Skip to main content
Log in

Sterilization efficiency of pathogen-contaminated cottons in a laundry machine

  • Microbial Ecology and Environmental Microbiolog
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Pathogenic bacteria on abiotic surfaces such as fabrics, bedding, patient wears, and surgical tools are known to increase the risk of bacterial diseases in infants and the elderly. The desiccation tolerance of bacteria affects their viability in cotton. Thus, washing and drying machines are required to use conditions that ensure the sterilization of bacteria in cotton. The objective of this study is to determine the effects of various sterilization conditions of washing and drying machines on the survival of three pathogenic bacteria (Acinetobacter baumannii, Pseudomonas aeruginosa, and Staphylococcus aureus) commonly presented in contaminated cotton and two non-pathogenic bacteria (Bacillus subtilis and Escherichia coli) in cotton. High survival rates of A. baumannii and S. aureus in desiccated cotton were observed based on scanning electron microscope and replicate organism direct agar contact assay. The survival rates of A. baumannii and S. aureus exposed in desiccated cotton for 8 h were higher (14.4 and 5.0%, respectively) than those of other bacteria (< 0.5%). All tested bacteria were eradicated at low-temperature (< 40°C) washing with activated oxygen bleach (AOB). However, bacterial viability was shown in low temperature washing without AOB. High-temperature (> 60°C) washing was required to achieve 99.9% of the sterilization rate in washing without AOB. The sterilization rate was 93.2% using a drying machine at 60°C for 4 h. This level of sterilization was insufficient in terms of time and energy efficiency. High sterilization efficiency (> 99.9%) at 75°C for 3 h using a drying machine was confirmed. This study suggests standard conditions of drying machines to remove bacterial contamination in cotton by providing practical data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Almatroudi, A., Tahir, S., Hu, H., Chowdhury, D., Gosbell, I.B., Jensen, S.O., Whiteley, G.S., Deva, A.K., Glasbey, T., and Vickery, K. 2018. Staphylococcus aureus dry-surface biofilms are more resistant to heat treatment than traditional hydrated biofilms. J. Hosp. Infect. 98, 161–167.

    CAS  PubMed  Google Scholar 

  • Ann, L.C., Mahmud, S., Bakhori, S.K.M., Sirelkhatim, A., Mohamad, D., Hasan, H., Seeni, A., and Rahman, R.A. 2014. Antibacterial responses of zinc oxide structures against Staphylococcus aureus, Pseudomonas aeruginosa and Streptococcus pyogenes. Ceram Int. 40, 2993–3001.

    CAS  Google Scholar 

  • Antunes, L.C., Visca, P., and Towner, K.J. 2014. Acinetobacter bau-mannii: evolution of a global pathogen. Pathog. Dis. 71, 292–301.

    CAS  PubMed  Google Scholar 

  • Aranda, J., Bardina, C., Beceiro, A., Rumbo, S., Cabral, M.P., Barbé, J., and Bou, G. 2011. Acinetobacter baumannii RecA protein in repair of DNA damage, antimicrobial resistance, general stress response, and virulence. J. Bacteriol. 193, 3740–3747.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Arild, A.H., Brusdal, R., Tore, J., Gunnarsen, H., Terpstra, P.M.J., and van Kessel, I.A.C. 2003. An investigation of domestic laundry in Europe: habits, hygiene and technical performance. Statens Ins-titutt for Forbruksforskning, Wageningen UR, Wageningen, the Netherland.

    Google Scholar 

  • Augustin, W., Fuchs, T., Föste, H., Schöler, M., Majschak, J.P., and Scholl, S. 2010. Pulsed flow for enhanced cleaning in food processing. Food Bioprod. Process88, 384–391.

    Google Scholar 

  • Balasubramanian, D., Harper, L., Shopsin, B., and Torres, V.J. 2017. Staphylococcus aureus pathogenesis in diverse host environments. Pathog. Dis. 75, ftx005.

    Google Scholar 

  • Bloomfield, S.F., Cookson, B., Falkiner, F., Griffith, C., and Cleary, V. 2007. Methicillin-resistant Staphylococcus aureus, Clostridium difficile, and extended-spectrum beta-lactamase-producing Escherichia coli in the community: assessing the problem and controlling the spread. Am. J. Infect. Control. 35, 86–88.

    PubMed  Google Scholar 

  • Bockmühl, D.P. 2017. Laundry hygiene-how to get more than clean. J. Appl. Microbiol. 122, 1124–1133.

    PubMed  Google Scholar 

  • Boll, J.M., Tucker, A.T., Klein, D.R., Beltran, A.M., Brodbelt, J.S., Davies, B.W., and Trent, M.S. 2015. Reinforcing lipid a acylation on the cell surface of Acinetobacter baumannii promotes cationic antimicrobial peptide resistance and desiccation survival. mBio6, e00478–15.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Borkow, G. and Gabbay, J. 2007. Biocidal textiles can help fight no-socomial infections. Med. Hypotheses70, 990–994.

    PubMed  Google Scholar 

  • Brands, B., Honisch, M., Wegner, S., and Bockmühl, D.P. 2016. The effect of drying processes on the microbial load of laundry. H&PC Today11, 24–26.

    Google Scholar 

  • Breeuwer, P., Lardeau, A., Peterz, M., and Joosten, H.M. 2003. Desiccation and heat tolerance of Enterobacter sakazakii. J. Appl. Microbiol. 95, 967–973.

    CAS  PubMed  Google Scholar 

  • Callewaert, C., Van-Nevel, S., Kerckhof, F.M., Granitsiotis, M.S., and Boon, N. 2015. Bacterial exchange in household washing machines. Front. Microbiol. 6, 1381.

    Google Scholar 

  • Cavaliere, E., De-Cesari, S., Landini, G., Riccobono, E., Pallecchi, L., Rossolini, GM., and Gavioli, L. 2015. Highly bactericidal Ag nanoparticle films obtained by cluster beam deposition. Nanomedicine11, 1417–1423.

    CAS  PubMed  Google Scholar 

  • Chapartegui-González, I., Lázaro-Díez, M., Bravo, Z., Navas, J., Icardo, J.M., and Ramos-Vivas, J. 2018. Acinetobacter baumannii maintains its virulence after long-time starvation. PLoS One13, e0201961.

    PubMed  PubMed Central  Google Scholar 

  • Chen, A.I. and Goulian, M. 2018. A network of regulators promotes dehydration tolerance in Escherichia coli. Environ. Microbiol. 20, 1283–1295.

    PubMed  PubMed Central  Google Scholar 

  • Cody, H.J., Smith, P.F., Blaser, M.J., LaForce, F.M., and Wang, W.L. 1984. Comparison of methods for recovery of Escherichia coli and Staphylococcus aureus from seeded laundry fabrics. Appl. Environ. Microbiol. 47, 965–970.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Department of Health. 2010. Uniform and Workwear: Guidance on Uniform and Workwear Policies for NHS Employers. Department of Health, London, UK.

    Google Scholar 

  • Esbelin, J., Santos, T., and Hébraud, M. 2018. Desiccation: An environmental and food industry stress that bacteria commonly face. Food Microbiol. 69, 82–88.

    CAS  PubMed  Google Scholar 

  • Espinal, P., Martí, S., and Vila, J. 2012. Effect of biofilm formation on the survival of Acinetobacter baumannii on dry surfaces. J. Hosp. Infect. 80, 56–60.

    CAS  PubMed  Google Scholar 

  • Farr, S.B. and Kogoma, T. 1991. Oxidative stress responses in Escherichia coli and Salmonella typhimurium. Microbiol. Rev. 55, 561–585.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farrow, J.M. 3rd, Wells, G., and Pesci, E.C. 2018. Desiccation tolerance in Acinetobacter baumannii is mediated by the two-component response regulator BfmR. PLoS One13, e0205638.

    PubMed  PubMed Central  Google Scholar 

  • Hirai, Y. 1991. Survival of bacteria under dry conditions; from a viewpoint of nosocomial infection. J. Hosp. Infect. 19, 191–200.

    CAS  PubMed  Google Scholar 

  • Honisch, M., Stamminger, R., and Bockmühl, D.P. 2014. Impact of wash cycle time, temperature and detergent formulation on the hygiene effectiveness of domestic laundering. J. Appl. Microbiol. 117, 1787–1797.

    CAS  PubMed  Google Scholar 

  • Hsieh, Y.L. and Merry, J. 1986. The adherence of Staphylococcus aureus, Staphylococcus epidermidis and Escherichia coli on cotton, polyester and their blends. J. Appl. Bacteriol. 60, 535–544.

    CAS  PubMed  Google Scholar 

  • Ibrahim, N.A., El-Zairy, M.R., Eid, B.M., El-Zairy, E.M., and Emam, E.M. 2015. New finishing possibilities for producing durable multifunctional cotton/wool and viscose/wool blended fabrics. Car-bohydr. Polym. 119, 182–193.

    CAS  Google Scholar 

  • Jang, J., Hur, H.G., Sadowsky, M.J., Byappanahalli, M.N., Yan, T., and Ishii, S. 2017. Environmental Escherichia coli: ecology and public health implications-a review. J. Appl. Microbiol. 123, 570–581.

    CAS  PubMed  Google Scholar 

  • Jawad, A., Heritage, J., Snelling, A.M., Gascoyne-Binzi, D.M., and Hawkey, P.M. 1996. Influence of relative humidity and suspending menstrua on survival of Acinetobacter spp. on dry surfaces. J. Clin. Microbiol. 34, 288–287.

    Google Scholar 

  • Joo, E.J., Choi, J.Y., Chung, D.R., Song, J.H., and Ko, K.S. 2016. Characteristics of the community-genotype sequence type 72 methi-cillin-resistant Staphylococcus aureus isolates that underlie their persistence in hospitals. J. Microbiol. 54, 445–450.

    PubMed  Google Scholar 

  • Lebre, P.H., De Maayer, P., and Cowan, D.A. 2017. Xerotolerant bacteria: surviving through a dry spell. Nat. Rev. Microbiol. 15, 285–296.

    CAS  PubMed  Google Scholar 

  • Lidwell, O.M. and Lowbury, E.J. 1950. The survival of bacteria in dust: II. The effect of atmospheric humidity on the survival of bacteria in dust. J. Hyg. (Lond)48, 21–27.

    CAS  Google Scholar 

  • Lucassen, R., Merettig, N., and Bockmühl, D.P. 2013. Antimicrobial efficacy of hygiene rinsers under consumer-related conditions. Tenside Surfact. Det. 50, 259–262.

    CAS  Google Scholar 

  • Luiz, G.C.C. and Christian, J.L.H. 2016. Experimental evaluation and transient simulation of detergent transport in household vertical axis washing machines. Chem. Eng. Res. Des. 109, 720–729.

    Google Scholar 

  • McConnell, M.J., Actis, L., and Pachón, J. 2013. Acinetobacter baumannii: human infections, factors contributing to pathogenesis and animal models. FEMS Microbiol. Rev. 37, 130–155.

    CAS  PubMed  Google Scholar 

  • McKenney, P.T., Driks, A., and Eichenberger, P. 2013. The Bacillus subtilis endospore: assembly and functions of the multilayered coat. Nat. Rev. Microbiol. 11, 33–44.

    CAS  PubMed  Google Scholar 

  • Miescher, G., Lincke, H., and Rinderknecht, P. 1955. Investigation of bacterial desiccation. J. Invest. Dermatol. 24, 293–300.

    CAS  PubMed  Google Scholar 

  • Munk, S., Johansen, C., Stahnke, L.H., and Adler-Nissen, J. 2001. Microbial survival and odor in laundry. J. Surfactants Deterg. 4, 385–394.

    CAS  Google Scholar 

  • Nocker, A., Fernández, P.S., Montijn, R., and Schuren, F. 2012. Effect of air drying on bacterial viability: A multiparameter viability assessment. J. Microbiol. Methods90, 86–95.

    CAS  PubMed  Google Scholar 

  • O’Gara, J.P. 2017. Into the storm: Chasing the opportunistic pathogen Staphylococcus aureus from skin colonisation to life-threatening infections. Environ. Microbiol. 19, 3823–3833.

    PubMed  Google Scholar 

  • Ossowski, B. and Duchmann, U. 1997. Effect of domestic laundry processes on mycotic contamination of textiles. Hautarzt48, 397–401.

    CAS  PubMed  Google Scholar 

  • Pinho, M.G., Kjos, M., and Veening, J.W. 2013. How to get (a)round: mechanisms controlling growth and division of coccoid bacteria. Nat. Rev. Microbiol. 11, 601–614.

    CAS  PubMed  Google Scholar 

  • Potts, M. 1994. Desiccation tolerance of prokaryotes. Microbiol. Rev. 58, 755–805.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Rebell, G., Pillsbury, D.M., De Saint Phalle, M., and Ginsburg, D. 1950. Factors affecting the rapid disappearance of bacteria placed on the normal skin. J. Invest. Dermatol. 14, 247–264.

    CAS  PubMed  Google Scholar 

  • Riley, K., Williams, J., Owen, L., Shen, J., Davies, A., and Laird, K. 2017. The effect of low-temperature laundering and detergents on the survival of Escherichia coli and Staphylococcus aureus on textiles used in healthcare uniforms. J. Appl. Microbiol. 123, 280–286.

    CAS  PubMed  Google Scholar 

  • Rodriguez-Rojas, A., Oliver, A., and Blazquez, J. 2012. Intrinsic and environmental mutagenesis drive diversification and persistence of Pseudomonas aeruginosa in chronic lung infections. J. Infect. Dis. 205, 121–127.

    PubMed  Google Scholar 

  • Rountree, P.M. 1963. The effect of desiccation on the viability of Staphylococcus aureus. J. Hyg. (Lond)61, 265–272.

    CAS  Google Scholar 

  • Sattar, S.A., Springthorpe, S., Mani, S., Gallant, M., Nair, R.C., Scott, E., and Kain, J. 2001. Transfer of bacteria from fabrics to hands and other fabrics: development and application of a quantitative method using Staphylococcus aureus as a model. J. Appl. Microbiol. 90, 962–970.

    CAS  PubMed  Google Scholar 

  • Sehulster, L.M. 2015. Healthcare laundry and textiles in the United States: Review and commentary on contemporary infection prevention issues. Infect. Control Hosp. Epidemiol. 36, 1073–1088.

    PubMed  Google Scholar 

  • Stone, S.P., Fuller, C., Savage, J., Cookson, B., Hayward, A., Cooper, B., Duckworth, G., Michie, S., Murray, M., Jeanes, A.,et al. 2012. Evaluation of the national Cleanyourhands campaign to reduce Staphylococcus aureus bacteraemia and Clostridium difficile infection in hospitals in England and Wales by improved hand hygiene: four year, prospective, ecological, interrupted time series study. BMJ344, e3005.

    Google Scholar 

  • Tapia, H., Young, L., Fox, D., Bertozzi, C.R., and Koshland, D. 2015. Increasing intracellular trehalose is sufficient to confer desiccation tolerance to Saccharomyces cerevisiae. Proc. Natl. Acad. Sci. USA112, 6122–6127.

    CAS  PubMed  Google Scholar 

  • Vriezen, J.A., de Bruijn, F.J., and Nüsslein, K. 2006. Desiccation responses and survival of Sinorhizobium meliloti USDA 1021 in relation to growth phase, temperature, chloride and sulfate availability. Lett. Appl. Microbiol. 42, 172–178.

    CAS  PubMed  Google Scholar 

  • Weernink, A., Severin, W.P., Tjernberg, I., and Dijkshoorn, L. 1995. Pillows, an unexpected source of Acinetobacter. J. Hosp. Infect. 29, 189–199.

    CAS  PubMed  Google Scholar 

  • Wolfe, J. and Bryant, G. 1999. Freezing, drying, and/or vitrification of membrane-solute-water systems. Cryobiology39, 103–129.

    CAS  PubMed  Google Scholar 

  • Zhang, Q. and Yan, T. 2012. Correlation of intracellular trehalose concentration with desiccation resistance of soil Escherichia coli populations. Appl. Environ. Microbiol. 78, 7407–7413.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This research was supported by a grant from the Advanced R&D Team of Samsung Electronics.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Woojun Park.

Additional information

Conflict of Interest

The authors declare no conflict of interests.

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, Y., Park, J. & Park, W. Sterilization efficiency of pathogen-contaminated cottons in a laundry machine. J Microbiol. 58, 30–38 (2020). https://doi.org/10.1007/s12275-020-9391-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-020-9391-1

Keywords

Navigation