Abstract
Microbial communities present in diverse environments from deep seas to human body niches play significant roles in the complex ecosystem and human health. Characterizing their structural and functional diversities is indispensable, and many approaches, such as microscopic observation, DNA fingerprinting, and PCR-based marker gene analysis, have been successfully applied to identify microorganisms. Since the revolutionary improvement of DNA sequencing technologies, direct and high-throughput analysis of genomic DNA from a whole environmental community without prior cultivation has become the mainstream approach, overcoming the constraints of the classical approaches. Here, we first briefly review the history of environmental DNA analysis applications with a focus on profiling the taxonomic composition and functional potentials of microbial communities. To this end, we aim to introduce the shotgun metagenomic sequencing (SMS) approach, which is used for the untargeted (“shotgun”) sequencing of all (“meta”) microbial genomes (“genomic”) present in a sample. SMS data analyses are performed in silico using various software programs; however, in silico analysis is typically regarded as a burden on wet-lab experimental microbiologists. Therefore, in this review, we present microbiologists who are unfamiliar with in silico analyses with a basic and practical SMS data analysis protocol. This protocol covers all the bioinformatics processes of the SMS analysis in terms of data preprocessing, taxonomic profiling, functional annotation, and visualization.
Similar content being viewed by others
References
Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. 1990. Basic local alignment search tool. J. Mol. Biol.215, 403–410.
Anderson, I.C. and Cairney, J.W. 2004. Diversity and ecology of soil fungal communities: increased understanding through the application of molecular techniques. Environ. Microbiol.6, 769–779.
Angeli, D., Sare, A.R., Jijakli, M.H., Pertot, I., and Massart, S. 2019. Insights gained from metagenomic shotgun sequencing of apple fruit epiphytic microbiota. Postharvest Biol. Technol.153, 96–106.
Baldrian, P. 2017. Forest microbiome: diversity, complexity and dynamics. FEMS Microbiol. Rev.41, 109–130.
Bar-On, Y.M., Phillips, R., and Milo, R. 2018. The biomass distribution on Earth. Proc. Natl. Acad. Sci. USA115, 6506–6511.
Berendsen, R.L., Pieterse, C.M., and Bakker, P.A. 2012. The rhizosphere microbiome and plant health. Trends Plant Sci.17, 478–486.
Boisvert, S., Raymond, F., Godzaridis, É., Laviolette, F., and Corbeil, J. 2012. Ray Meta: scalable de novo metagenome assembly and profiling. Genome Biol.13, R122.
Bolger, A.M., Lohse, M., and Usadel, B. 2014. Trimmomatic: a flexible trimmer for Illumina sequence data. Bioinformatics30, 2114–2120.
Bose, T., Haque, M.M., Reddy, C., and Mande, S.S. 2015. COGNIZER a framework for functional annotation of metagenomic datasets. PLoS One10, e0142102.
Bourne, D.G., Morrow, K.M., and Webster, N.S. 2016. Insights into the coral microbiome: underpinning the health and resilience of reef ecosystems. Annu. Rev. Microbiol.70, 317–340.
Brady, A. and Salzberg, S.L. 2009. Phymm and PhymmBL: metagenomic phylogenetic classification with interpolated Markov models. Nat. Methods6, 673–676.
Breitwieser, F.P., Lu, J., and Salzberg, S.L. 2017. A review of methods and databases for metagenomic classification and assembly. Brief. Bioinform.20, 1125–1136.
Brown, B.L., Watson, M., Minot, S.S., Rivera, M.C., and Franklin, R.B. 2017. MinIONTM nanopore sequencing of environmental metagenomes: a synthetic approach. Gigascience6, 1–10.
Brugman, S., Ikeda-Ohtsubo, W., Braber, S., Folkerts, G., Pieterse, C.M.J., and Bakker, P.A.H.M. 2018. A comparative review on microbiota manipulation: lessons from fish, plants, livestock, and human research. Front. Nutr.5, 80.
Brum, J.R., Ignacio-Espinoza, J.C., Roux, S., Doulcier, G., Acinas, S.G., Alberti, A., Chaffron, S., Cruaud, C., de Vargas, C., Gasol, J.M., et al. 2015. Ocean plankton. Patterns and ecological drivers of ocean viral communities. Science348, 1261498.
Bukin, Y.S., Galachyants, Y.P., Morozov, I.V., Bukin, S.V., Zakharenko, A.S., and Zemskaya, T.I. 2019. The effect of 16S rRNA region choice on bacterial community metabarcoding results. Sci. Data6, 190007.
Bushnell, B. 2014. BBMap: A fast, accurate, splice-aware aligner. Lawrence Berkeley National Laboratory.
Carey, M.A. and Papin, J.A. 2018. Ten simple rules for biologists learning to program. PLoS Comput. Biol.14, e1005871.
Caspi, R., Billington, R., Fulcher, C.A., Keseler, I.M., Kothari, A., Krummenacker, M., Latendresse, M., Midford, P.E., Ong, Q., Ong, W.K., et al. 2018. The MetaCyc database of metabolic pathways and enzymes. Nucleic Acids Res.46, D633–D639.
Chaparro, J.M., Sheflin, A.M., Manter, D.K., and Vivanco, J.M. 2012. Manipulating the soil microbiome to increase soil health and plant fertility. Biol. Fertil. Soils48, 489–499.
Chen, I.A., Chu, K., Palaniappan, K., Pillay, M., Ratner, A., Huang, J., Huntemann, M., Varghese, N., White, J.R., Seshadri, R., et al. 2019. IMG/M v.5.0: an integrated data management and comparative analysis system for microbial genomes and microbiomes. Nucleic Acids Res.47, D666–D677.
Cock, P.J., Fields, C.J., Goto, N., Heuer, M.L., and Rice, P.M. 2010. The Sanger FASTQ file format for sequences with quality scores, and the Solexa/Illumina FASTQ variants. Nucleic Acids Res.38, 1767–1771.
Coltharp, C. and Xiao, J. 2012. Superresolution microscopy for microbiology. Cell. Microbiol.14, 1808–1818.
Couto, N., Schuele, L., Raangs, E.C., Machado, M.P., Mendes, C.I., Jesus, T.F., Chlebowicz, M., Rosema, S., Ramirez, M., Carrico, J.A., et al. 2018. Critical steps in clinical shotgun metagenomics for the concomitant detection and typing of microbial pathogens. Sci. Rep.8, 13767.
Czajkowski, M.D., Vance, D.P., Frese, S.A., and Casaburi, G. 2019. GenCoF: a graphical user interface to rapidly remove human genome contaminants from metagenomic datasets. Bioinformatics35, 2318–2319.
Daims, H. and Wagner, M. 2007. Quantification of uncultured microorganisms by fluorescence microscopy and digital image analysis. Appl. Microbiol. Biotechnol.75, 237–248.
Darling, A.E., Jospin, G., Lowe, E., Matsen, F.A. 4th, Bik, H.M., and Eisen, J.A. 2014. PhyloSift: phylogenetic analysis of genomes and metagenomes. PeerJ2, e243.
Eren, A.M., Esen, Ö.C., Quince, C., Vineis, J.H., Morrison, H.G., Sogin, M.L., and Delmont, T.O. 2015. Anvi’o: an advanced analysis and visualization platform for’ omics data. PeerJ3, e1319.
Fierer, N. and Jackson, R.B. 2006. The diversity and biogeography of soil bacterial communities. Proc. Natl. Acad. Sci. USA103, 626–631.
Fisher, M.M. and Triplett, E.W. 1999. Automated approach for ribosomal intergenic spacer analysis of microbial diversity and its application to freshwater bacterial communities. Appl. Environ. Microbiol.65, 4630–4636.
Franco-Duarte, R., Cernakova, L., Kadam, S., Kaushik, K.S., Salehi, B., Bevilacqua, A., Corbo, M.R., Antolak, H., Dybka-Stepien, K., Leszczewicz, M., et al. 2019. Advances in chemical and biological methods to identify microorganisms-from past to present. Microorganisms7, 130.
Franzosa, E.A., McIver, L.J., Rahnavard, G., Thompson, L.R., Schirmer, M., Weingart, G., Lipson, K.S., Knight, R., Caporaso, J.G., Segata, N., et al. 2018. Species-level functional profiling of metagenomes and metatranscriptomes. Nat. Methods15, 962–968.
Fu, L.M. and Shinnick, T.M. 2007. Understanding the action of INH on a highly INH-resistant Mycobacterium tuberculosis strain using Genechips. Tuberculosis87, 63–70.
Gilbert, J.A., Jansson, J.K., and Knight, R. 2014. The earth microbiome project: successes and aspirations. BMC Biol.12, 69.
Gilbert, J.A., Jansson, J.K., and Knight, R. 2018. Earth microbiome project and global systems biology. mSystems3, e00217–17.
Gilbert, J.A., Meyer, F., Jansson, J., Gordon, J., Pace, N., Tiedje, J., Ley, R., Fierer, N., Field, D., Kyrpides, N., et al. 2010. The earth microbiome project: meeting report of the “1 EMP meeting on sample selection and acquisition” at Argonne National Laboratory October 6 2010. Stand. Genomic Sci.3, 249–253.
Goodwin, S., McPherson, J.D., and McCombie, W.R. 2016. Coming of age: ten years of next-generation sequencing technologies. Nat. Rev. Genet.17, 333–351.
Haider, B., Ahn, T.H., Bushnell, B., Chai, J., Copeland, A., and Pan, C. 2014. Omega: an overlap-graph de novo assembler for metagenomics. Bioinformatics30, 2717–2722.
Handley, K.M., Wrighton, K.C., Piceno, Y.M., Andersen, G.L., De-Santis, T.Z., Williams, K.H., Wilkins, M.J., N’Guessan, A.L., Peacock, A., Bargar, J., et al. 2012. High-density PhyloChip profiling of stimulated aquifer microbial communities reveals a complex response to acetate amendment. FEMS Microbiol. Ecol.81, 188–204.
Hanreich, A., Schimpf, U., Zakrzewski, M., Schlüter, A., Benndorf, D., Heyer, R., Rapp, E., Pühler, A., Reichl, U., and Klocke, M. 2013. Metagenome and metaproteome analyses of microbial communities in mesophilic biogas-producing anaerobic batch fermentations indicate concerted plant carbohydrate degradation. Syst. Appl. Microbiol.36, 330–338.
Hassa, J., Maus, I., Off, S., Pühler, A., Scherer, P., Klocke, M., and Schlüter, A. 2018. Metagenome, metatranscriptome, and metaproteome approaches unraveled compositions and functional relationships of microbial communities residing in biogas plants. Appl. Microbiol. Biotechnol.102, 5045–5063.
He, Z., Gentry, T.J., Schadt, C.W., Wu, L., Liebich, J., Chong, S.C., Huang, Z., Wu, W., Gu, B., Jardine, P., et al. 2007. GeoChip: a comprehensive microarray for investigating biogeochemical, ecological and environmental processes. ISME J.1, 67–77.
Hess, M., Sczyrba, A., Egan, R., Kim, T.W., Chokhawala, H., Schroth, G., Luo, S., Clark, D.S., Chen, F., Zhang, T., et al. 2011. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science331, 463–467.
Hill, G.T., Mitkowski, N.A., Aldrich-Wolfe, L., Emele, L.R., Jurkonie, D.D., Ficke, A., Maldonado-Ramirez, S., Lynch, S.T., and Nelson, E.B. 2000. Methods for assessing the composition and diversity of soil microbial communities. Appl. Soil Ecol.15, 25–36.
Hillmann, B., Al-Ghalith, G.A., Shields-Cutler, R.R., Zhu, Q., Gohl, D.M., Beckman, K.B., Knight, R., and Knights, D. 2018. Evaluating the information content of shallow shotgun metagenomics. mSystems3, e00069–18.
Hugerth, L.W. and Andersson, A.F. 2017. Analysing microbial community composition through amplicon sequencing: from sampling to hypothesis testing. Front. Microbiol.8, 1561.
Ip, C.L.C., Loose, M., Tyson, J.R., de Cesare, M., Brown, B.L., Jain, M., Leggett, R.M., Eccles, D.A., Zalunin, V., Urban, J.M., et al. 2015. MinION analysis and reference consortium: phase 1 data release and analysis. F1000Res.4, 1075.
Janda, J.M. and Abbott, S.L. 2007. 16S rRNA gene sequencing for bacterial identification in the diagnostic laboratory: pluses, perils, and pitfalls. J. Clin. Microbiol.45, 2761–2764.
Jo, J., Oh, J., Lee, H.G., Hong, H.H., Lee, S.G., Cheon, S., Kern, E.M.A., Jin, S., Cho, S.J., Park, J.K., et al. 2017. Draft genome of the sea cucumber Apostichopus japonicus and genetic polymorphism among color variants. GigaScience6, 1–6.
Jo, J., Park, C., Kim, M., and Park, C. 2016a. Phylogenetic analysis of the three color variations of the sea cucumber Apostichopus japonicus. J. Aquac. Res. Dev.7, 1000418.
Jo, J., Park, J., Lee, H.G., Kern, E.M.A., Cheon, S., Jin, S., Park, J.K., Cho, S.J., and Park, C. 2016b. Comparative transcriptome analysis of three color variants of the sea cucumber Apostichopus japonicus. Mar. Genomics28, 21–24.
Jovel, J., Patterson, J., Wang, W., Hotte, N., O’Keefe, S., Mitchel, T., Perry, T., Kao, D., Mason, A.L., Madsen, K.L., et al. 2016. Characterization of the gut microbiome using 16S or shotgun metagenomics. Front. Microbiol.7, 459.
Karlin, S., Mrázek, J., and Campbell, A.M. 1997. Compositional biases of bacterial genomes and evolutionary implications. J. Bacteriol.179, 3899–3913.
Kelley, D.R. and Salzberg, S.L. 2010. Clustering metagenomic sequences with interpolated Markov models. BMC Bioinformatics11, 544.
Kennedy, K., Hall, M.W., Lynch, M.D., Moreno-Hagelsieb, G., and Neufeld, J.D. 2014. Evaluating bias of illumina-based bacterial 16S rRNA gene profiles. Appl. Environ. Microbiol.80, 5717–5722.
Kim, S.J., Kim, J.G., Lee, S.H., Park, S.J., Gwak, J.H., Jung, M.Y., Chung, W.H., Yang, E.J., Park, J., Jung, J., et al. 2019. Genomic and metatranscriptomic analyses of carbon remineralization in an Antarctic polynya. Microbiome7, 29.
Knight, R., Vrbanac, A., Taylor, B.C., Aksenov, A., Callewaert, C., Debelius, J., Gonzalez, A., Kosciolek, T., McCall, L.I., McDonald, D., et al. 2018. Best practices for analysing microbiomes. Nat. Rev. Microbiol.16, 410–422.
Koren, S., Schatz, M.C., Walenz, B.P., Martin, J., Howard, J.T., Ganapathy, G., Wang, Z., Rasko, D.A., McCombie, W.R., Jarvis, E.D., et al. 2012. Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat. Biotechnol.30, 693–700.
Kuleshov, V., Jiang, C., Zhou, W., Jahanbani, F., Batzoglou, S., and Snyder, M. 2016. Synthetic long read sequencing reveals intraspecies diversity in the human microbiome. Nat. Biotechnol.34, 64–69.
Lai, B., Ding, R., Li, Y., Duan, L., and Zhu, H. 2012. A de novo metagenomic assembly program for shotgun DNA reads. Bioinformatics28, 1455–1462.
Langmead, B. and Salzberg, S.L. 2012. Fast gapped-read alignment with Bowtie 2. Nat. Methods9, 357–359.
Laserson, J., Jojic, V., and Koller, D. 2011. Genovo: de novo assembly for metagenomes. J. Comput. Biol.18, 429–443.
Lau, J.A. and Lennon, J.T. 2012. Rapid responses of soil microorganisms improve plant fitness in novel environments. Proc. Natl. Acad. Sci. USA109, 14058–14062.
Laudadio, I., Fulci, V., Palone, F., Stronati, L., Cucchiara, S., and Carissimi, C. 2018. Quantitative assessment of shotgun metagenomics and 16S rDNA amplicon sequencing in the study of human gut microbiome. OMICS22, 248–254.
Lee, E. and Tan, T.W. 2018 Beginners Guide to Bioinformatics for High Throughput Sequencing. World Scientific.
Lennon, J.T. and Jones, S.E. 2011. Microbial seed banks: the ecological and evolutionary implications of dormancy. Nat. Rev. Microbiol.9, 119–130.
Li, D., Liu, C.M., Luo, R., Sadakane, K., and Lam, T.W. 2015. MEGAHIT: an ultra-fast single-node solution for large and complex metagenomics assembly via succinct de Bruijn graph. Bioinformatics31, 1674–1676.
Lim, S., Seo, J., Choi, H., Yoon, D., Nam, J., Kim, H., Cho, S., and Chang, J. 2013. Metagenome analysis of protein domain collocation within cellulase genes of goat rumen microbes. Asian-Australas J. Anim. Sci.26, 1144–1151.
Lima-Mendez, G., Faust, K., Henry, N., Decelle, J., Colin, S., Carcillo, F., Chaffron, S., Ignacio-Espinosa, J.C., Roux, S., Vincent, F., et al. 2015. Ocean plankton. Determinants of community structure in the global plankton interactome. Science348, 1262073.
Lin, Y.Y., Hsieh, C.H., Chen, J.H., Lu, X., Kao, J.H., Chen, P.J., Chen, D.S., and Wang, H.Y. 2017. De novo assembly of highly polymorphic metagenomic data using in situ generated reference sequences and a novel BLAST-based assembly pipeline. BMC Bioinformatics18, 223.
Luckey, T.D. 1972. Introduction to intestinal microecology. Am. J. Clin. Nutr.25, 1292–1294.
Lynch, M.D. and Neufeld, J.D. 2015. Ecology and exploration of the rare biosphere. Nat. Rev. Microbiol.13, 217–229.
Mallick, H., Ma, S., Franzosa, E.A., Vatanen, T., Morgan, X.C., and Huttenhower, C. 2017. Experimental design and quantitative analysis of microbial community multiomics. Genome Biol.18, 228.
Martiny, J.B., Jones, S.E., Lennon, J.T., and Martiny, A.C. 2015. Microbiomes in light of traits: A phylogenetic perspective. Science350, aac9323.
McHardy, A.C., Martín, H.G., Tsirigos, A., Hugenholtz, P., and Rigoutsos, I. 2007. Accurate phylogenetic classification of variable-length DNA fragments. Nat. Methods4, 63–72.
Medini, D., Donati, C., Tettelin, H., Masignani, V., and Rappuoli, R. 2005. The microbial pan-genome. Curr. Opin. Genet. Dev.15, 589–594.
Meyer, F., Bagchi, S., Chaterji, S., Gerlach, W., Grama, A., Harrison, T., Paczian, T., Trimble, W.L., and Wilke, A. 2017. MG-RAST version 4-lessons learned from a decade of low-budget ultra-high-throughput metagenome analysis. Brief. Bioinform.20, 1151–1159.
Milanese, A., Mende, D.R., Paoli, L., Salazar, G., Ruscheweyh, H.J., Cuenca, M., Hingamp, P., Alves, R., Costea, P.I., Coelho, L.P., et al. 2019. Microbial abundance, activity and population genomic profiling with mOTUs2. Nat. Commun.10, 1014.
Mitchell, A.L., Scheremetjew, M., Denise, H., Potter, S., Tarkowska, A., Qureshi, M., Salazar, G.A., Pesseat, S., Boland, M.A., Hunter, F.M.I., et al. 2018. EBI Metagenomics in 2017: enriching the analysis of microbial communities, from sequence reads to assemblies. Nucleic Acids Res.46, D726–D735.
Moran, M.A. 2015. The global ocean microbiome. Science350, aac8455.
Mu, A., Kwong, J.C., Isles, N.S., Goncalves da Silva, A., Schultz, M.B., Ballard, S.A., Lane, C.R., Carter, G.P., Williamson, D.A., Seemann, T., et al. 2019. Reconstruction of the genomes of drug-resistant pathogens for outbreak investigation through metagenomic sequencing. mSphere4, e00529–18.
Niu, S.Y., Yang, J., McDermaid, A., Zhao, J., Kang, Y., and Ma, Q. 2018. Bioinformatics tools for quantitative and functional metagenome and metatranscriptome data analysis in microbes. Brief. Bioinform.19, 1415–1429.
Nurk, S., Meleshko, D., Korobeynikov, A., and Pevzner, P.A. 2017. metaSPAdes: a new versatile metagenomic assembler. Genome Res.27, 824–834.
Oh, S., Caro-Quintero, A., Tsementzi, D., DeLeon-Rodriguez, N., Luo, C., Poretsky, R., and Konstantinidis, K.T. 2011. Metagenomic insights into the evolution, function, and complexity of the planktonic microbial community of Lake Lanier, a temperate freshwater ecosystem. Appl. Environ. Microbiol.77, 6000–6011.
Orellana, L.H., Chee-Sanford, J.C., Sanford, R.A., Löffler, F.E., and Konstantinidis, K.T. 2018. Year-round shotgun metagenomes reveal stable microbial communities in agricultural soils and novel ammonia oxidizers responding to fertilization. Appl. Environ. Microbiol.84, e01646–17.
Österlund, T., Jonsson, V., and Kristiansson, E. 2017. HirBin: high-resolution identification of differentially abundant functions in metagenomes. BMC Genomics18, 316.
Overmann, J., Abt, B., and Sikorski, J. 2017. Present and future of culturing bacteria. Annu. Rev. Microbiol.71, 711–730.
Pace, N.R., Stahl, D.A., Lane, D.J., and Olsen, G.J. 1986. The analysis of natural microbial populations by ribosomal RNA sequences. In Marshall, K.C. (ed.), Advances in Microbial Ecology, pp. 1–55. Springer, Boston, MA, USA.
Paliy, O. and Agans, R. 2012. Application of phylogenetic microarrays to interrogation of human microbiota. FEMS Microbiol. Ecol.79, 2–11.
Peng, Y., Leung, H.C., Yiu, S.M., and Chin, F.Y. 2012. IDBA-UD: a de novo assembler for single-cell and metagenomic sequencing data with highly uneven depth. Bioinformatics28, 1420–1428.
Pereira-Marques, J., Hout, A., Ferreira, R.M., Weber, M., Pinto-Ribeiro, I., van Doorn, L.J., Knetsch, C.W., and Figueiredo, C. 2019. Impact of host DNA and sequencing depth on the taxonomic resolution of whole metagenome sequencing for microbiome analysis. Front. Microbiol.10, 1277.
Podar, M. and Reysenbach, A.L. 2006. New opportunities revealed by biotechnological explorations of extremophiles. Curr. Opin. Biotechnol.17, 250–255.
Pootakham, W., Mhuantong, W., Yoocha, T., Putchim, L., Sonthirod, C., Naktang, C., Thongtham, N., and Tangphatsornruang, S. 2017. High resolution profiling of coral-associated bacterial communities using full-length 16S rRNA sequence data from PacBio SMRT sequencing system. Sci. Rep.7, 2774.
Quince, C., Walker, A.W., Simpson, J.T., Loman, N.J., and Segata, N. 2017. Shotgun metagenomics, from sampling to analysis. Nat. Biotechnol.35, 833–844.
Ranjan, R., Rani, A., Metwally, A., McGee, H.S., and Perkins, D.L. 2016. Analysis of the microbiome: advantages of whole genome shotgun versus 16S amplicon sequencing. Biochem. Biophys. Res. Commun.469, 967–977.
Relman, D.A. 2012. The human microbiome: ecosystem resilience and health. Nutr. Rev.70, S2–S9.
Riiser, E.S., Haverkamp, T.H.A., Varadharajan, S., Borgan, Ø., Jakobsen, K.S., Jentoft, S., and Star, B. 2019. Switching on the light: using metagenomic shotgun sequencing to characterize the intestinal microbiome of Atlantic cod. Environ. Microbiol.21, 2576–2594.
Rosen, G., Garbarine, E., Caseiro, D., Polikar, R., and Sokhansanj, B. 2008. Metagenome fragment classification using N-mer frequency profiles. Adv. Bioinformatics2008, 205969.
Roumpeka, D.D., Wallace, R.J., Escalettes, F., Fotheringham, I., and Watson, M. 2017. A review of bioinformatics tools for bio-prospecting from metagenomic sequence data. Front. Genet.8, 23.
Sanli, K., Karlsson, F.H., Nookaew, I., and Nielsen, J. 2013. FANTOM: Functional and taxonomic analysis of metagenomes. BMC Bioinformatics14, 38.
Savage, D.C. 1977. Microbial ecology of the gastrointestinal tract. Annu. Rev. Microbiol.31, 107–133.
Schmieder, R. and Edwards, R. 2011. Fast identification and removal of sequence contamination from genomic and metagenomic datasets. PLoS One6, e17288.
Sebat, J.L., Colwell, F.S., and Crawford, R.L. 2003. Metagenomic profiling: microarray analysis of an environmental genomic library. Appl. Environ. Microbiol.69, 4927–4934.
Segata, N., Waldron, L., Ballarini, A., Narasimhan, V., Jousson, O., and Huttenhower, C. 2012. Metagenomic microbial community profiling using unique clade-specific marker genes. Nat. Methods9, 811–814.
Sender, R., Fuchs, S., and Milo, R. 2016a. Are we really vastly outnumbered? Revisiting the ratio of bacterial to host cells in humans. Cell164, 337–340.
Sender, R., Fuchs, S., and Milo, R. 2016b. Revised estimates for the number of human and bacteria cells in the body. PLoS Biol.14, e1002533.
Seshadri, R., Kravitz, S.A., Smarr, L., Gilna, P., and Frazier, M. 2007. CAMERA: a community resource for metagenomics. PLoS Biol.5, e75.
Sharpton, T.J. 2014. An introduction to the analysis of shotgun metagenomic data. Front. Plant Sci.5, 209.
Shendure, J., Balasubramanian, S., Church, G.M., Gilbert, W., Rogers, J., Schloss, J.A., and Waterston, R.H. 2017. DNA sequencing at 40: past, present and future. Nature550, 345–353.
Shi, W., Qi, H., Sun, Q., Fan, G., Liu, S., Wang, J., Zhu, B., Liu, H., Zhao, F., Wang, X., et al. 2019. gcMeta: a global catalogue of metagenomics platform to support the archiving, standardization and analysis of microbiome data. Nucleic Acids Res.47, D637–D648.
Simpson, J.T. and Pop, M. 2015. The theory and practice of genome sequence assembly. Annu. Rev. Genomics Hum. Genet.16, 153–172.
Sogin, M.L., Morrison, H.G., Huber, J.A., Mark Welch, D., Huse, S.M., Neal, P.R., Arrieta, J.M., and Herndl, G.J. 2006. Microbial diversity in the deep sea and the underexplored “rare biosphere”. Proc. Natl. Acad. Sci. USA103, 12115–12120.
Song, H.J., Lee, J., Graf, L., Rho, M., Qiu, H., Bhattacharya, D., and Yoon, H.S. 2016. A novice’s guide to analyzing NGS-derived organelle and metagenome data. Algae31, 137–154.
Stahl, D.A., Lane, D.J., Olsen, G.J., and Pace, N.R. 1985. Characterization of a Yellowstone hot spring microbial community by 5S rRNA sequences. Appl. Environ. Microbiol.49, 1379–1384.
Stein, L.D. 2015. Unix Survival Guide. Curr. Protoc. Bioinformatics51, A1.C.1–A1.C.27.
Strous, M., Kraft, B., Bisdorf, R., and Tegetmeyer, H.E. 2012. The binning of metagenomic contigs for microbial physiology of mixed cultures. Front. Microbiol.3, 410.
Sudarikov, K., Tyakht, A., and Alexeev, D. 2017. Methods for the metagenomic data visualization and analysis. Curr. Issues Mol. Biol.24, 37–58.
Sunagawa, S., Coelho, L.P., Chaffron, S., Kultima, J.R., Labadie, K., Salazar, G., Djahanschiri, B., Zeller, G., Mende, D.R., Alberti, A., et al. 2015a. Ocean plankton. Structure and function of the global ocean microbiome. Science348, 1261359.
Sunagawa, S., Karsenti, E., Bowler, C., and Bork, P. 2015b. Computational eco-systems biology in Tara Oceans: translating data into knowledge. Mol. Syst. Biol.11, 809.
Taberlet, P., Coissac, E., Pompanon, F., Brochmann, C., and Willerslev, E. 2012. Towards next-generation biodiversity assessment using DNA metabarcoding. Mol. Ecol.21, 2045–2050.
The Human Microbiome Project Consortium. 2012a. A framework for human microbiome research. Nature486, 215–221.
The Human Microbiome Project Consortium. 2012b. Structure, function and diversity of the healthy human microbiome. Nature 486, 207–214.
The Integrative HMP (iHMP) Research Network Consortium. 2019. The integrative human microbiome project. Nature569, 641–648.
Thompson, L.R., Sanders, J.G., McDonald, D., Amir, A., Ladau, J., Locey, K.J., Prill, R.J., Tripathi, A., Gibbons, S.M., Ackermann, G., et al. 2017. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature551, 457–463.
Treangen, T.J., Koren, S., Sommer, D.D., Liu, B., Astrovskaya, I., Ondov, B., Darling, A.E., Phillippy, A.M., and Pop, M. 2013. Met-AMOS: a modular and open source metagenomic assembly and analysis pipeline. Genome Biol.14, R2.
Tully, B.J., Graham, E.D., and Heidelberg, J.F. 2018. The reconstruction of 2,631 draft metagenome-assembled genomes from the global oceans. Sci. Data5, 170203.
Turnbaugh, P.J., Ley, R.E., Hamady, M., Fraser-Liggett, C.M., Knight, R., and Gordon, J.I. 2007. The human microbiome project. Nature449, 804–810.
van Dijk, E.L., Auger, H., Jaszczyszyn, Y., and Thermes, C. 2014. Ten years of next-generation sequencing technology. Trends Genet.30, 418–426.
Venter, J.C., Adams, M.D., Myers, E.W., Li, P.W., Mural, R.J., Sutton, G.G., Smith, H.O., Yandell, M., Evans, C.A., Holt, R.A., et al. 2001. The sequence of the human genome. Science291, 1304–1351.
Venter, J.C., Remington, K., Heidelberg, J.F., Halpern, A.L., Rusch, D., Eisen, J.A., Wu, D., Paulsen, I., Nelson, K.E., Nelson, W., et al. 2004. Environmental genome shotgun sequencing of the Sargasso sea. Science304, 66–74.
Větrovský, T. and Baldrian, P. 2013. The variability of the 16S rRNA gene in bacterial genomes and its consequences for bacterial community analyses. PLoS One8, e57923.
Via, A., Blicher, T., Bongcam-Rudloff, E., Brazas, M.D., Brooksbank, C., Budd, A., De Las Rivas, J., Dreyer, J., Fernandes, P.L., van Gelder, C., et al. 2013. Best practices in bioinformatics training for life scientists. Brief. Bioinform.14, 528–537.
von Wintzingerode, F., Göbel, U.B., and Stackebrandt, E. 1997. Determination of microbial diversity in environmental samples: pitfalls of PCR-based rRNA analysis. FEMS Microbiol. Rev.21, 213–229.
White, D.C., Pinkart, H.C., and Ringelberg, A.B. 1997. Biomass measurements: biochemical approaches. In Hurst, C.J., Knudson, G.R., Mclnerney, M.J., Stetzenbach, L.D., and Walter, M.V. (eds.), Manual of Environmental Microbiology, 3rd edn, pp. 91–101. American Society for Microbiology, USA.
Wilson, K.H., Wilson, W.J., Radosevich, J.L., DeSantis, T.Z., Viswanathan, V.S., Kuczmarski, T.A., and Andersen, G.L. 2002. High-density microarray of small-subunit ribosomal DNA probes. Appl. Environ. Microbiol.68, 2535–2541.
Wiseschart, A., Mhuantong, W., Tangphatsornruang, S., Chantasingh, D., and Pootanakit, K. 2019. Shotgun metagenomic sequencing from Manao-Pee cave, Thailand, reveals insight into the microbial community structure and its metabolic potential. BMC Microbiol.19, 144.
Woese, C.R. 1987. Bacterial evolution. Microbiol. Rev.51, 221–271.
Woese, C.R. and Fox, G.E. 1977. Phylogenetic structure of the prokaryotic domain: the primary kingdoms. Proc. Natl. Acad. Sci. USA74, 5088–5090.
Woese, C.R., Stackebrandt, E., Macke, T.J., and Fox, G.E. 1985. A phylogenetic definition of the major eubacterial taxa. Syst. Appl. Microbiol.6, 143–151.
Wood, D.E., Lu, J., and Langmead, B. 2019. Improved metagenomic analysis with Kraken 2. Genome Biol.20, 257.
Wood, D.E. and Salzberg, S.L. 2014. Kraken: ultrafast metagenomic sequence classification using exact alignments. Genome Biol.15, R46.
Xie, J., He, Z., Liu, X., Liu, X., Van Nostrand, J.D., Deng, Y., Wu, L., Zhou, J., and Qiu, G. 2011. GeoChip-based analysis of the functional gene diversity and metabolic potential of microbial communities in acid mine drainage. Appl. Environ. Microbiol.77, 991–999.
Yang, B., Wang, Y., and Qian, P.Y. 2016. Sensitivity and correlation of hypervariable regions in 16S rRNA genes in phylogenetic analysis. BMC Bioinformatics17, 135.
Yarza, P., Yilmaz, P., Pruesse, E., Glockner, F.O., Ludwig, W., Schleifer, K.H., Whitman, W.B., Euzeby, J., Amann, R., and Rossello-Mora, R. 2014. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat. Rev. Microbiol.12, 635–645.
Zhang, H. and Ning, K. 2015. The Tara Oceans Project: new opportunities and greater challenges ahead. Genomics Proteomics Bioinformatics13, 275–277.
Zhang, X., Sun, L., Yuan, J., Sun, Y., Gao, Y., Zhang, L., Li, S., Dai, H., Hamel, J.F., Liu, C., et al. 2017. The sea cucumber genome provides insights into morphological evolution and visceral regeneration. PLoS Biol.15, e2003790.
Zinicola, M., Higgins, H., Lima, S., Machado, V., Guard, C., and Bicalho, R. 2015. Shotgun metagenomic sequencing reveals functional genes and microbiome associated with bovine digital dermatitis. PLoS One10, e0133674.
Acknowledgments
We thank members of the CSB lab and Dr. Hyun-Gwan Lee for valuable comments. This research was supported by the Collaborative Genome Program (No. 20180430) and “Research center for fishery resource management based on the information and communication technology (ICT)” of the Korea Institute of Marine Science and Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries of the Republic of Korea.
Author information
Authors and Affiliations
Corresponding author
Additional information
Supplemental material for this article may be found at http://www.springerlink.com/content/120956.
Electronic supplementary material
Rights and permissions
About this article
Cite this article
Jo, J., Oh, J. & Park, C. Microbial community analysis using high-throughput sequencing technology: a beginner’s guide for microbiologists. J Microbiol. 58, 176–192 (2020). https://doi.org/10.1007/s12275-020-9525-5
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12275-020-9525-5