Abstract
The widespread use of the organochlorine insecticide lindane in the world has caused serious environmental problems. The main purpose of this paper is to investigate the potency of several Phlebia species of white rot fungi to degrade, transform and mineralize lindane, and to provide the feasibility of using white rot fungi for bioremediation at contaminated sites. Based on tolerance experiment results, Phlebia brevispora and Phlebia lindtneri had the highest tolerance to lindane and were screened by degradation tests. After 25 days of incubation, P. brevispora and P. lindtneri degraded 87.2 and 73.3% of lindane in low nitrogen medium and 75.8 and 64.9% of lindane in high nitrogen medium, respectively. Several unreported hydroxylation metabolites, including monohydroxylated, dehydroxylated, and trihydroxylated products, were detected and identified by GC/MS as metabolites of lindane. More than 10% of [14C] lindane was mineralized to 14CO2 by two fungi after 60 days of incubation, and the mineralization was slightly promoted by the addition of glucose. Additionally, the degradation of lindane and the formation of metabolites were efficiently inhibited by piperonyl butoxide, demonstrating that cytochrome P450 enzymes are involved in the fungal transformation of lindane. The present study showed that P. brevispora and P. lindtneri were efficient degraders of lindane; hence, they can be applied in the bioremediation process of lindane-contaminated sites.
Similar content being viewed by others
References
Arisoy, M. 1998. Biodegradation of chlorinated organic compounds by white-rot fungi. Bull. Environ. Contam. Toxicol.60, 872–876.
Asif, M.B., Hai, F.I., Singh, L., Price, W.E., and Nghiem, L.D. 2017. Degradation of pharmaceuticals and personal care products by white-rot fungi–a critical review. Curr. Pollut. Rep.3, 88–103.
Bumpus, J.A., Tien, M., Wright, D., and Aust, S.D. 1985. Oxidation of persistent environmental pollutants by a white rot fungus. Science228, 1434–1436.
Dritsa, V. and Rigas, F. 2013. The ligninolytic and biodegradation potential on lindane of Pleurotus ostreatus spp. J. Mining World Express2, 23–30.
Gao, J., Liu, L., Liu, X., Lu, J., Zhou, H., Huang, S., Wang, Z., and Spear, P.A. 2008. Occurrence and distribution of organochlorine pesticides-lindane, p,p´-DDT, and heptachlor epoxide-in surface water of China. Environ. Int.34, 1097–1103.
Girish, K. and Kunhi, M. 2013. Microbial degradation of gammahexachlorocyclohexane (lindane). Afr. J. Microbiol. Res.7, 1635–1643.
Hadibarata, T. and Kristanti, R.A. 2012. Fate and cometabolic degradation of benzo[a]pyrene by white-rot fungus Armillaria sp. F022. Bioresour. Technol.107, 314–318.
Kamei, I. and Kondo, R. 2005. Biotransformation of dichloro-, trichloro-, and tetrachloro- dibenzo-p-dioxin by the white-rot fungus Phlebia lindtneri. Appl. Microbiol. Biotechnol.68, 560–566.
Kamei, I., Sonoki, S., Haraguchi, K., and Kondo, R. 2006. Fungal bioconversion of toxic polychlorinated biphenyls by white-rot fungus, Phlebia brevispora. Appl. Microbiol. Biotechnol.73, 932–940.
Kamei, I., Takagi, K., and Kondo, R. 2010. Bioconversion of dieldrin by wood-rotting fungi and metabolite detection. Pest Manag. Sci.66, 888–891.
Kaur, H., Kapoor, S., and Kaur, G. 2016. Application of ligninolytic potentials of a white-rot fungus Ganoderma lucidum for degradation of lindane. Environ. Monit. Assess.188, 588.
Kennedy, D.W., Aust, S.D., and Bumpus, J.A. 1990. Comparative biodegradation of alkyl halide insecticides by the white rot fungus, Phanerochaete chrysosporium (BKM-F-1767). Appl. Environ. Microbiol.56, 2347–2353.
Kumar, M., Chaudhaey, P., Dwivedi, M., Kumar, R., Paul, D., Jain, R.K., Garg, S.K., and Kumar, A. 2005. Enhanced biodegradation of β- and δ-hexachlorocyclohexane in the presence of α- and γ-isomers in contaminated soils. Environ. Sci. Technol.39, 4005–4011.
Kumar, K. and Pannu, R. 2018. Perspectives of lindane (γ-hexachlorocyclohexane) biodegradation from the environment: a review. Bioresour. Bioprocess.5, 29.
Lal, R. and Saxena, D.M. 1982. Accumulation, metabolism and effects of organochlorine insecticides on microorganisms. Microbiol. Rev.40, 95–127.
Madaj, R., Sobiecka, E., and Kalnowska, H. 2018. Lindane, kepone and pentachlorobenzene: chloropesticides banned by Stockholm convention. Int. J. Environ. Sci. Technol.15, 471–480.
Mohapatra, S. and Pandey, M. 2015. Biodegradation of hexachlorocyclohexane (HCH) isomers by white rot fungus, Pleurotus florida. J. Bioremed. Biodeg.6, 280.
Mohapatra, S., Veena, S.S., Pandey, M., and Deepa, M. 2012. Biodegradation of gamma-hexachlorocyclohexane by various Pleurotus species. Pestic. Res. J.24, 212–216.
Mori, T., Kitano, S., and Kondo, R. 2003. Biodegradation of chloronaphthalenes and polycyclic aromatic hydrocarbons by the whiterot fungus Phlebia lindtneri. Appl. Microbiol. Biotechnol.61, 380–383.
Mori, T. and Kondo, R. 2002. Oxidation of chlorinated dibenzo-pdioxin and dibenzofuran by white-rot fungus, Phlebia lindtneri. FEMS Microbiol. Lett.216, 223–227.
Mori, T., Nakamura, K., and Kondo, R. 2009. Fungal hydroxylation of polychlorinated naphthalenes with chlorine migration by wood rotting fungi. Chemosphere77, 1230–1235.
Mougin, C., Pericaud, C., Dubroca, J., and Asther, M. 1997. Enhanced mineralization of lindane in soils supplemented with the white rot basidiomycete Phanerochaete chrysosporium. Soil Biol. Biochem.29, 1321–1324.
Mougin, C., Pericaud, C., Malosse, C., Laugero, C., and Asther, M. 1996. Biotransformation of the insecticide lindane by the white rot basidiomycete Phanerochaete chrysosporium. Pestic. Sci.47, 51–59.
Nagata, Y., Prokop, Z., Sato, Y., Jerabek, P., Kumar, A., Ohtsubo, Y., Tsuda, M., and Damborsky, J. 2005. Degradation of β-hexachlorocyclohexane by haloalkane dehalogenase LinB from Sphingomonas paucimobilis UT26. Appl. Environ. Microbiol.71, 2183–2185.
Nakamura, R., Kondo, R., Shen, M.H., Ochiai, H., Hisamatsu, S., and Sonoki, S. 2012. Identification of cytochrome P450 monooxygenase genes from the white-rot fungus Phlebia brevispora. AMB Express2, 8.
Papadopoulou, K., Rigas, F., and Doulia, D. 2006. Lindane degradation in soil by Pleurotus ostreatus. WSEAS Trans. Environ. Dev.2, 489–496.
Phillips, T.M., Seech, A.G., Lee, H., and Trevors, J.T. 2005. Biodegradation of hexachlorocyclohexane (HCH) by microorganisms. Biodegradation16, 362–392.
Quintero, J.C., Lu-Chau, T.A., Moreira, M.T., Feijoo, G., and Lema, J.M. 2007. Bioremediation of HCH present in soil by the whiterot fungus Bjerkandera adusta in a slurry batch bioreactor. Int. Biodeter. Biodegr.60, 319–326.
Quintero, J.C., Moreira, M.T., Feijoo, G., and Lema, J.M. 2008. Screening of white rot fungal species for their capacity to degrade lindane and other isomers of hexachlorocyclohexane (HCH). Cien. Inv. Agr.35, 159–167.
Raina, V., Hauser, A., Buser, H.R., Rentsch, D., Sharma, P., Lal, R., Holliger, C., Poiger, T., Muller, M.D., and Kohler, H.E. 2007. Hydroxylated metabolites of β- and δ-hexachlorocyclohexane: bacterial formation, stereochemical configuration, and occurrence in groundwater at a former production. Environ. Sci. Technol.41, 4292–4298.
Raina, V., Rentsch, D., Geiger, T., Sharma, P., Buser, H.R., Holliger, C., Lal, R., and Kohler, H.E. 2008. New metabolites in the degradation of α- and γ-hexachlorocyclohexane (HCH): pentachlorocyclohexenes are hydroxylated to cyclohexenols and cyclohexenediols by the haloalkane dehalogenase LinB from Sphingobium indicum B90A. J. Agric. Food Chem.56, 6594–6603.
Rigas, F., Dritsa, V., Marchant, R., Papadopoulou, K., Avramides, E.J., and Hatzianestis, I. 2005. Biodegradation of lindane by Pleurotus ostreatus via central composite design. Environ. Int.31, 191–196.
Rigas, F., Papadopoulou, K., Dritsa, V., and Doulia, D. 2007. Bioremediation of a soil contaminated by lindane utilizing the fungus Ganoderma australe via response surface methodology. J. Hazard. Mater.140, 325–332.
Rigas, F., Papadopoulou, K., Philippoussis, A., Papadopoulou, J., and Chatzipavlidis, J. 2009. Bioremediation of lindane contaminated soil by Pleurotus ostreatus in non sterile conditions using multilevel factorial design. Water Air Soil Pollut.197, 121–129.
Sadiq, S., Haq, M.I., Ahmad, I., Ahad, K., Rashid, A., and Rafiq, N. 2015. Bioremediation potential of white rot fungi, Pleurotus spp against organochlorines. J. Bioremediat. Biodegrad.6, 308.
Sadiq, S., Mahmood-ul-Hassan, M., Ahad, K., and Nazir, S. 2018. Bioremediation of hexachlorocyclohexane (HCH) in soil using spent mushroom compost of Pleurotus ostreatus. Bioremediat. J.22, 126–135.
Saez, J.M., Bigliardo, A.L., Raimondo, E.E., Briceno, G.E., Polti, M.A., and Benimeli, C.S. 2018. Lindane dissipation in a biomixture: effect of soil properties and bioaugmentation. Ecotoxicol. Environ. Saf.156, 97–105.
Sari, A.A., Hanifah, U., and Iton, K. 2017. Potency of Trametes versicolor U97 for degrading lindane in liquid medium. J. Lignocellulose Tech.2, 55–65.
Sharma, P., Raina, V., Kumari, R., Malhotra, S., Dogra, C., Kumari, H., Kohler, H.E., Buser, H., Holliger, C., and Lal, R. 2006. Haloalkane dehalogenase LinB is responsible for β- and δ-hexachlorocyclohexane transformation in Sphingobium indicum B90A. Appl. Environ. Microbiol.72, 5720–5727.
Singh, B.K. and Kuhad, R.C. 1999. Biodegradation of lindane (γ-hexachlorocyclohexane) by the white-rot fungus Trametes hirsutus. Lett. Appl. Microbiol.28, 238–241.
Singh, B.K. and Kuhad, R.C. 2000. Degradation of insecticide lindane (γ-HCH) by white-rot fungi Cyathus bulleri and Phanerochaete sordida. Pest Manag. Sci.56, 142–146.
Singh, B.K., Kuhad, R.C., Singh, A., Tripathi, K.K., and Ghosh, P.K. 2000. Microbial degradation of the pesticide lindane (γ-hexachlorocyclohexane). Adv. Appl. Microbiol.47, 269–298.
Suhara, H., Sakai, K., Kondo, R., Maekawa, N., and Kubayashi, T. 2002. Identification of the basidiomycetous fungus isolated from butt rot of the Japanese cypress. Mycoscience43, 477–481.
Tien, M. and Kirk, T.K. 1988. Lignin peroxidase of Phanerochaete chrysosporium. Methods Enzymol.161, 238–249.
Ulčnik, A., Kralj Cigić, I., and Pohleven, F. 2013. Degradation of lindane and endosulfan by fungi, fungal and bacterial laccases. World J. Microbiol. Biotechnol.29, 2239–2247.
Ulčnik, A., Kralj Cigić, I., Zupančič-Kralj, L., Tavzes, Č., and Pohleven, F. 2012. Bioremediation of lindane by wood-decaying fungi. Drvna Ind.63, 271–276.
Waite, D.T., Gurprasad, N.P., Sproull, J.F., Quiring, D.V., and Kotylak, M.W. 2001. Atmospheric movements of lindane (γ-hexachlorocyclohexane) from canola fields planted with treated seed. J. Environ. Qual.30, 768–775.
Xiao, P. and Kondo, R. 2019. Biodegradation and bioconversion of endrin by white rot fungi, Phlebia acanthocystis and Phlebia brevispora. Mycoscience60, 255–261.
Xiao, P., Mori, T., Kamei, I., and Kondo, R. 2011.. Metabolism of organochlorine pesticide heptachlor and its metabolite heptachlor epoxide by white rot fungi, belonging to genus Phlebia. FEMS Microbiol. Lett.314, 140–146.
Xiao, P., Mori, T., Kamei, I., and Kondo, R. 2011.. A novel metabolic pathway for biodegradation of DDT by the white rot fungi, Phlebia lindtneri and Phlebia brevispora. Biodegradation22, 859–867.
Xiao, P., Mori, T., and Kondo, R. 2011.. Biotransformation of the organochlorine pesticide trans-chlordane by wood-rot fungi. N. Biotechnol.29, 107–115.
Xu, G. and Wang, J. 2014. Biodegradation of decabromodiphenyl ether (BDE-209) by white-rot fungus Phlebia lindtneri. Chemosphere110, 70–77.
Acknowledgments
This work was supported by the Fundamental Research Funds for the Central Universities (2572017CA08); the Heilongjiang Provincial Natural Science Foundation (LH2019- D002); and the National Natural Science Foundation of China (41201307).
Author information
Authors and Affiliations
Corresponding author
Additional information
Conflict of Interest
The authors declare no competing financial interests to this work.
Supplemental material for this article may be found at http://www.springerlink.com/content/120956
Electronic supplementary material
Rights and permissions
About this article
Cite this article
Xiao, P., Kondo, R. Potency of Phlebia species of white rot fungi for the aerobic degradation, transformation and mineralization of lindane. J Microbiol. 58, 395–404 (2020). https://doi.org/10.1007/s12275-020-9492-x
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12275-020-9492-x