/Cas locus), as well as carbohydrate fermentation. The 41 strains of P. acidilactici can metabolize a variety of carbon sources, which enhances the adaptability of this species and survival in different environments. This study evaluated the antibacterial ability, genome evolution, and ecological flexibility of P. acidilactici from the perspective of genetics and provides strong supporting evidence for its industrial development and application.

This is a preview of subscription content, access via your institution.

References

  1. Abu-Taraboush, H., Al-Dagal, M., and Al-Royli, M. 1998. Growth, viability, and proteolytic activity of Bifidobacteria in whole camel milk. J. Dairy Sci. 81, 354–361.

    CAS  PubMed  Google Scholar 

  2. Altermann, E. 2012. Tracing lifestyle adaptation in prokaryotic genomes. Front. Microbiol. 3, 48.

    PubMed  PubMed Central  Google Scholar 

  3. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403–410.

    CAS  PubMed  Google Scholar 

  4. Anastasiadou, S., Papagianni, M., Filiousis, G., Ambrosiadis, I., and Koidis, P. 2008. Pediocin SA-1, an antimicrobial peptide from Pediococcus acidilactici NRRL B5627: Production conditions, purification and characterization. Bioresour. Technol. 99, 5384–5390.

    CAS  PubMed  Google Scholar 

  5. Arber, W. 1991. Elements in microbial evolution. J. Mol. Evol. 33, 4–12.

    CAS  PubMed  Google Scholar 

  6. Arboleya, S., Bottacini, F., O’Connell-Motherway, M., Ryan, C.A., Ross, R.P., Van Sinderen, D., and Stanton, C. 2018. Gene-trait matching across the Bifidobacterium longum pan-genome reveals considerable diversity in carbohydrate catabolism among human infant strains. BMC Genomics 19, 33.

    PubMed  PubMed Central  Google Scholar 

  7. Arndt, D., Grant, J.R., Marcu, A., Sajed, T., Pon, A., Liang, Y., and Wishart, D.S. 2016. PHASTER: a better, faster version of the PHAST phage search tool. Nucleic Acids Res. 44, W16–W21.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Aziz, R.K., Bartels, D., Best, A.A., DeJongh, M., Disz, T., Edwards, R.A., Formsma, K., Gerdes, S., Glass, E.M., Kubal, M., et al. 2008. The RAST Server: rapid annotations using subsystems technology. BMC Genomics 9, 75.

    PubMed  PubMed Central  Google Scholar 

  9. Barrangou, R., Fremaux, C., Deveau, H., Richards, M., Boyaval, P., Moineau, S., Romero, D.A., and Horvath, P. 2007. CRISPR provides acquired resistance against viruses in prokaryotes. Science 315, 1709–1712.

    CAS  PubMed  Google Scholar 

  10. Bazinet, A.L. 2017. Pan-genome and phylogeny of Bacillus cereus sensu lato. BMC Evol. Biol. 17, 176.

    PubMed  PubMed Central  Google Scholar 

  11. Biswas, S., Ray, P., Johnson, M., and Ray, B. 1991. Influence of growth conditions on the production of a bacteriocin, pediocin AcH, by Pediococcus acidilactici H. Appl. Environ. Microbiol. 57, 1265–1267.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Burke, G.R. and Moran, N.A. 2011. Massive genomic decay in Serratia symbiotica, a recently evolved symbiont of aphids. Genome Biol. Evol. 3, 195–208.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Cameron, A., Zaheer, R., Adator, E.H., Barbieri, R., Reuter, T., and McAllister, T.A. 2019. Bacteriocin occurrence and activity in Escherichia coli isolated from bovines and wastewater. Toxins 11, 475.

    CAS  PubMed Central  Google Scholar 

  14. Cantarel, B.L., Coutinho, P.M., Rancurel, C., Bernard, T., Lombard, V., and Henrissat, B. 2009. The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res. 37, D233–D238.

    CAS  PubMed  Google Scholar 

  15. Carver, T.J., Rutherford, K.M., Berriman, M., Rajandream, M.A., Barrell, B.G., and Parkhill, J. 2005. ACT: the Artemis comparison tool. Bioinformatics 21, 3422–3423.

    CAS  PubMed  Google Scholar 

  16. Chikindas, M.L., García-Garcerá, M.J., Driessen, A., Ledeboer, A.M., Nissen-Meyer, J., Nes, I.F., Abee, T., Konings, W.N., and Venema, G. 1993. Pediocin PA-1, a bacteriocin from Pediococcus acidilactici PAC1. 0, forms hydrophilic pores in the cytoplasmic membrane of target cells. Appl. Environ. Microbiol. 59, 3577–3584.

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Cintas, L., Casaus, P., Fernández, M., and Hernández, P. 1998. Comparative antimicrobial activity of enterocin L50, pediocin PA-1, nisin A and lactocin S against spoilage and foodborne pathogenic bacteria. Food Microbiol. 15, 289–298.

    CAS  Google Scholar 

  18. Cintas, L.M., Rodriguez, J.M., Fernandez, M.F., Sletten, K., Nes, I.F., Hernandez, P.E., and Holo, H. 1995. Isolation and characterization of pediocin L50, a new bacteriocin from Pediococcus aci-dilactici with a broad inhibitory spectrum. Appl. Environ. Microbiol. 61, 2643–2648.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Contreras-Moreira, B. and Vinuesa, P. 2013. GET_HOMOLOGUES, a versatile software package for scalable and robust microbial pangenome analysis. Appl. Environ. Microbiol. 79, 7696–7701.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Couvin, D., Bernheim, A., Toffano-Nioche, C., Touchon, M., Michalik, J., Néron, B., Rocha, E.P., Vergnaud, G., Gautheret, D., and Pourcel, C. 2018. CRISPRCasFinder, an update of CRISRFinder, includes a portable version, enhanced performance and integrates search for Cas proteins. Nucleic Acids Res. 46, W246–W251.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Dabour, N., Zihler, A., Kheadr, E., Lacroix, C., and Fliss, I. 2009. In vivo study on the effectiveness of pediocin PA-1 and Pediococcus acidilactici UL5 at inhibiting Listeria monocytogenes. Int. J. Food Microbiol. 133, 225–233.

    CAS  PubMed  Google Scholar 

  22. Drissi, F., Merhej, V., Angelakis, E., El Kaoutari, A., Carrière, F., Henrissat, B., and Raoult, D. 2014. Comparative genomics analysis of Lactobacillus species associated with weight gain or weight protection. Nutr. Diabetes 4, e109.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Elsinghorst, E.A. and Mortlock, R.P. 1988. D-Arabinose metabolism in Escherichia coli B: induction and cotransductional mapping of the l-fucose-d-arabinose pathway enzymes. J. Bacteriol. 170, 5423–5432.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Elsinghorst, E.A. and Mortlock, R.P. 1994. Molecular cloning of the Escherichia coli B L-fucose-D-arabinose gene cluster. J. Bacteriol. 176, 7223–7232.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Feng, J., Wang, L., Zhou, L., Yang, X., and Zhao, X. 2016. Using in vitro immunomodulatory properties of lactic acid bacteria for selection of probiotics against Salmonella infection in broiler chicks. PLoS ONE 11, e0147630.

    PubMed  PubMed Central  Google Scholar 

  26. Flint, H.J., Bayer, E.A., Rincon, M.T., Lamed, R., and White, B.A. 2008. Polysaccharide utilization by gut bacteria: potential for new insights from genomic analysis. Nat. Rev. Microbiol. 6, 121–131.

    CAS  PubMed  Google Scholar 

  27. Fu, J. and Qin, Q. 2012. Analysis of pan-genomic characteristics of 30 strains of E. coli. Genetic 34, 765–772.

    CAS  Google Scholar 

  28. Fuller, R. 1992. Probiotics: The scientific basis. Chapman & Hall, London, United Kingdom.

    Google Scholar 

  29. Goldin, B.R. and Gorbach, S.L. 1992. Probiotics for humans. In Fuller, R. (ed.) Probiotics. Springer, Dordrecht, Germany.

    Google Scholar 

  30. Henderson, J.T., Chopko, A.L., and Van Wassenaar, P.D. 1992. Purification and primary structure of pediocin PA-1 produced by Pediococcus acidilactici PAC-1.0. Arch. Biochem. Biophys. 295, 5–12.

    CAS  PubMed  Google Scholar 

  31. Holzapfel, W.H., Franz, C.M.A.P., Ludwig, W., Back, W., and Dicks, L.M.T. 2006. The genera Pediococcus and Tetragenococcus. In Dworkin, M., Falkow, S., Rosenberg, E., Schleifer, K.H., and Stackebrandt, E. (eds.), The Prokaryotes, pp. 229–266. Springer, New York, USA.

    Google Scholar 

  32. Horvath, P. and Barrangou, R. 2010. CRISPR/Cas, the immune system of bacteria and archaea. Science 327, 167–170.

    CAS  PubMed  Google Scholar 

  33. Horvath, P., Coûté-Monvoisin, A.C., Romero, D.A., Boyaval, P., Fremaux, C., and Barrangou, R. 2009. Comparative analysis of CRISPR loci in lactic acid bacteria genomes. Int. J. Food Microbiol. 131, 62–70.

    CAS  PubMed  Google Scholar 

  34. Jiang, J., Yang, B., Ross, R.P., Stanton, C., and Chen, W. 2020. Comparative genomics of Pediococcus pentosaceus isolated from different niches reveals genetic diversity in carbohydrate metabolism and immune system. Front. Microbiol. 11, 253.

    PubMed  PubMed Central  Google Scholar 

  35. Karp, P.D., Latendresse, M., Paley, S.M., Krummenacker, M., Ong, Q.D., Billington, R., Kothari, A., Weaver, D., Lee, T., Subhraveti, P., et al. 2016. Pathway tools version 19.0 update: software for pathway/genome informatics and systems biology. Brief. Bioinform. 17, 877–890.

    CAS  PubMed  Google Scholar 

  36. Kelly, W.J., Cookson, A.L., Altermann, E., Lambie, S.C., Perry, R., Teh, K.H., Otter, D.E., Shapiro, N., Woyke, T., and Leahy, S.C. 2016. Genomic analysis of three Bifidobacterium species isolated from the calf gastrointestinal tract. Sci. Rep. 6, 30768.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Kolde, R. and Kolde, M.R. 2015. Package ‘pheatmap’. R package 1, 790.

    Google Scholar 

  38. Komora, N., Maciel, C., Pinto, C.A., Ferreira, V., Brandào, T.R., Saraiva, J.M., Castro, S.M., and Teixeira, P. 2020. Non-thermal approach to Listeria monocytogenes inactivation in milk: The combined effect of high pressure, pediocin PA-1 and bacteriophage P100. Food Microbiol. 86, 103315.

    CAS  PubMed  Google Scholar 

  39. LeBlanc, D.J. and Mortlock, R.P. 1971. Metabolism of d-arabinose: a new pathway in Escherichia coli. J. Bacteriol. 106, 90–96.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Letunic, I. and Bork, P. 2016. Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res. 44, W242–W245.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Liu, Y., Harrison, P.M., Kunin, V., and Gerstein, M. 2004. Comprehensive analysis of pseudogenes in prokaryotes: widespread gene decay and failure of putative horizontally transferred genes. Genome Biol. 5, R64.

    PubMed  PubMed Central  Google Scholar 

  42. Lozano, J.C.N., Meyer, J.N., Sletten, K., Peláz, C., and Nes, I.F. 1992. Purification and amino acid sequence of a bacteriocin produced by Pediococcus acidilactici. Microbiology 138, 1985–1990.

    Google Scholar 

  43. Makarova, K.S., Wolf, Y.I., Alkhnbashi, O.S., Costa, F., Shah, S.A., Saunders, S.J., Barrangou, R., Brouns, S.J., Charpentier, E., Haft, D.H., et al. 2015. An updated evolutionary classification of CRISPR-Cas systems. Nat. Rev. Microbiol. 13, 722–736.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Marri, P.R., Hao, W., and Golding, G.B. 2006. Gene gain and gene loss in Streptococcus: is it driven by habitat? Mol. Biol. Evol. 23, 2379–2391.

    CAS  PubMed  Google Scholar 

  45. Mäyra-Mäkinen, A. and Bigret, M. 2004. Industrial use and production of lactic acid bacteria. In Salminen, S. and von Wright, A. (eds.), Lactic acid bacteria, Chapter 5. CRC Press, New York, USA.

    Google Scholar 

  46. Medini, D., Donati, C., Tettelin, H., Masignani, V., and Rappuoli, R. 2005. The microbial pan-genome. Curr. Opin. Genet. Dev. 15, 589–594.

    CAS  PubMed  Google Scholar 

  47. Nieto-Lozano, J.C., Reguera-Useros, J.I., Peláez-Martínez, M.D.C., Sacristán-Pérez-Minayo, G., Gutiérrez-Fernández, A.J., and de la Torre, A.H. 2010. The effect of the pediocin PA-1 produced by Pediococcus acidilactici against Listeria monocytogenes and Clostridium perfringens in Spanish dry-fermented sausages and frankfurters. Food Control 21, 679–685.

    CAS  Google Scholar 

  48. Nissen-Meyer, J. and Nes, I.F. 1997. Ribosomally synthesized antimicrobial peptides: their function, structure, biogenesis, and mechanism of action. Arch. Microbiol. 167, 67–77.

    CAS  PubMed  Google Scholar 

  49. O’Donnell, M.M., Forde, B.M., Neville, B., Ross, P.R., and O’Toole, P.W. 2011. Carbohydrate catabolic flexibility in the mammalian intestinal commensal Lactobacillus ruminis revealed by fermentation studies aligned to genome annotations. Microb. Cell Fact. 10, S12.

    PubMed  Google Scholar 

  50. Olszewska, M. and Staniewski, B. 2012. Cell viability of Bifidobacterium lactis strain in long-term storage butter assessed with the plate count and fluorescence techniques. Czech J. Food Sci. 30, 421–428.

    Google Scholar 

  51. Parada, J.L., Caron, C.R., Medeiros, A.B.P., and Soccol, C.R. 2007. Bacteriocins from lactic acid bacteria: purification, properties and use as biopreservatives. Braz. Arch. Biol. Technol. 50, 512–542.

    Google Scholar 

  52. Porto, M.C.W., Kuniyoshi, T.M., Azevedo, P.O.S., Vitolo, M., and Oliveira, R.P.S. 2017. Pediococcus spp.: an important genus of lactic acid bacteria and pediocin producers. Biotechnol. Adv. 35, 361–374.

    CAS  PubMed  Google Scholar 

  53. Rohman, A., Dijkstra, B.W., and Puspaningsih, N.N.T. 2019. β-Xylosidases: structural diversity, catalytic mechanism, and inhibition by monosaccharides. Int. J. Mol. Sci. 20, 5524.

    CAS  PubMed Central  Google Scholar 

  54. Semjonovs, P. and Zikmanis, P. 2008. Evaluation of novel lactose-positive and exopolysaccharide-producing strain of Pediococcus pentosaceus for fermented foods. Eur. Food Res. Technol. 227, 851–856.

    CAS  Google Scholar 

  55. Shah, A.A., Yuan, X., Khan, R.U., and Shao, T. 2018. Effect of lactic acid bacteria-treated King grass silage on the performance traits and serum metabolites in New Zealand white rabbits (Oryctolagus cuniculus). J. Anim. Physiol. Anim. Nutr. 102, e902–e908.

    CAS  Google Scholar 

  56. Stiles, M.E. and Holzapfel, W.H. 1997. Lactic acid bacteria of foods and their current taxonomy. Int. J. Food Microbiol. 36, 1–29.

    CAS  PubMed  Google Scholar 

  57. Tamura, K., Dudley, J., Nei, M., and Kumar, S. 2007. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol. Biol. Evol. 24, 1596–1599.

    CAS  PubMed  Google Scholar 

  58. Tarailo-Graovac, M. and Chen, N. 2004. Using RepeatMasker to identify repetitive elements in genomic sequences. Curr. Protoc. Bioinformatics 25, 4.10.1–4.110.14.

    Google Scholar 

  59. Tatusov, R.L., Galperin, M.Y., Natale, D.A., and Koonin, E.V. 2000. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28, 33–36.

    CAS  PubMed  PubMed Central  Google Scholar 

  60. Tettelin, H., Riley, D., Cattuto, C., and Medini, D. 2008. Comparative genomics: the bacterial pan-genome. Curr. Opin. Microbiol. 11, 472–477.

    CAS  PubMed  Google Scholar 

  61. Ueda, T., Tategaki, A., Hamada, K., Kishida, H., Nakagawa, K., Hosoe, K., Morikawa, H., and Nakagawa, K. 2018. Effects of Pediococcus acidilactici R037 on serum triglyceride levels in mice and rats after oral administration. J. Nutr. Sci. Vitaminol. 64, 41–47.

    CAS  PubMed  Google Scholar 

  62. van Heel, A.J., de Jong, A., Song, C., Viel, J.H., Kok, J., and Kuipers, O.P.J.N.a.r. 2018. BAGEL4: a user-friendly web server to thoroughly mine RiPPs and bacteriocins. Nucleic Acids Res. 46, W278–W281.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Waack, S., Keller, O., Asper, R., Brodag, T., Damm, C., Fricke, W.F., Surovcik, K., Meinicke, P., and Merkl, R. 2006. Score-based prediction of genomic islands in prokaryotic genomes using hidden Markov models. BMC Bioinformatics 7, 142.

    PubMed  PubMed Central  Google Scholar 

  64. Yang, X., Shi, P., Huang, H., Luo, H., Wang, Y., Zhang, W., and Yao, B. 2014. Two xylose-tolerant GH43 bifunctional β-xylosidase/α-arabinosidases and one GH11 xylanase from Humicola insolens and their synergy in the degradation of xylan. Food Chem. 148, 381–387.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all members of the Guangdong Provincial Key Laboratory of core colletion of corp genetic resources research and application (NO.2011A091000047). This work was supported by the projects subsidized by special funds for science technology innovation and industrial development of Shenzhen Dapeng New District (Grand No. KJYF-202001-10).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Shancen Zhao.

Ethics declarations

We have no conflicts of interest to report.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Song, Q., Wang, M. et al. Comparative genomics analysis of Pediococcus acidilactici species. J Microbiol. 59, 573–583 (2021). https://doi.org/10.1007/s12275-021-0618-6

Download citation

Keywords

  • Pediococcus acidilactici
  • comparative genomics
  • pan-genome
  • bacteriocin
  • genetic diversity