Skip to main content
Log in

Spot 42 RNA regulates putrescine catabolism in Escherichia coli by controlling the expression of puuE at the post-transcription level

  • Microbial Physiology and Biochemistry
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Putrescine, a typical polyamine compound important for cell growth and stress resistance, can be utilized as an energy source. However, the regulation of its catabolism is unclear. Here the small RNA (sRNA) Spot 42, an essential regulator of carbon catabolite repression (CCR), was confirmed to participate in the post-transcriptional regulation of putrescine catabolism in Escherichia coli. Its encoding gene spf exclusively exists in the γ-proteobacteria and contains specific binding sites to the 5′-untranslated regions of the puuE gene, which encodes transaminase in the glutamylated putrescine pathway of putrescine catabolism converting γ-aminobutyrate (GABA) into succinate semialdehyde (SSA). The transcription of the spf gene was induced by glucose, inhibited by putrescine, and unaffected by PuuR, the repressor of puu genes. Excess Spot 42 repressed the expression of PuuE significantly in an antisense mechanism through the direct and specific base-pairing between the 51`-57 nt of Spot 42 and the 5′-UTR of puuE. Interestingly, Spot 42 mainly influenced the stability of the puuCBE transcript. This work revealed the regulatory role of Spot 42 in putrescine catabolism, in the switch between favorable and non-favorable carbon source utilization, and in the balance of metabolism of carbon and nitrogen sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403–410.

    Article  CAS  PubMed  Google Scholar 

  • Bækkedal, C. and Haugen, P. 2015. The Spot 42 RNA: A regulatory small RNA with roles in the central metabolism. RNA Biol. 12, 1071–1077.

    Article  PubMed  PubMed Central  Google Scholar 

  • Beisel, C.L. and Storz, G. 2011. The base-pairing RNA spot 42 participates in a multioutput feedforward loop to help enact catabolite repression in Escherichia coli. Mol. Cell 41, 286–297.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beisel, C.L., Updegrove, T.B., Janson, B.J., and Storz, G. 2012. Multiple factors dictate target selection by Hfq-binding small RNAs. EMBO J. 31, 1961–1974.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dela Vega, A.L. and Delcour, A.H. 1996. Polyamines decrease Escherichia coli outer membrane permeability. J. Bacteriol. 178, 3715–3721.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Desnoyers, G. and Massé, E. 2012. Noncanonical repression of translation initiation through small RNA recruitment of the RNA chaperone Hfq. Genes Dev. 26, 726–739.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gevrekci, A.Ö. 2017. The roles of polyamines in microorganisms. World J. Microbiol. Biotechnol. 33, 204.

    Article  PubMed  CAS  Google Scholar 

  • Görke, B. and Stülke, J. 2008. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat. Rev. Microbiol. 6, 613–624.

    Article  PubMed  CAS  Google Scholar 

  • Igarashi, K. and Kashiwagi, K. 2010. Modulation of cellular function by polyamines. Int. J. Biochem. Cell Biol. 42, 39–51.

    Article  CAS  PubMed  Google Scholar 

  • Ji, N., Wang, X., Yin, C., Peng, W., and Liang, R. 2019. CrgA protein represses AlkB2 monooxygenase and regulates the degradation of medium-to-long-chain n-alkanes in Pseudomonas aeruginosa SJTD-1. Front. Microbiol. 10, 400.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kaplan, S., Bren, A., Zaslaver, A., Dekel, E., and Alon, U. 2008. Diverse two-dimensional input functions control bacterial sugar genes. Mol. Cell 29, 786–792.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, S., Stecher, G., and Tamura, K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurihara, S., Kato, K., Asada, K., Kumagai, H., and Suzuki, H. 2010. A putrescine-inducible pathway comprising PuuE-YneI in which γ-aminobutyrate is degraded into succinate in Escherichia coli K-12. J. Bacteriol. 192, 4582–4591.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kurihara, S., Oda, S., Kato, K., Kim, H.G., Koyanagi, T., Kumagai, H., and Suzuki, H. 2005. A novel putrescine utilization pathway involves γ-glutamylated intermediates of Escherichia coli K-12. J. Biol. Chem. 280, 4602–4608.

    Article  CAS  PubMed  Google Scholar 

  • Linares, D.M., del Río, B., Ladero, V., Redruello, B., Martín, M.C., Fernández, M., and Alvarez, M.A. 2013. The putrescine biosynthesis pathway in Lactococcus lactis is transcriptionally regulated by carbon catabolic repression, mediated by CcpA. Int. J. Food Microbiol. 165, 43–50.

    Article  CAS  PubMed  Google Scholar 

  • Livak, K.J. and Schmittgen, T.D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25, 402–408.

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto, M., Kakizoe, K., and Benno, Y. 2007. Comparison of fecal microbiota and polyamine concentration in adult patients with intractable atopic dermatitis and healthy adults. Microbiol. Immunol. 51, 37–46.

    Article  CAS  PubMed  Google Scholar 

  • Møller, T., Franch, T., Udesen, C., Gerdes, K., and Valentin-Hansen, P. 2002. Spot 42 RNA mediates discoordinate expression of the E. coli galactose operon. Genes Dev. 16, 1696–1706.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nemoto, N., Kurihara, S., Kitahara, Y., Asada, K., Kato, K., and Suzuki, H. 2012. Mechanism for regulation of the putrescine utilization pathway by the transcription factor PuuR in Escherichia coli K-12. J. Bacteriol. 194, 3437–3447.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pagel, M. and Johnstone, R.A. 1992. Variation across species in the size of the nuclear genome supports the junk-DNA explanation for the C-value paradox. Proc. R Soc. Lond. B. 249, 119–124.

    Article  CAS  Google Scholar 

  • Papenfort, K. and Vogel, J. 2011. Sweet business: Spot 42 RNA networks with CRP to modulate catabolite repression. Mol. Cell 41, 245–246.

    Article  CAS  PubMed  Google Scholar 

  • Pegg, A.E. 1986. Recent advances in the biochemistry of polyamines in eukaryotes. Biochem. J. 234, 249–262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Polayes, D.A., Rice, P.W., Garner, M.M., and Dahlberg, J.E. 1988. Cyclic AMP-cyclic AMP receptor protein as a repressor of transcription of the spf gene of Escherichia coli. J. Bacteriol. 170, 3110–3114.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Prasse, D. and Schmitz, R.A. 2018. Small RNAs involved in regulation of nitrogen metabolism. Microbiol. Spectr. 6, doi: https://doi.org/10.1128/microbiolspec.RWR-0018-2018.

  • Schneider, B.L., Hernandez, V.J., and Reitzer, L. 2013. Putrescine catabolism is a metabolic response to several stresses in Escherichia coli. Mol. Microbiol. 88, 537–550.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider, B.L. and Reitzer, L. 2012. Pathway and enzyme redundancy in putrescine catabolism in Escherichia coli. J. Bacteriol. 194, 4080–4088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Storz, G., Vogel, J., and Wassarman, K.M. 2011. Regulation by small RNAs in bacteria: expanding frontiers. Mol. Cell 43, 880–891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabor, C.W. and Tabor, H. 1985. Polyamines in microorganisms. Microbiol. Rev. 49, 81–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Terui, Y., Saroj, S.D., Sakamoto, A., Yoshida, T., Higashi, K., Kurihara, S., Suzuki, H., Toida, T., Kashiwagi, K., and Igarashi, K. 2014. Properties of putrescine uptake by PotFGHI and PuuP and their physiological significance in Escherichia coli. Amino Acids 46, 661–670.

    Article  CAS  PubMed  Google Scholar 

  • Tkachenko, A.G., Kashevarova, N.M., Tyuleneva, E.A., and Shumkov, M.S. 2017. Stationary-phase genes upregulated by polyamines are responsible for the formation of Escherichia coli persister cells tolerant to netilmicin. FEMS Microbiol. Lett. 364, fnx084.

    Article  PubMed Central  CAS  Google Scholar 

  • Tkachenko, A.G. and Nesterova, L.Y. 2003. Polyamines as modulators of gene expression under oxidative stress in Escherichia coli. Biochemistry (Mosc) 68, 850–856.

    Article  CAS  Google Scholar 

  • Wang, X., Ji, S.C., Jeon, H.J., Lee, Y., and Lim, H.M. 2015. Two-level inhibition of galK expression by Spot 42: Degradation of mRNA mK2 and enhanced transcription termination before the galK gene. Proc. Natl. Acad. Sci. USA 112, 7581–7586.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, D., McAteer, S.P., Wawszczyk, A.B., Russell, C.D., Tahoun, A., Elmi, A., Cockroft, S.L., Tollervey, D., Granneman, S., Tree, J.J., et al. 2018. An RNA-dependent mechanism for transient expression of bacterial translocation filaments. Nucleic Acids Res. 46, 3366–3381.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Warner, J.B. and Lolkema, J.S. 2003. CcpA-dependent carbon catabolite repression in bacteria. Microbiol. Mol. Biol. Rev. 67, 475–490.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Waters, L.S. and Storz, G. 2009. Regulatory RNAs in bacteria. Cell 136, 615–628.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weber, H., Polen, T., Heuveling, J., Wendisch, V.F., and Hengge, R. 2005. Genome-wide analysis of the general stress response network in Escherichia coli: σS-dependent genes, promoters, and sigma factor selectivity. J. Bacteriol. 187, 1591–1603.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wright, P.R., Georg, J., Mann, M., Sorescu, D.A., Richter, A.S., Lott, S., Kleinkauf, R., Hess, W.R., and Backofen, R. 2014. CopraRNA and IntaRNA: predicting small RNA targets, networks and interaction domains. Nucleic Acids Res. 42, W119–W123.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, Y., Tao, F., Ma, C., and Xu, P. 2013. New constitutive vectors: useful genetic engineering tools for biocatalysis. Appl. Environ. Microbiol. 79, 2836–2840.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yao, X., He, W., and Lu, C.D. 2011. Functional characterization of seven γ-glutamylpolyamine synthetase genes and the bauRABCD locus for polyamine and β-alanine utilization in Pseudomonas aeruginosa PAO1. J. Bacteriol. 193, 3923–3930.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, D., Ellis, H.M., Lee, E.C., Jenkins, N.A., Copeland, N.G., and Court, D.L. 2000. An efficient recombination system for chromosome engineering in Escherichia coli. Proc. Natl. Acad. Sci. USA 97, 5978–5983.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zimmer, D.P., Soupene, E., Lee, H.L., Wendisch, V.F., Khodursky, A.B., Peter, B.J., Bender, R.A., and Kustu, S. 2000. Nitrogen regulatory protein C-controlled genes of Escherichia coli: scavenging as a defense against nitrogen limitation. Proc. Natl. Acad. Sci. USA 97, 14674–14679.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuker, M. 2003. Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res. 31, 3406–3415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of Shanghai (19ZR1475500) and the National Natural Science Foundation of China (31570099).

Author information

Authors and Affiliations

Authors

Contributions

X S and RY L performed the experiments and and was a major contributor in writing the manuscript. GC W and WL P assisted the experiments. ZX D and SJ L gave advice and support to this study. RB L designed the experiments, modified the manuscript and supported the study. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Rubing Liang.

Additional information

Conflict of Interest

The authors declare that they have no competing interests.

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Li, R., Wan, G. et al. Spot 42 RNA regulates putrescine catabolism in Escherichia coli by controlling the expression of puuE at the post-transcription level. J Microbiol. 59, 175–185 (2021). https://doi.org/10.1007/s12275-021-0421-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-021-0421-4

Keywords

Navigation