Skip to main content
Log in

Analyses of DNA double-strand break repair pathways in tandem arrays of HXT genes of Saccharomyces cerevisiae

  • Microbial Genetics, Genomics and Molecular Biology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Eukaryotic genomes contain numerous homologous repeat sequences including redundant genes with divergent homology that can be potential recombination targets. Recombination between divergent sequences is rare but poses a substantial threat to genome stability. The hexose transporter (HXT) gene family shares high sequence similarities at both protein and DNA levels, and some members are placed close together in tandem arrays. In this study, we show that spontaneous interstitial deletions occur at significantly high rates in HXT gene clusters, resulting in chimeric HXT sequences that contain a single junction point. We also observed that DNA double-strand breaks created between HXT genes produce primarily interstitial deletions, whereas internal cleavage of the HXT gene resulted in gene conversions as well as deletion products. Interestingly, interstitial deletions were less constrained by sequence divergence than gene conversion. Moreover, recombination-defective mutations differentially affected the survival frequency. Mutations that impair single-strand annealing (SSA) pathway greatly reduced the survival frequency by 10–1,000-fold, whereas disruption of Rad51-dependent homologous recombination exhibited only modest reduction. Our results indicate that recombination in the tandemly repeated HXT genes occurs primarily via SSA pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anand, R.P., Tsaponina, O., Greenwell, P.W., Lee, C.S., Du, W., Petes, T.D., and Haber, J.E. 2014. Chromosome rearrangements via template switching between diverged repeated sequences. Genes Dev. 28, 2394–2406.

    Article  Google Scholar 

  • Bhargava, R., Onyango, D.O., and Stark, J.M. 2016. Regulation of single-strand annealing and its role in genome maintenance. Trends Genet. 32, 566–575.

    Article  CAS  Google Scholar 

  • Bowen, N., Smith, C.E., Srivatsan, A., Willcox, S., Griffith, J.D., and Kolodner, R.D. 2013. Reconstitution of long and short patch mismatch repair reactions using Saccharomyces cerevisiae proteins. Proc. Natl. Acad. Sci. USA 110, 18472–18477.

    Article  CAS  Google Scholar 

  • Chakraborty, U. and Alani, E. 2016. Understanding how mismatch repair proteins participate in the repair/anti-recombination decision. FEMS Yeast Res. 16, fow071.

    Article  Google Scholar 

  • Chakraborty, U., George, C.M., Lyndaker, A.M., and Alani, E. 2016. A delicate balance between repair and replication factors regulates recombination between divergent DNA sequences in Saccharomyces cerevisiae. Genetics 202, 525–540.

    Article  CAS  Google Scholar 

  • Chapman, K.M., Wilkey, M.M., Potter, K.E., Waldman, B.C., and Waldman, A.S. 2017. High homology is not required at the site of strand invasion during recombinational double-strand break repair in mammalian chromosomes. DNA Repair 60, 1–8.

    Article  CAS  Google Scholar 

  • Choi, D.H., Lee, R., Kwon, S.H., and Bae, S.H. 2013. Hrq1 functions independently of Sgs1 to preserve genome integrity in Saccharomyces cerevisiae. J. Microbiol. 51, 105–112.

    Article  Google Scholar 

  • Choi, D.H., Min, M.H., Kim, M.J., Lee, R., Kwon, S.H., and Bae, S.H. 2014. Hrq1 facilitates nucleotide excision repair of DNA damage induced by 4-nitroquinoline-1-oxide and cisplatin in Saccharomyces cerevisiae. J. Microbiol. 52, 292–298.

    Article  CAS  Google Scholar 

  • Dujon, B. 1998. European Functional Analysis Network (EUROFAN) and the functional analysis of the Saccharomyces cerevisiae genome. Electrophoresis 19, 617–624.

    Article  CAS  Google Scholar 

  • Emerson, C.H. and Bertuch, A.A. 2016. Consider the workhorse: nonhomologous end joining in budding yeast. Biochem. Cell Biol. 94, 396–406.

    Article  CAS  Google Scholar 

  • Espinosα-Cantú, A., Ascencio, D., Baronα-Gómez, F., and DeLuna, A. 2015. Gene duplication and the evolution of moonlighting proteins. Front. Genet. 6, 227.

    Article  Google Scholar 

  • George, C.M. and Alani, E. 2012. Multiple cellular mechanisms prevent chromosomal rearrangements involving repetitive DNA. Crit. Rev. Biochem. Mol. Biol. 47, 297–313.

    Article  CAS  Google Scholar 

  • Goellner, E.M., Putnam, C.D., and Kolodner, R.D. 2015. Exonuclease 1-dependent and independent mismatch repair. DNA Repair 32, 24–32.

    Article  CAS  Google Scholar 

  • Hanscom, T. and McVey, M. 2020. Regulation of error-prone DNA double-strand break repair and its impact on genome evolution. Cells 9, 1657.

    Article  Google Scholar 

  • Hu, Q., Lu, H., Wang, H., Li, S., Truong, L., Li, J., Liu, S., Xiang, R., and Wu, X. 2019. Break-induced replication plays a prominent role in long-range repeat-mediated deletion. EMBO J. 38, e101751.

    Article  CAS  Google Scholar 

  • Hum, Y.F. and Jinks-Robertson, S. 2019. Mismatch recognition and subsequent processing have distinct effects on mitotic recombination intermediates and outcomes in yeast. Nucleic Acids Res. 47, 4554–4568.

    Article  CAS  Google Scholar 

  • Katju, V., Farslow, J.C., and Bergthorsson, U. 2009. Variation in gene duplicates with low synonymous divergence in Saccharomyces cerevisiae relative to Caenorhabditis elegans. Genome Biol. 10, R75.

    Article  Google Scholar 

  • Kruckeberg, A.L. 1996. The hexose transporter family of Saccharomyces cerevisiae. Arch. Microbiol. 166, 283–292.

    Article  CAS  Google Scholar 

  • Leandro, M.J., Fonseca, C., and Gonçalves, P. 2009. Hexose and pentose transport in ascomycetous yeasts: an overview. FEMS Yeast Res. 9, 511–525.

    Article  CAS  Google Scholar 

  • Lee, S.E., Moore, J.K., Holmes, A., Umezu, K., Kolodner, R.D., and Haber, J.E. 1998. Saccharomyces Ku70, Mre11/Rad50, and RPA proteins regulate adaptation to G2/M arrest after DNA damage. Cell 94, 399–409.

    Article  CAS  Google Scholar 

  • Li, J., Sun, H., Huang, Y., Wang, Y., Liu, Y., and Chen, X. 2019. Pathways and assays for DNA double-strand break repair by homologous recombination. Acta Biochim. Biophys. Sin. 51, 879–889.

    Article  CAS  Google Scholar 

  • Møller, H.D., Parsons, L., Jørgensen, T.S., Botstein, D., and Regenberg, B. 2015. Extrachromosomal circular DNA is common in yeast. Proc. Natl. Acad. Sci. USA 112, E3114–E3122.

    Article  Google Scholar 

  • Moore, J.K. and Haber, J.E. 1996. Cell cycle and genetic requirements of two pathways of nonhomologous end-joining repair of double-strand breaks in Saccharomyces cerevisiae. Mol. Cell Biol. 16, 2164–2173.

    Article  CAS  Google Scholar 

  • Myung, K. and Kolodner, R.D. 2003. Induction of genome instability by DNA damage in Saccharomyces cerevisiae. DNA Repair 2, 243–258.

    Article  CAS  Google Scholar 

  • Özcan, S., Dover, J., and Johnston, M. 1998. Glucose sensing and signaling by two glucose receptors in the yeast Saccharomyces cerevisiae. EMBO J. 17, 2566–2573.

    Article  Google Scholar 

  • Özcan, S. and Johnston, M. 1999. Function and regulation of yeast hexose transporters. Microbiol. Mol. Biol. Rev. 63, 554–569.

    Article  Google Scholar 

  • Palma, M., Seret, M.L., and Baret, P.V. 2009. Combined phylogenetic and neighbourhood analysis of the hexose transporters and glucose sensors in yeasts. FEMS Yeast Res. 9, 526–534.

    Article  CAS  Google Scholar 

  • Piazza, A., Shah, S.S., Wright, W.D., Gore, S.K., Koszul, R., and Heyer, W.D. 2019. Dynamic processing of displacement loops during recombinational DNA repair. Mol. Cell 73, 1255–1266.

    Article  CAS  Google Scholar 

  • Putnam, C.D., Hayes, T.K., and Kolodner, R.D. 2009. Specific pathways prevent duplication-mediated genome rearrangements. Nature 460, 984–989.

    Article  CAS  Google Scholar 

  • Putnam, C.D. and Kolodner, R.D. 2017. Pathways and mechanisms that prevent genome instability in Saccharomyces cerevisiae. Genetics 206, 1187–1225.

    Article  CAS  Google Scholar 

  • Ranjha, L., Howard, S.M., and Cejka, P. 2018. Main steps in DNA double-strand break repair: an introduction to homologous recombination and related processes. Chromosoma 127, 187–214.

    Article  CAS  Google Scholar 

  • Srivatsan, A., Putnam, C.D., and Kolodner, R.D. 2018. Analyzing genome rearrangements in Saccharomyces cerevisiae. Methods Mol. Biol. 1672, 43–61.

    Article  CAS  Google Scholar 

  • Sugawara, N., Goldfarb, T., Studamire, B., Alani, E., and Haber, J.E. 2004. Heteroduplex rejection during single-strand annealing requires Sgs1 helicase and mismatch repair proteins Msh2 and Msh6 but not Pms1. Proc. Natl. Acad. Sci. USA 101, 9315–9320.

    Article  CAS  Google Scholar 

  • Sugawara, N., Ira, G., and Haber, J.E. 2000. DNA length dependence of the single-strand annealing pathway and the role of Saccharomyces cerevisiae RAD59 in double-strand break repair. Mol. Cell. Biol. 20, 5300–5309.

    Article  CAS  Google Scholar 

  • Tham, K.C., Kanaar, R., and Lebbink, J.H.G. 2016. Mismatch repair and homeologous recombination. DNA Repair 38, 75–83.

    Article  CAS  Google Scholar 

  • Tisi, R., Vertemara, J., Zampella, G., and Longhese, M.P. 2020. Functional and structural insights into the MRX/MRN complex, a key player in recognition and repair of DNA double-strand breaks. Comput. Struct. Biotechnol. J. 18, 1137–1152.

    Article  CAS  Google Scholar 

  • Vardy, E., Arkin, I.T., Gottschalk, K.E., Kaback, H.R., and Schuldiner, R. 2004. Structural conservation in the major facilitator super-family as revealed by comparative modeling. Protein Sci. 13, 1832–1840.

    Article  CAS  Google Scholar 

  • Villarreal, D.D., Lee, K., Deem, A., Shim, E.Y., Malkova, A., and Lee, S.E. 2012. Microhomology directs diverse DNA break repair pathways and chromosomal translocations. PLoS Genet. 8, e1003026.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by National Research Foundation of Korea (2018R1D1A1B07050900) and Inha university (51786).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sung-Ho Bae.

Additional information

Conflict of Interest

Authors declare no competing interests.

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, JH., Lim, YS., Kim, MK. et al. Analyses of DNA double-strand break repair pathways in tandem arrays of HXT genes of Saccharomyces cerevisiae. J Microbiol. 58, 957–966 (2020). https://doi.org/10.1007/s12275-020-0461-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-020-0461-1

Keywords

Navigation