Skip to main content

Advertisement

Log in

Microbial community analysis using high-throughput sequencing technology: a beginner’s guide for microbiologists

  • Protocol
  • Published:
Journal of Microbiology Aims and scope

Abstract

Microbial communities present in diverse environments from deep seas to human body niches play significant roles in the complex ecosystem and human health. Characterizing their structural and functional diversities is indispensable, and many approaches, such as microscopic observation, DNA fingerprinting, and PCR-based marker gene analysis, have been successfully applied to identify microorganisms. Since the revolutionary improvement of DNA sequencing technologies, direct and high-throughput analysis of genomic DNA from a whole environmental community without prior cultivation has become the mainstream approach, overcoming the constraints of the classical approaches. Here, we first briefly review the history of environmental DNA analysis applications with a focus on profiling the taxonomic composition and functional potentials of microbial communities. To this end, we aim to introduce the shotgun metagenomic sequencing (SMS) approach, which is used for the untargeted (“shotgun”) sequencing of all (“meta”) microbial genomes (“genomic”) present in a sample. SMS data analyses are performed in silico using various software programs; however, in silico analysis is typically regarded as a burden on wet-lab experimental microbiologists. Therefore, in this review, we present microbiologists who are unfamiliar with in silico analyses with a basic and practical SMS data analysis protocol. This protocol covers all the bioinformatics processes of the SMS analysis in terms of data preprocessing, taxonomic profiling, functional annotation, and visualization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. 1990. Basic local alignment search tool. J. Mol. Biol.215, 403–410.

    Article  CAS  PubMed  Google Scholar 

  • Anderson, I.C. and Cairney, J.W. 2004. Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environ. Microbiol.6, 769–779.

    Article  CAS  PubMed  Google Scholar 

  • Angeli, D., Sare, A.R., Jijakli, M.H., Pertot, I., and Massart, S. 2019. Insights gained from metagenomic shotgun sequencing of apple fruit epiphytic microbiota. Postharvest Biol. Technol.153, 96–106.

    Article  CAS  Google Scholar 

  • Baldrian, P. 2017. Forest microbiome: diversity, complexity and dynamics. FEMS Microbiol. Rev.41, 109–130.

    CAS  PubMed  Google Scholar 

  • Bar-On, Y.M., Phillips, R., and Milo, R. 2018. The biomass distribution on Earth. Proc. Natl. Acad. Sci. USA115, 6506–6511.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berendsen, R.L., Pieterse, C.M., and Bakker, P.A. 2012. The rhizosphere microbiome and plant health. Trends Plant Sci.17, 478–486.

    Article  CAS  PubMed  Google Scholar 

  • Boisvert, S., Raymond, F., Godzaridis, É., Laviolette, F., and Corbeil, J. 2012. Ray Meta: scalable de novo metagenome assembly and profiling. Genome Biol.13, R122.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bolger, A.M., Lohse, M., and Usadel, B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics30, 2114–2120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bose, T., Haque, M.M., Reddy, C., and Mande, S.S. 2015. COGNIZER a framework for functional annotation of metagenomic datasets. PLoS One10, e0142102.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bourne, D.G., Morrow, K.M., and Webster, N.S. 2016. Insights into the coral microbiome: underpinning the health and resilience of reef ecosystems. Annu. Rev. Microbiol.70, 317–340.

    Article  CAS  PubMed  Google Scholar 

  • Brady, A. and Salzberg, S.L. 2009. Phymm and PhymmBL: metagenomic phylogenetic classification with interpolated Markov models. Nat. Methods6, 673–676.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Breitwieser, F.P., Lu, J., and Salzberg, S.L. 2017. A review of methods and databases for metagenomic classification and assembly. Brief. Bioinform.20, 1125–1136.

    Article  PubMed Central  Google Scholar 

  • Brown, B.L., Watson, M., Minot, S.S., Rivera, M.C., and Franklin, R.B. 2017. MinIONTM nanopore sequencing of environmental metagenomes: a synthetic approach. Gigascience6, 1–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brugman, S., Ikeda-Ohtsubo, W., Braber, S., Folkerts, G., Pieterse, C.M.J., and Bakker, P.A.H.M. 2018. A comparative review on microbiota manipulation: lessons from fish, plants, livestock, and human research. Front. Nutr.5, 80.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brum, J.R., Ignacio-Espinoza, J.C., Roux, S., Doulcier, G., Acinas, S.G., Alberti, A., Chaffron, S., Cruaud, C., de Vargas, C., Gasol, J.M., et al. 2015. Ocean plankton. Patterns and ecological drivers of ocean viral communities. Science348, 1261498.

    Article  PubMed  CAS  Google Scholar 

  • Bukin, Y.S., Galachyants, Y.P., Morozov, I.V., Bukin, S.V., Zakharenko, A.S., and Zemskaya, T.I. 2019. The effect of 16S rRNA region choice on bacterial community metabarcoding results. Sci. Data6, 190007.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bushnell, B. 2014. BBMap: A fast, accurate, splice-aware aligner. Lawrence Berkeley National Laboratory.

  • Carey, M.A. and Papin, J.A. 2018. Ten simple rules for biologists learning to program. PLoS Comput. Biol.14, e1005871.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Caspi, R., Billington, R., Fulcher, C.A., Keseler, I.M., Kothari, A., Krummenacker, M., Latendresse, M., Midford, P.E., Ong, Q., Ong, W.K., et al. 2018. The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res.46, D633–D639.

    Article  CAS  PubMed  Google Scholar 

  • Chaparro, J.M., Sheflin, A.M., Manter, D.K., and Vivanco, J.M. 2012. Manipulating the soil microbiome to increase soil health and plant fertility. Biol. Fertil. Soils48, 489–499.

    Article  Google Scholar 

  • Chen, I.A., Chu, K., Palaniappan, K., Pillay, M., Ratner, A., Huang, J., Huntemann, M., Varghese, N., White, J.R., Seshadri, R., et al. 2019. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res.47, D666–D677.

    Article  CAS  PubMed  Google Scholar 

  • Cock, P.J., Fields, C.J., Goto, N., Heuer, M.L., and Rice, P.M. 2010. The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res.38, 1767–1771.

    Article  CAS  PubMed  Google Scholar 

  • Coltharp, C. and Xiao, J. 2012. Superresolution microscopy for microbiology. Cell. Microbiol.14, 1808–1818.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Couto, N., Schuele, L., Raangs, E.C., Machado, M.P., Mendes, C.I., Jesus, T.F., Chlebowicz, M., Rosema, S., Ramirez, M., Carrico, J.A., et al. 2018. Critical steps in clinical shotgun metagenomics for the concomitant detection and typing of microbial pathogens. Sci. Rep.8, 13767.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Czajkowski, M.D., Vance, D.P., Frese, S.A., and Casaburi, G. 2019. GenCoF: a graphical user interface to rapidly remove human genome contaminants from metagenomic datasets. Bioinformatics35, 2318–2319.

    Article  CAS  PubMed  Google Scholar 

  • Daims, H. and Wagner, M. 2007. Quantification of uncultured microorganisms by fluorescence microscopy and digital image analysis. Appl. Microbiol. Biotechnol.75, 237–248.

    Article  CAS  PubMed  Google Scholar 

  • Darling, A.E., Jospin, G., Lowe, E., Matsen, F.A. 4th, Bik, H.M., and Eisen, J.A. 2014. PhyloSift: phylogenetic analysis of genomes and metagenomes. PeerJ2, e243.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eren, A.M., Esen, Ö.C., Quince, C., Vineis, J.H., Morrison, H.G., Sogin, M.L., and Delmont, T.O. 2015. Anvi’o: an advanced analysis and visualization platform for’ omics data. PeerJ3, e1319.

    Article  PubMed  PubMed Central  Google Scholar 

  • Fierer, N. and Jackson, R.B. 2006. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA103, 626–631.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fisher, M.M. and Triplett, E.W. 1999. Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl. Environ. Microbiol.65, 4630–4636.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franco-Duarte, R., Cernakova, L., Kadam, S., Kaushik, K.S., Salehi, B., Bevilacqua, A., Corbo, M.R., Antolak, H., Dybka-Stepien, K., Leszczewicz, M., et al. 2019. Advances in chemical and biological methods to identify microorganisms-from past to present. Microorganisms7, 130.

    Article  CAS  PubMed Central  Google Scholar 

  • Franzosa, E.A., McIver, L.J., Rahnavard, G., Thompson, L.R., Schirmer, M., Weingart, G., Lipson, K.S., Knight, R., Caporaso, J.G., Segata, N., et al. 2018. Species-level functional profiling of metagenomes and metatranscriptomes. Nat. Methods15, 962–968.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fu, L.M. and Shinnick, T.M. 2007. Understanding the action of INH on a highly INH-resistant Mycobacterium tuberculosis strain using Genechips. Tuberculosis87, 63–70.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert, J.A., Jansson, J.K., and Knight, R. 2014. The earth microbiome project: successes and aspirations. BMC Biol.12, 69.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gilbert, J.A., Jansson, J.K., and Knight, R. 2018. Earth microbiome project and global systems biology. mSystems3, e00217–17.

    PubMed  PubMed Central  Google Scholar 

  • Gilbert, J.A., Meyer, F., Jansson, J., Gordon, J., Pace, N., Tiedje, J., Ley, R., Fierer, N., Field, D., Kyrpides, N., et al. 2010. The earth microbiome project: meeting report of the “1 EMP meeting on sample selection and acquisition” at Argonne National Laboratory October 6 2010. Stand. Genomic Sci.3, 249–253.

    Article  PubMed  PubMed Central  Google Scholar 

  • Goodwin, S., McPherson, J.D., and McCombie, W.R. 2016. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet.17, 333–351.

    Article  CAS  PubMed  Google Scholar 

  • Haider, B., Ahn, T.H., Bushnell, B., Chai, J., Copeland, A., and Pan, C. 2014. Omega: an overlap-graph de novo assembler for metagenomics. Bioinformatics30, 2717–2722.

    Article  CAS  PubMed  Google Scholar 

  • Handley, K.M., Wrighton, K.C., Piceno, Y.M., Andersen, G.L., De-Santis, T.Z., Williams, K.H., Wilkins, M.J., N’Guessan, A.L., Peacock, A., Bargar, J., et al. 2012. High-density PhyloChip profiling of stimulated aquifer microbial communities reveals a complex response to acetate amendment. FEMS Microbiol. Ecol.81, 188–204.

    Article  CAS  PubMed  Google Scholar 

  • Hanreich, A., Schimpf, U., Zakrzewski, M., Schlüter, A., Benndorf, D., Heyer, R., Rapp, E., Pühler, A., Reichl, U., and Klocke, M. 2013. Metagenome and metaproteome analyses of microbial communities in mesophilic biogas-producing anaerobic batch fermentations indicate concerted plant carbohydrate degradation. Syst. Appl. Microbiol.36, 330–338.

    Article  CAS  PubMed  Google Scholar 

  • Hassa, J., Maus, I., Off, S., Pühler, A., Scherer, P., Klocke, M., and Schlüter, A. 2018. Metagenome, metatranscriptome, and metaproteome approaches unraveled compositions and functional relationships of microbial communities residing in biogas plants. Appl. Microbiol. Biotechnol.102, 5045–5063.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • He, Z., Gentry, T.J., Schadt, C.W., Wu, L., Liebich, J., Chong, S.C., Huang, Z., Wu, W., Gu, B., Jardine, P., et al. 2007. GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J.1, 67–77.

    Article  CAS  PubMed  Google Scholar 

  • Hess, M., Sczyrba, A., Egan, R., Kim, T.W., Chokhawala, H., Schroth, G., Luo, S., Clark, D.S., Chen, F., Zhang, T., et al. 2011. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science331, 463–467.

    Article  CAS  PubMed  Google Scholar 

  • Hill, G.T., Mitkowski, N.A., Aldrich-Wolfe, L., Emele, L.R., Jurkonie, D.D., Ficke, A., Maldonado-Ramirez, S., Lynch, S.T., and Nelson, E.B. 2000. Methods for assessing the composition and diversity of soil microbial communities. Appl. Soil Ecol.15, 25–36.

    Article  Google Scholar 

  • Hillmann, B., Al-Ghalith, G.A., Shields-Cutler, R.R., Zhu, Q., Gohl, D.M., Beckman, K.B., Knight, R., and Knights, D. 2018. Evaluating the information content of shallow shotgun metagenomics. mSystems3, e00069–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hugerth, L.W. and Andersson, A.F. 2017. Analysing microbial community composition through amplicon sequencing: from sampling to hypothesis testing. Front. Microbiol.8, 1561.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ip, C.L.C., Loose, M., Tyson, J.R., de Cesare, M., Brown, B.L., Jain, M., Leggett, R.M., Eccles, D.A., Zalunin, V., Urban, J.M., et al. 2015. MinION analysis and reference consortium: phase 1 data release and analysis. F1000Res.4, 1075.

    Article  PubMed  PubMed Central  Google Scholar 

  • Janda, J.M. and Abbott, S.L. 2007. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J. Clin. Microbiol.45, 2761–2764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jo, J., Oh, J., Lee, H.G., Hong, H.H., Lee, S.G., Cheon, S., Kern, E.M.A., Jin, S., Cho, S.J., Park, J.K., et al. 2017. Draft genome of the sea cucumber Apostichopus japonicus and genetic polymorphism among color variants. GigaScience6, 1–6.

    PubMed  PubMed Central  Google Scholar 

  • Jo, J., Park, C., Kim, M., and Park, C. 2016a. Phylogenetic analysis of the three color variations of the sea cucumber Apostichopus japonicus. J. Aquac. Res. Dev.7, 1000418.

    Article  CAS  Google Scholar 

  • Jo, J., Park, J., Lee, H.G., Kern, E.M.A., Cheon, S., Jin, S., Park, J.K., Cho, S.J., and Park, C. 2016b. Comparative transcriptome analysis of three color variants of the sea cucumber Apostichopus japonicus. Mar. Genomics28, 21–24.

    Article  PubMed  Google Scholar 

  • Jovel, J., Patterson, J., Wang, W., Hotte, N., O’Keefe, S., Mitchel, T., Perry, T., Kao, D., Mason, A.L., Madsen, K.L., et al. 2016. Characterization of the gut microbiome using 16S or shotgun metagenomics. Front. Microbiol.7, 459.

    Article  PubMed  PubMed Central  Google Scholar 

  • Karlin, S., Mrázek, J., and Campbell, A.M. 1997. Compositional biases of bacterial genomes and evolutionary implications. J. Bacteriol.179, 3899–3913.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kelley, D.R. and Salzberg, S.L. 2010. Clustering metagenomic sequences with interpolated Markov models. BMC Bioinformatics11, 544.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kennedy, K., Hall, M.W., Lynch, M.D., Moreno-Hagelsieb, G., and Neufeld, J.D. 2014. Evaluating bias of illumina-based bacterial 16S rRNA gene profiles. Appl. Environ. Microbiol.80, 5717–5722.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim, S.J., Kim, J.G., Lee, S.H., Park, S.J., Gwak, J.H., Jung, M.Y., Chung, W.H., Yang, E.J., Park, J., Jung, J., et al. 2019. Genomic and metatranscriptomic analyses of carbon remineralization in an Antarctic polynya. Microbiome7, 29.

    Article  PubMed  PubMed Central  Google Scholar 

  • Knight, R., Vrbanac, A., Taylor, B.C., Aksenov, A., Callewaert, C., Debelius, J., Gonzalez, A., Kosciolek, T., McCall, L.I., McDonald, D., et al. 2018. Best practices for analysing microbiomes. Nat. Rev. Microbiol.16, 410–422.

    Article  CAS  PubMed  Google Scholar 

  • Koren, S., Schatz, M.C., Walenz, B.P., Martin, J., Howard, J.T., Ganapathy, G., Wang, Z., Rasko, D.A., McCombie, W.R., Jarvis, E.D., et al. 2012. Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat. Biotechnol.30, 693–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuleshov, V., Jiang, C., Zhou, W., Jahanbani, F., Batzoglou, S., and Snyder, M. 2016. Synthetic long read sequencing reveals intraspecies diversity in the human microbiome. Nat. Biotechnol.34, 64–69.

    Article  CAS  PubMed  Google Scholar 

  • Lai, B., Ding, R., Li, Y., Duan, L., and Zhu, H. 2012. A de novo metagenomic assembly program for shotgun DNA reads. Bioinformatics28, 1455–1462.

    Article  CAS  PubMed  Google Scholar 

  • Langmead, B. and Salzberg, S.L. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods9, 357–359.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laserson, J., Jojic, V., and Koller, D. 2011. Genovo: de novo assembly for metagenomes. J. Comput. Biol.18, 429–443.

    Article  CAS  PubMed  Google Scholar 

  • Lau, J.A. and Lennon, J.T. 2012. Rapid responses of soil microorganisms improve plant fitness in novel environments. Proc. Natl. Acad. Sci. USA109, 14058–14062.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laudadio, I., Fulci, V., Palone, F., Stronati, L., Cucchiara, S., and Carissimi, C. 2018. Quantitative assessment of shotgun metagenomics and 16S rDNA amplicon sequencing in the study of human gut microbiome. OMICS22, 248–254.

    Article  CAS  PubMed  Google Scholar 

  • Lee, E. and Tan, T.W. 2018 Beginners Guide to Bioinformatics for High Throughput Sequencing. World Scientific.

  • Lennon, J.T. and Jones, S.E. 2011. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat. Rev. Microbiol.9, 119–130.

    Article  CAS  PubMed  Google Scholar 

  • Li, D., Liu, C.M., Luo, R., Sadakane, K., and Lam, T.W. 2015. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics31, 1674–1676.

    Article  CAS  PubMed  Google Scholar 

  • Lim, S., Seo, J., Choi, H., Yoon, D., Nam, J., Kim, H., Cho, S., and Chang, J. 2013. Metagenome analysis of protein domain collocation within cellulase genes of goat rumen microbes. Asian-Australas J. Anim. Sci.26, 1144–1151.

    Article  PubMed  PubMed Central  Google Scholar 

  • Lima-Mendez, G., Faust, K., Henry, N., Decelle, J., Colin, S., Carcillo, F., Chaffron, S., Ignacio-Espinosa, J.C., Roux, S., Vincent, F., et al. 2015. Ocean plankton. Determinants of community structure in the global plankton interactome. Science348, 1262073.

    Article  PubMed  CAS  Google Scholar 

  • Lin, Y.Y., Hsieh, C.H., Chen, J.H., Lu, X., Kao, J.H., Chen, P.J., Chen, D.S., and Wang, H.Y. 2017. De novo assembly of highly polymorphic metagenomic data using in situ generated reference sequences and a novel BLAST-based assembly pipeline. BMC Bioinformatics18, 223.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Luckey, T.D. 1972. Introduction to intestinal microecology. Am. J. Clin. Nutr.25, 1292–1294.

    Article  CAS  PubMed  Google Scholar 

  • Lynch, M.D. and Neufeld, J.D. 2015. Ecology and exploration of the rare biosphere. Nat. Rev. Microbiol.13, 217–229.

    Article  CAS  PubMed  Google Scholar 

  • Mallick, H., Ma, S., Franzosa, E.A., Vatanen, T., Morgan, X.C., and Huttenhower, C. 2017. Experimental design and quantitative analysis of microbial community multiomics. Genome Biol.18, 228.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martiny, J.B., Jones, S.E., Lennon, J.T., and Martiny, A.C. 2015. Microbiomes in light of traits: A phylogenetic perspective. Science350, aac9323.

    Article  PubMed  CAS  Google Scholar 

  • McHardy, A.C., Martín, H.G., Tsirigos, A., Hugenholtz, P., and Rigoutsos, I. 2007. Accurate phylogenetic classification of variable-length DNA fragments. Nat. Methods4, 63–72.

    Article  CAS  PubMed  Google Scholar 

  • Medini, D., Donati, C., Tettelin, H., Masignani, V., and Rappuoli, R. 2005. The microbial pan-genome. Curr. Opin. Genet. Dev.15, 589–594.

    Article  CAS  PubMed  Google Scholar 

  • Meyer, F., Bagchi, S., Chaterji, S., Gerlach, W., Grama, A., Harrison, T., Paczian, T., Trimble, W.L., and Wilke, A. 2017. MG-RAST version 4-lessons learned from a decade of low-budget ultra-high-throughput metagenome analysis. Brief. Bioinform.20, 1151–1159.

    Article  PubMed Central  Google Scholar 

  • Milanese, A., Mende, D.R., Paoli, L., Salazar, G., Ruscheweyh, H.J., Cuenca, M., Hingamp, P., Alves, R., Costea, P.I., Coelho, L.P., et al. 2019. Microbial abundance, activity and population genomic profiling with mOTUs2. Nat. Commun.10, 1014.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mitchell, A.L., Scheremetjew, M., Denise, H., Potter, S., Tarkowska, A., Qureshi, M., Salazar, G.A., Pesseat, S., Boland, M.A., Hunter, F.M.I., et al. 2018. EBI Metagenomics in 2017: enriching the analysis of microbial communities, from sequence reads to assemblies. Nucleic Acids Res.46, D726–D735.

    Article  PubMed Central  CAS  Google Scholar 

  • Moran, M.A. 2015. The global ocean microbiome. Science350, aac8455.

    Article  PubMed  CAS  Google Scholar 

  • Mu, A., Kwong, J.C., Isles, N.S., Goncalves da Silva, A., Schultz, M.B., Ballard, S.A., Lane, C.R., Carter, G.P., Williamson, D.A., Seemann, T., et al. 2019. Reconstruction of the genomes of drug-resistant pathogens for outbreak investigation through metagenomic sequencing. mSphere4, e00529–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu, S.Y., Yang, J., McDermaid, A., Zhao, J., Kang, Y., and Ma, Q. 2018. Bioinformatics tools for quantitative and functional metagenome and metatranscriptome data analysis in microbes. Brief. Bioinform.19, 1415–1429.

    Article  CAS  PubMed  Google Scholar 

  • Nurk, S., Meleshko, D., Korobeynikov, A., and Pevzner, P.A. 2017. metaSPAdes: a new versatile metagenomic assembler. Genome Res.27, 824–834.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh, S., Caro-Quintero, A., Tsementzi, D., DeLeon-Rodriguez, N., Luo, C., Poretsky, R., and Konstantinidis, K.T. 2011. Metagenomic insights into the evolution, function, and complexity of the planktonic microbial community of Lake Lanier, a temperate freshwater ecosystem. Appl. Environ. Microbiol.77, 6000–6011.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Orellana, L.H., Chee-Sanford, J.C., Sanford, R.A., Löffler, F.E., and Konstantinidis, K.T. 2018. Year-round shotgun metagenomes reveal stable microbial communities in agricultural soils and novel ammonia oxidizers responding to fertilization. Appl. Environ. Microbiol.84, e01646–17.

    PubMed  PubMed Central  Google Scholar 

  • Österlund, T., Jonsson, V., and Kristiansson, E. 2017. HirBin: high-resolution identification of differentially abundant functions in metagenomes. BMC Genomics18, 316.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Overmann, J., Abt, B., and Sikorski, J. 2017. Present and future of culturing bacteria. Annu. Rev. Microbiol.71, 711–730.

    Article  CAS  PubMed  Google Scholar 

  • Pace, N.R., Stahl, D.A., Lane, D.J., and Olsen, G.J. 1986. The analysis of natural microbial populations by ribosomal RNA sequences. In Marshall, K.C. (ed.), Advances in Microbial Ecology, pp. 1–55. Springer, Boston, MA, USA.

    Google Scholar 

  • Paliy, O. and Agans, R. 2012. Application of phylogenetic microarrays to interrogation of human microbiota. FEMS Microbiol. Ecol.79, 2–11.

    Article  CAS  PubMed  Google Scholar 

  • Peng, Y., Leung, H.C., Yiu, S.M., and Chin, F.Y. 2012. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics28, 1420–1428.

    Article  CAS  PubMed  Google Scholar 

  • Pereira-Marques, J., Hout, A., Ferreira, R.M., Weber, M., Pinto-Ribeiro, I., van Doorn, L.J., Knetsch, C.W., and Figueiredo, C. 2019. Impact of host DNA and sequencing depth on the taxonomic resolution of whole metagenome sequencing for microbiome analysis. Front. Microbiol.10, 1277.

    Article  PubMed  PubMed Central  Google Scholar 

  • Podar, M. and Reysenbach, A.L. 2006. New opportunities revealed by biotechnological explorations of extremophiles. Curr. Opin. Biotechnol.17, 250–255.

    Article  CAS  PubMed  Google Scholar 

  • Pootakham, W., Mhuantong, W., Yoocha, T., Putchim, L., Sonthirod, C., Naktang, C., Thongtham, N., and Tangphatsornruang, S. 2017. High resolution profiling of coral-associated bacterial communities using full-length 16S rRNA sequence data from PacBio SMRT sequencing system. Sci. Rep.7, 2774.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Quince, C., Walker, A.W., Simpson, J.T., Loman, N.J., and Segata, N. 2017. Shotgun metagenomics, from sampling to analysis. Nat. Biotechnol.35, 833–844.

    Article  CAS  PubMed  Google Scholar 

  • Ranjan, R., Rani, A., Metwally, A., McGee, H.S., and Perkins, D.L. 2016. Analysis of the microbiome: advantages of whole genome shotgun versus 16S amplicon sequencing. Biochem. Biophys. Res. Commun.469, 967–977.

    Article  CAS  PubMed  Google Scholar 

  • Relman, D.A. 2012. The human microbiome: ecosystem resilience and health. Nutr. Rev.70, S2–S9.

    Article  PubMed  Google Scholar 

  • Riiser, E.S., Haverkamp, T.H.A., Varadharajan, S., Borgan, Ø., Jakobsen, K.S., Jentoft, S., and Star, B. 2019. Switching on the light: using metagenomic shotgun sequencing to characterize the intestinal microbiome of Atlantic cod. Environ. Microbiol.21, 2576–2594.

    Article  CAS  PubMed  Google Scholar 

  • Rosen, G., Garbarine, E., Caseiro, D., Polikar, R., and Sokhansanj, B. 2008. Metagenome fragment classification using N-mer frequency profiles. Adv. Bioinformatics2008, 205969.

    Article  PubMed  PubMed Central  Google Scholar 

  • Roumpeka, D.D., Wallace, R.J., Escalettes, F., Fotheringham, I., and Watson, M. 2017. A review of bioinformatics tools for bio-prospecting from metagenomic sequence data. Front. Genet.8, 23.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sanli, K., Karlsson, F.H., Nookaew, I., and Nielsen, J. 2013. FANTOM: Functional and taxonomic analysis of metagenomes. BMC Bioinformatics14, 38.

    Article  PubMed  PubMed Central  Google Scholar 

  • Savage, D.C. 1977. Microbial ecology of the gastrointestinal tract. Annu. Rev. Microbiol.31, 107–133.

    Article  CAS  PubMed  Google Scholar 

  • Schmieder, R. and Edwards, R. 2011. Fast identification and removal of sequence contamination from genomic and metagenomic datasets. PLoS One6, e17288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sebat, J.L., Colwell, F.S., and Crawford, R.L. 2003. Metagenomic profiling: microarray analysis of an environmental genomic library. Appl. Environ. Microbiol.69, 4927–4934.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Segata, N., Waldron, L., Ballarini, A., Narasimhan, V., Jousson, O., and Huttenhower, C. 2012. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat. Methods9, 811–814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sender, R., Fuchs, S., and Milo, R. 2016a. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell164, 337–340.

    Article  CAS  PubMed  Google Scholar 

  • Sender, R., Fuchs, S., and Milo, R. 2016b. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol.14, e1002533.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seshadri, R., Kravitz, S.A., Smarr, L., Gilna, P., and Frazier, M. 2007. CAMERA: a community resource for metagenomics. PLoS Biol.5, e75.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sharpton, T.J. 2014. An introduction to the analysis of shotgun metagenomic data. Front. Plant Sci.5, 209.

    Article  PubMed  PubMed Central  Google Scholar 

  • Shendure, J., Balasubramanian, S., Church, G.M., Gilbert, W., Rogers, J., Schloss, J.A., and Waterston, R.H. 2017. DNA sequencing at 40: past, present and future. Nature550, 345–353.

    Article  CAS  PubMed  Google Scholar 

  • Shi, W., Qi, H., Sun, Q., Fan, G., Liu, S., Wang, J., Zhu, B., Liu, H., Zhao, F., Wang, X., et al. 2019. gcMeta: a global catalogue of metagenomics platform to support the archiving, standardization and analysis of microbiome data. Nucleic Acids Res.47, D637–D648.

    Article  CAS  PubMed  Google Scholar 

  • Simpson, J.T. and Pop, M. 2015. The theory and practice of genome sequence assembly. Annu. Rev. Genomics Hum. Genet.16, 153–172.

    Article  CAS  PubMed  Google Scholar 

  • Sogin, M.L., Morrison, H.G., Huber, J.A., Mark Welch, D., Huse, S.M., Neal, P.R., Arrieta, J.M., and Herndl, G.J. 2006. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc. Natl. Acad. Sci. USA103, 12115–12120.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Song, H.J., Lee, J., Graf, L., Rho, M., Qiu, H., Bhattacharya, D., and Yoon, H.S. 2016. A novice’s guide to analyzing NGS-derived organelle and metagenome data. Algae31, 137–154.

    Article  Google Scholar 

  • Stahl, D.A., Lane, D.J., Olsen, G.J., and Pace, N.R. 1985. Characterization of a Yellowstone hot spring microbial community by 5S rRNA sequences. Appl. Environ. Microbiol.49, 1379–1384.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stein, L.D. 2015. Unix Survival Guide. Curr. Protoc. Bioinformatics51, A1.C.1–A1.C.27.

    Article  Google Scholar 

  • Strous, M., Kraft, B., Bisdorf, R., and Tegetmeyer, H.E. 2012. The binning of metagenomic contigs for microbial physiology of mixed cultures. Front. Microbiol.3, 410.

    Article  PubMed  PubMed Central  Google Scholar 

  • Sudarikov, K., Tyakht, A., and Alexeev, D. 2017. Methods for the metagenomic data visualization and analysis. Curr. Issues Mol. Biol.24, 37–58.

    Article  PubMed  Google Scholar 

  • Sunagawa, S., Coelho, L.P., Chaffron, S., Kultima, J.R., Labadie, K., Salazar, G., Djahanschiri, B., Zeller, G., Mende, D.R., Alberti, A., et al. 2015a. Ocean plankton. Structure and function of the global ocean microbiome. Science348, 1261359.

    Article  PubMed  CAS  Google Scholar 

  • Sunagawa, S., Karsenti, E., Bowler, C., and Bork, P. 2015b. Computational eco-systems biology in Tara Oceans: translating data into knowledge. Mol. Syst. Biol.11, 809.

    Article  PubMed  PubMed Central  Google Scholar 

  • Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C., and Willerslev, E. 2012. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol.21, 2045–2050.

    Article  CAS  PubMed  Google Scholar 

  • The Human Microbiome Project Consortium. 2012a. A framework for human microbiome research. Nature486, 215–221.

    Article  CAS  Google Scholar 

  • The Human Microbiome Project Consortium. 2012b. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214.

    Article  PubMed Central  CAS  Google Scholar 

  • The Integrative HMP (iHMP) Research Network Consortium. 2019. The integrative human microbiome project. Nature569, 641–648.

    Article  CAS  Google Scholar 

  • Thompson, L.R., Sanders, J.G., McDonald, D., Amir, A., Ladau, J., Locey, K.J., Prill, R.J., Tripathi, A., Gibbons, S.M., Ackermann, G., et al. 2017. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature551, 457–463.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Treangen, T.J., Koren, S., Sommer, D.D., Liu, B., Astrovskaya, I., Ondov, B., Darling, A.E., Phillippy, A.M., and Pop, M. 2013. Met-AMOS: a modular and open source metagenomic assembly and analysis pipeline. Genome Biol.14, R2.

    Article  PubMed  PubMed Central  Google Scholar 

  • Tully, B.J., Graham, E.D., and Heidelberg, J.F. 2018. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci. Data5, 170203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turnbaugh, P.J., Ley, R.E., Hamady, M., Fraser-Liggett, C.M., Knight, R., and Gordon, J.I. 2007. The human microbiome project. Nature449, 804–810.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van Dijk, E.L., Auger, H., Jaszczyszyn, Y., and Thermes, C. 2014. Ten years of next-generation sequencing technology. Trends Genet.30, 418–426.

    Article  CAS  PubMed  Google Scholar 

  • Venter, J.C., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J., Sutton, G.G., Smith, H.O., Yandell, M., Evans, C.A., Holt, R.A., et al. 2001. The sequence of the human genome. Science291, 1304–1351.

    Article  CAS  PubMed  Google Scholar 

  • Venter, J.C., Remington, K., Heidelberg, J.F., Halpern, A.L., Rusch, D., Eisen, J.A., Wu, D., Paulsen, I., Nelson, K.E., Nelson, W., et al. 2004. Environmental genome shotgun sequencing of the Sargasso sea. Science304, 66–74.

    Article  CAS  PubMed  Google Scholar 

  • Větrovský, T. and Baldrian, P. 2013. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS One8, e57923.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Via, A., Blicher, T., Bongcam-Rudloff, E., Brazas, M.D., Brooksbank, C., Budd, A., De Las Rivas, J., Dreyer, J., Fernandes, P.L., van Gelder, C., et al. 2013. Best practices in bioinformatics training for life scientists. Brief. Bioinform.14, 528–537.

    Article  PubMed  PubMed Central  Google Scholar 

  • von Wintzingerode, F., Göbel, U.B., and Stackebrandt, E. 1997. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol. Rev.21, 213–229.

    Article  CAS  PubMed  Google Scholar 

  • White, D.C., Pinkart, H.C., and Ringelberg, A.B. 1997. Biomass measurements: biochemical approaches. In Hurst, C.J., Knudson, G.R., Mclnerney, M.J., Stetzenbach, L.D., and Walter, M.V. (eds.), Manual of Environmental Microbiology, 3rd edn, pp. 91–101. American Society for Microbiology, USA.

    Google Scholar 

  • Wilson, K.H., Wilson, W.J., Radosevich, J.L., DeSantis, T.Z., Viswanathan, V.S., Kuczmarski, T.A., and Andersen, G.L. 2002. High-density microarray of small-subunit ribosomal DNA probes. Appl. Environ. Microbiol.68, 2535–2541.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wiseschart, A., Mhuantong, W., Tangphatsornruang, S., Chantasingh, D., and Pootanakit, K. 2019. Shotgun metagenomic sequencing from Manao-Pee cave, Thailand, reveals insight into the microbial community structure and its metabolic potential. BMC Microbiol.19, 144.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Woese, C.R. 1987. Bacterial evolution. Microbiol. Rev.51, 221–271.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Woese, C.R. and Fox, G.E. 1977. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. USA74, 5088–5090.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Woese, C.R., Stackebrandt, E., Macke, T.J., and Fox, G.E. 1985. A phylogenetic definition of the major eubacterial taxa. Syst. Appl. Microbiol.6, 143–151.

    Article  CAS  PubMed  Google Scholar 

  • Wood, D.E., Lu, J., and Langmead, B. 2019. Improved metagenomic analysis with Kraken 2. Genome Biol.20, 257.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wood, D.E. and Salzberg, S.L. 2014. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol.15, R46.

    Article  PubMed  PubMed Central  Google Scholar 

  • Xie, J., He, Z., Liu, X., Liu, X., Van Nostrand, J.D., Deng, Y., Wu, L., Zhou, J., and Qiu, G. 2011. GeoChip-based analysis of the functional gene diversity and metabolic potential of microbial communities in acid mine drainage. Appl. Environ. Microbiol.77, 991–999.

    Article  CAS  PubMed  Google Scholar 

  • Yang, B., Wang, Y., and Qian, P.Y. 2016. Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinformatics17, 135.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yarza, P., Yilmaz, P., Pruesse, E., Glockner, F.O., Ludwig, W., Schleifer, K.H., Whitman, W.B., Euzeby, J., Amann, R., and Rossello-Mora, R. 2014. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat. Rev. Microbiol.12, 635–645.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, H. and Ning, K. 2015. The Tara Oceans Project: new opportunities and greater challenges ahead. Genomics Proteomics Bioinformatics13, 275–277.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, X., Sun, L., Yuan, J., Sun, Y., Gao, Y., Zhang, L., Li, S., Dai, H., Hamel, J.F., Liu, C., et al. 2017. The sea cucumber genome provides insights into morphological evolution and visceral regeneration. PLoS Biol.15, e2003790.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zinicola, M., Higgins, H., Lima, S., Machado, V., Guard, C., and Bicalho, R. 2015. Shotgun metagenomic sequencing reveals functional genes and microbiome associated with bovine digital dermatitis. PLoS One10, e0133674.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

We thank members of the CSB lab and Dr. Hyun-Gwan Lee for valuable comments. This research was supported by the Collaborative Genome Program (No. 20180430) and “Research center for fishery resource management based on the information and communication technology (ICT)” of the Korea Institute of Marine Science and Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries of the Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chungoo Park.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jo, J., Oh, J. & Park, C. Microbial community analysis using high-throughput sequencing technology: a beginner’s guide for microbiologists. J Microbiol. 58, 176–192 (2020). https://doi.org/10.1007/s12275-020-9525-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-020-9525-5

Keywords

Navigation