Skip to main content

Advertisement

Log in

Streptococcus pneumoniae aminopeptidase N contributes to bacterial virulence and elicits a strong innate immune response through MAPK and PI3K/AKT signaling

  • Microbial Pathogenesis and Host-Microbe Interaction
  • Published:
Journal of Microbiology

Abstract

Streptococcus pneumoniae is a Gram-positive pathogen with high morbidity and mortality globally but some of its pathogenesis remains unknown. Previous research has provided evidence that aminopeptidase N (PepN) is most likely a virulence factor of S. pneumoniae. However, its role in S. pneumoniae virulence and its interaction with the host remains to be confirmed. We generated a pepN gene deficient mutant strain and found that its virulence for mice was significantly attenuated as were in vitro adhesion and invasion of host cells. The PepN protein could induce a strong innate immune response in vivo and in vitro and induced secretion of IL-6 and TNF-α by primary peritoneal macrophages via the rapid phosphorylation of MAPK and PI3K/AKT signaling pathways and this was confirmed using specific pathway inhibitors. In conclusion, PepN is a novel virulence factor that is essential for the virulence of S. pneumoniae and induces host innate immunity via MAPK and PI3K/AKT signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Akira, S. and Takeda, K. 2004. Toll-like receptor signalling. Nat. Rev. Immunol.4, 499–511.

    Article  CAS  Google Scholar 

  • Bergmann, S., Rohde, M., Chhatwal, G.S., and Hammerschmidt, S. 2001. α-Enolase of Streptococcus pneumoniae is a plasmin(ogen)-binding protein displayed on the bacterial cell surface. Mol. Microbiol.40, 1273–1287.

    Article  CAS  Google Scholar 

  • Bergmann, S., Rohde, M., and Hammerschmidt, S. 2004. Glyceraldehyde-3-phosphate dehydrogenase of Streptococcus pneumoniae is a surface-displayed plasminogen-binding protein. Infect. Immun.72, 2416–2419.

    Article  CAS  Google Scholar 

  • Blevins, L.K., Parsonage, D., Oliver, M.B., Domzalski, E., Swords, W.E., and Alexander-Miller, M.A. 2017. A novel function for the Streptococcus pneumoniae aminopeptidase N: Inhibition of T cell effector function through regulation of TCR signaling. Front. Immunol.8, 1610.

    Article  Google Scholar 

  • Blevins, L.K., Wren, J.T., Holbrook, B.C., Hayward, S.L., Swords, W.E., Parks, G.D., and Alexander-Miller, M.A. 2014. Coinfection with Streptococcus pneumoniae negatively modulates the size and composition of the ongoing influenza-specific CD8+ T cell response. J. Immunol.193, 5076–5087.

    Article  CAS  Google Scholar 

  • Brekke, O.L., Christiansen, D., Fure, H., Fung, M., and Mollnes, T.E. 2007. The role of complement C3 opsonization, C5a receptor, and cd14 in E. coli-induced up-regulation of granulocyte and monocyte CD11b/CD18 (CR3), phagocytosis, and oxidative burst in human whole blood. J. Leukoc. Biol.81, 1404–1413.

    Article  CAS  Google Scholar 

  • Chavagnat, F., Casey, M.G., and Meyer, J. 1999. Purification, characterization, gene cloning, sequencing, and overexpression of aminopeptidase N from Streptococcus thermophilus A. Appl. Environ. Microbiol.65, 3001–3007.

    Article  CAS  Google Scholar 

  • Cui, J., Ma, C., Ye, G., Shi, Y., Xu, W., Zhong, L., Wang, J., Yin, Y., Zhang, X., and Wang, H. 2017. DnaJ (hsp40) of Streptococcus pneumoniae is involved in bacterial virulence and elicits a strong natural immune reaction via PI3K/JNK. Mol. Immunol.83, 137–146.

    Article  CAS  Google Scholar 

  • Dehoux, M.S., Boutten, A., Ostinelli, J., Seta, N., Dombret, M.C., Crestani, B., Deschenes, M., Trouillet, J.L., and Aubier, M. 1994. Compartmentalized cytokine production within the human lung in unilateral pneumonia. Am. J. Respir. Crit. Care Med.150, 710–716.

    Article  CAS  Google Scholar 

  • Dong, J., Wang, J., He, Y., Li, C., Zhou, A., Cui, J., Xu, W., Zhong, L., Yin, Y., Zhang, X., et al. 2014. GHIP in Streptococcus pneumoniae is involved in antibacterial resistance and elicits a strong innate immune response through TLR2 and JNK/p38MAPK. FEBS J.281, 3803–3815.

    Article  CAS  Google Scholar 

  • Elia, P.P., Tolentino, Y.F., Bernardazzi, C., and de Souza, H.S. 2015. The role of innate immunity receptors in the pathogenesis of inflammatory bowel disease. Med. Inflamm.2015, 936193.

    Article  Google Scholar 

  • Groves, E., Dart, A.E., Covarelli, V., and Caron, E. 2008. Molecular mechanisms of phagocytic uptake in mammalian cells. Cell. Mol. Life Sci.65, 1957–1976.

    Article  CAS  Google Scholar 

  • Hato, T. and Dagher, P.C. 2015. How the innate immune system senses trouble and causes trouble. Clin. J. Am. Soc. Nephrol.10, 1459–1469.

    Article  CAS  Google Scholar 

  • Hava, D.L. and Camilli, A. 2002. Large-scale identification of serotype 4 Streptococcus pneumoniae virulence factors. Mol. Microbiol.45, 1389–1406.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kaplan, S.L., Barson, W.J., Lin, P.L., Romero, J.R., Bradley, J.S., Tan, T.Q., Hoffman, J.A., Givner, L.B., and Mason, E.O. Jr. 2013. Early trends for invasive pneumococcal infections in children after the introduction of the 13-valent pneumococcal conjugate vaccine. Pediatr. Infect. Dis. J.32, 203–207.

    Article  Google Scholar 

  • Kawai, T. and Akira, S. 2011. Toll-like receptors and their crosstalk with other innate receptors in infection and immunity. Immunity34, 637–650.

    Article  CAS  Google Scholar 

  • Kerr, A.R., Irvine, J.J., Search, J.J., Gingles, N.A., Kadioglu, A., Andrew, P.W., McPheat, W.L., Booth, C.G., and Mitchell, T.J. 2002. Role of inflammatory mediators in resistance and susceptibility to pneumococcal infection. Infect. Immun.70, 1547–1557.

    Article  CAS  Google Scholar 

  • Lee, J.S., Giesler, D.L., Gellad, W.F., and Fine, M.J. 2016. Antibiotic therapy for adults hospitalized with community-acquired pneumonia: A systematic review. JAMA315, 593–602.

    Article  CAS  Google Scholar 

  • Locksley, R.M., Killeen, N., and Lenardo, M.J. 2001. The TNF and TNF receptor superfamilies: Integrating mammalian biology. Cell104, 487–501.

    Article  CAS  Google Scholar 

  • Medzhitov, R. 2007. Recognition of microorganisms and activation of the immune response. Nature449, 819–826.

    Article  CAS  Google Scholar 

  • Nganje, C.N., Haynes, S.A., Qabar, C.M., Lent, R.C., Bou Ghanem, E.N., and Shainheit, M.G. 2019. PepN is a non-essential, cell wall-ocalized protein that contributes to neutrophil elastase-mediated killing of Streptococcus pneumoniae. PLoS One14, e0211632.

    Article  CAS  Google Scholar 

  • Oliveira, L., Madureira, P., Andrade, E.B., Bouaboud, A., Morello, E., Ferreira, P., Poyart, C., Trieu-Cuot, P., and Dramsi, S. 2012. Group B Streptococcus GAPDH is released upon cell lysis, associates with bacterial surface, and induces apoptosis in murine macrophages. PLoS One7, e29963.

    Article  CAS  Google Scholar 

  • Price, K.E. and Camilli, A. 2009. Pneumolysin localizes to the cell wall of Streptococcus pneumoniae. J. Bacteriol.191, 2163–2168.

    Article  CAS  Google Scholar 

  • Price, K.E., Greene, N.G., and Camilli, A. 2012. Export requirements of pneumolysin in Streptococcus pneumoniae. J. Bacteriol.194, 3651–3660.

    Article  CAS  Google Scholar 

  • Shaw, M.H., Reimer, T., Kim, Y.G., and Nunez, G. 2008. Nod-like receptors (NLRs): Bona fide intracellular microbial sensors. Curr. Opin. Immunol.20, 377–382.

    Article  CAS  Google Scholar 

  • Srivastava, A., Henneke, P., Visintin, A., Morse, S.C., Martin, V., Watkins, C., Paton, J.C., Wessels, M.R., Golenbock, D.T., and Malley, R. 2005. The apoptotic response to pneumolysin is Toll-like receptor 4 dependent and protects against pneumococcal disease. Infect. Immun.73, 6479–6487.

    Article  CAS  Google Scholar 

  • Sun, X., Wang, J., Zhou, J., Wang, H., Wang, X., Wu, J., He, Y., Yin, Y., Zhang, X., and Xu, W. 2017. Subcutaneous immunization with Streptococcus pneumoniae GAPDH confers effective protection in mice via TLR2 and TLR4. Mol. Immunol.83, 1–12.

    Article  CAS  Google Scholar 

  • van der Poll, T., Keogh, C.V., Buurman, W.A., and Lowry, S.F. 1997a. Passive immunization against tumor necrosis factor-alpha impairs host defense during pneumococcal pneumonia in mice. Am. J. Respir. Crit. Care Med.155, 603–608.

    Article  CAS  Google Scholar 

  • van der Poll, T., Keogh, C.V., Guirao, X., Buurman, W.A., Kopf, M., and Lowry, S.F. 1997b. Interleukin-6 gene-deficient mice show impaired defense against pneumococcal pneumonia. J. Infect. Dis.176, 439–444.

    Article  CAS  Google Scholar 

  • Wach, A. 1996. PCR-synthesis of marker cassettes with long flanking homology regions for gene disruptions in S. cerevisiae. Yeast12, 259–265.

    Article  CAS  Google Scholar 

  • Wang, Z., Li, X., Wang, X., Liu, N., Xu, B., Peng, Q., Guo, Z., Fan, B., Zhu, C., and Chen, Z. 2019. Arabidopsis endoplasmic reticulum-localized UBAC2 proteins interact with PAMP-INDUCED COILED-COIL to regulate pathogen-induced callose deposition and plant immunity. Plant Cell31, 153–171.

    Article  CAS  Google Scholar 

  • Witzenrath, M., Pache, F., Lorenz, D., Koppe, U., Gutbier, B., Tabeling, C., Reppe, K., Meixenberger, K., Dorhoi, A., Ma, J., et al. 2011. The NLRP3 inflammasome is differentially activated by pneumolysin variants and contributes to host defense in pneumococcal pneumonia. J. Immunol.187, 434–440.

    Article  CAS  Google Scholar 

  • Xu, Q., Zhang, J.W., Chen, Y., Li, Q., and Jiang, Y.L. 2019. Crystal structure of the choline-binding protein CbpJ from Streptococcus pneumoniae. Biochem. Biophys. Res. Commun.514, 1192–1197.

    Article  CAS  Google Scholar 

  • Yan, W., Cai, Y., Zhang, Q., Liu, Y., Xu, W., Yin, Y., He, Y., Wang, H., and Zhang, X. 2013. Screening and identification of ClpE interaction proteins in Streptococcus pneumoniae by a bacterial two-hybrid system and co-immunoprecipitation. J. Microbiol.51, 453–460.

    Article  CAS  Google Scholar 

  • Yang, C.K., Ewis, H.E., Zhang, X., Lu, C.D., Hu, H.J., Pan, Y., Abdelal, A.T., and Tai, P.C. 2011. Nonclassical protein secretion by Bacillus subtilis in the stationary phase is not due to cell lysis. J. Bacteriol.193, 5607–5615.

    Article  CAS  Google Scholar 

  • Zhang, H., Kang, L., Yao, H., He, Y., Wang, X., Xu, W., Song, Z., Yin, Y., and Zhang, X. 2016. Streptococcus pneumoniae endopeptidase O (PepO) elicits a strong innate immune response in mice via TLR2 and TLR4 signaling pathways. Front. Cell. Infect. Microbiol.6, 23.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the Natural Science Foundation of China (No. 81671639).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wenchun Xu.

Ethics declarations

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Zhang, X., Wu, G. et al. Streptococcus pneumoniae aminopeptidase N contributes to bacterial virulence and elicits a strong innate immune response through MAPK and PI3K/AKT signaling. J Microbiol. 58, 330–339 (2020). https://doi.org/10.1007/s12275-020-9538-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-020-9538-0

Keywords