Skip to main content

Intervention with kimchi microbial community ameliorates obesity by regulating gut microbiota

Abstract

The objective of this study was to evaluate anti-obesity effects of kimchi microbial community (KMC) on obesity and gut microbiota using a high fat diet-induced mouse model compared to effects of a single strain. Administration of KMC decreased body weight, adipose tissue, and liver weight gains. Relative content of Muribaculaceae in the gut of the KMC-treated group was higher than that in the high-fat diet (HFD) group whereas relative contents of Akkermansiaceae, Coriobacteriaceae, and Erysipelotrichaceae were lower in KMC-treated group. Metabolic profile of blood was found to change differently according to the administration of KMC and a single strain of Lactobacillus plantarum. Serum metabolites significantly increased in the HFD group but decreased in the KMC-treated group included arachidic acid, stearic acid, fumaric acid, and glucose, suggesting that the administration of KMC could influence energy metabolism. The main genus in KMC was not detected in guts of mice in KMC-treated group. Since the use of KMC has advantages in terms of safety, it has potential to improve gut microbial community for obese people.

This is a preview of subscription content, access via your institution.

References

  • Aballay, L.R., Eynard, A.R., Díaz, M.P., Navarro, A., and Muñoz, S.E. 2013. Overweight and obesity: a review of their relationship to metabolic syndrome, cardiovascular disease, and cancer in South America. Nutr. Rev. 71, 168–179.

    PubMed  Google Scholar 

  • Ahn, I.S., Do, M.S., Kim, S.O., Jung, H.S., Kim, Y.I., Kim, H.J., and Park, K.Y. 2006. Antiobesity effect of Kochujang (Korean fermented red pepper paste) extract in 3T3-L1 adipocytes. J. Med. Food 9, 15–21.

    PubMed  Google Scholar 

  • An, H.M., Park, S.Y., Lee, D.K., Kim, J.R., Cha, M.K., Lee, S.W., Lim, H.T., Kim, K.J., and Ha, N.J. 2011. Antiobesity and lipid-lowering effects of Bifidobacterium spp. in high fat diet-induced obese rats. Lipids Health Dis. 10, 116.

    PubMed  PubMed Central  Google Scholar 

  • Andersson, U., Bränning, C., Ahrné, S., Molin, G., Alenfall, J., Onning, G., Nyman, M., and Holm, C. 2010. Probiotics lower plasma glucose in the high-fat fed C57BL/6J mouse. Benef. Microbes 1, 189–196.

    CAS  PubMed  Google Scholar 

  • Brusaferro, A., Cozzali, R., Orabona, C., Biscarini, A., Farinelli, E., Cavalli, E., Grohmann, U., Principi, N., and Esposito, S. 2018. Is it time to use probiotics to prevent or treat obesity? Nutrients 10, 1613.

    PubMed Central  Google Scholar 

  • Calvani, R., Miccheli, A., Capuani, G., Tomassini Miccheli, A., Puccetti, C., Delfini, M., Iaconelli, A., Nanni, G., and Mingrone, G. 2010. Gut microbiome-derived metabolites characterize a peculiar obese urinary metabotype. Int. J. Obes. 34, 1095–1098.

    CAS  Google Scholar 

  • Castaner, O., Goday, A., Park, Y.M., Lee, S.H., Magkos, F., Shiow, S.A.T.E., and Schröder, H. 2018. The gut microbiome profile in obesity: a systematic review. Int. J. Endocrinol. 2018, 4095789.

    PubMed  PubMed Central  Google Scholar 

  • Cha, Y.S., Park, Y., Lee, M., Chae, S.W., Park, K., Kim, Y., and Lee, H.S. 2014. Doenjang, a Korean fermented soy food, exerts antiobesity and antioxidative activities in overweight subjects with the PPAR-γ2 C1431T polymorphism: 12-week, double-blind randomized clinical trial. J. Med. Food 17, 119–127.

    CAS  PubMed  Google Scholar 

  • Chen, Y.T., Yang, N.S., Lin, Y.C., Ho, S.T., Li, K.Y., Lin, J.S., Liu, J.R., and Chen, M.J. 2018. A combination of Lactobacillus mali APS1 and dieting improved the efficacy of obesity treatment via manipulating gut microbiome in mice. Sci. Rep. 8, 6153.

    PubMed  PubMed Central  Google Scholar 

  • Choi, I.H., Noh, J.S., Han, J.S., Kim, H.J., Han, E.S., and Song, Y.O. 2013. Kimchi, a fermented vegetable, improves serum lipid profiles in healthy young adults: randomized clinical trial. J. Med. Food 16, 223–229.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Clarke, S.F., Murphy, E.F., Nilaweera, K., Ross, P.R., Shanahan, F., O’Toole, P.W., and Cotter, P.D. 2012. The gut microbiota and its relationship to diet and obesity: new insights. Gut Microbes 3, 186–202.

    PubMed  PubMed Central  Google Scholar 

  • Cui, H.H., Chen, C.L., Wang, J.D., Yang, Y.J., Cun, Y., Wu, J.B., Liu, Y.H., Dan, H.L., Jian, Y.T., and Chen, X.Q. 2004. Effects of probiotic on intestinal mucosa of patients with ulcerative colitis. World J. Gastroenterol. 10, 1521–1525.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cui, M., Kim, H.Y., Lee, K.H., Jeong, J.K., Hwang, J.H., Yeo, K.Y., Ryu, B.H., Choi, J.H., and Park, K.Y. 2015. Antiobesity effects of kimchi in diet-induced obese mice. J. Ethn. Foods 2, 137–144.

    Google Scholar 

  • Dahiya, D.K., Puniya, M., Shandilya, U.K., Dhewa, T., Kumar, N., Kumar, S., Punjya, A.K., and Shukla, P. 2017. Gut microbiota modulation and its relationship with obesity using prebiotic fibers and probiotics: a review. Front. Microbiol. 8, 563.

    PubMed  PubMed Central  Google Scholar 

  • Davis, C.D. 2016. The gut microbiome and its role in obesity. Nutr. Today 51, 167–174.

    PubMed  PubMed Central  Google Scholar 

  • Delzenne, N.M., Neyrinck, A.M., Bäckhed, F., and Cani, P.D. 2011. Targeting gut microbiota in obesity: effects of prebiotics and probiotics. Nat. Rev. Endocrinol. 7, 639–646.

    CAS  PubMed  Google Scholar 

  • Ding, Y., Song, Z., Li, H., Chang, L., Pan, T., Gu, X., He, X., and Fan, Z. 2019. Honokiol ameliorates high-fat-diet-induced obesity of different sexes of mice by modulating the composition of the gut microbiota. Front. Immunol. 10, 2800.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hou, D., Zhao, Q., Yousaf, L., Khan, J., Xue, Y., and Shen, Q. 2020. Consumption of mung bean (Vigna radiata L.) attenuates obesity, ameliorates lipid metabolic disorders and modifies the gut microbiota composition in mice fed a high-fat diet. J. Funct. Foods 64, 103687.

    Google Scholar 

  • Jung, J.Y., Lee, S.H., and Jeon, C.O. 2014. Kimchi microflora: history, current status, and perspectives for industrial kimchi production. Appl. Microbiol. Biotechnol. 98, 2385–2393.

    CAS  PubMed  Google Scholar 

  • Kaakoush, N.O. 2015. Insights into the role of Erysipelotrichaceae in the human host. Front. Cell. Infect. Microbiol. 5, 84.

    PubMed  PubMed Central  Google Scholar 

  • Kadooka, Y., Sato, M., Imaizumi, K., Ogawa, A., Ikuyama, K., Akai, Y., Okano, M., Kagoshima, M., and Tsuchida, T. 2010. Regulation of abdominal adiposity by probiotics (Lactobacillus gasseri SBT2055) in adults with obese tendencies in a randomized controlled trial. Eur. J. Clin. Nutr. 64, 636–643.

    CAS  PubMed  Google Scholar 

  • Kim, S.M. 2015. Obesity and dysbiosis. Korean J. Obes. 24, 121–125.

    Google Scholar 

  • Kim, E.K., An, S.Y., Lee, M.S., Kim, T.H., Lee, H.K., Hwang, W.S., Choe, S.J., Kim, T.Y., Han, S.J., Kim, H.J., et al. 2011. Fermented kimchi reduces body weight and improves metabolic parameters in overweight and obese patients. Nutr. Res. 31, 436–443.

    CAS  PubMed  Google Scholar 

  • Kruis, W., Frič, P., Pokrotnieks, J., Lukáš, M., Fixa, B., Kaščák, M., Kamm, M.A., Weismueller, J., Beglinger, C., Stolte, M., et al. 2004. Maintaining remission of ulcerative colitis with the probiotic Escherichia coli Nissle 1917 is as effective as with standard mesalazine. Gut 53, 1617–1623.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar, N., Tomar, S.K., Thakur, K., and Singh, A.K. 2017. The ameliorative effects of probiotic Lactobacillus fermentum strain RS-2 on alloxan induced diabetic rats. J. Funct. Foods 28, 275–284.

    CAS  Google Scholar 

  • Lee, B.H., Lo, Y.H., and Pan, T.M. 2013. Anti-obesity activity of Lactobacillus fermented soy milk products. J. Funct. Foods 5, 905–913.

    CAS  Google Scholar 

  • Park, D.Y., Ahn, Y.T., Park, S.H., Huh, C.S., Yoo, S.R., Yu, R., Sung, M.K., McGregor, R.A., and Choi, M.S. 2013. Supplementation of Lactobacillus curvatus HY7601 and Lactobacillus plantarum KY1032 in diet-induced obese mice is associated with gut microbial changes and reduction in obesity. PLoS ONE 8, e59470.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Park, S. and Bae, J.H. 2015. Probiotics for weight loss: a systematic review and meta-analysis. Nutr. Res. 35, 566–575.

    CAS  PubMed  Google Scholar 

  • Park, E.J., Chun, G., Cha, C.J., Park, W.S., Jeon, C.O., and Bae, J.W. 2012. Bacterial community analysis during fermentation of ten representative kinds of kimchi with barcoded pyrosequencing. Food Microbiol. 30, 197–204.

    CAS  PubMed  Google Scholar 

  • Park, S., Ji, Y., Jung, H.Y., Park, H., Kang, J., Choi, S.H., Shin, H., Hyun, C.K., Kim, K.T., and Holzapfel, W.H. 2017. Lactobacillus plantarum HAC01 regulates gut microbiota and adipose tissue accumulation in a diet-induced obesity murine model. Appl. Microbiol. Biotechnol. 101, 1605–1614.

    CAS  PubMed  Google Scholar 

  • Park, J.E., Oh, S.H., and Cha, Y.S. 2014. Lactobacillus brevis OPK-3 isolated from kimchi inhibits adipogenesis and exerts anti-inflammation in 3T3-L1 adipocyte. J. Sci. Food Agric. 94, 2514–2520.

    CAS  PubMed  Google Scholar 

  • Park, S.E., Seo, S.H., Kim, E.J., Park, D.H., Park, K.M., Cho, S.S., Son, H.S. 2019. Metabolomic approach for discrimination of cultivation age and ripening stage in ginseng berry using gas chromatography-mass spectrometry. Molecules 24, 3837.

    CAS  PubMed Central  Google Scholar 

  • Peters, B.A., Shapiro, J.A., Church, T.R., Miller, G., Trinh-Shevrin, C., Yuen, E., Friedlander, C., Hayes R.B., and Ahn, J. 2018. A taxonomic signature of obesity in a large study of American adults. Sci. Rep. 8, 9749.

    PubMed  PubMed Central  Google Scholar 

  • Qin, Y., Roberts, J.D., Grimm, S.A., Lih, F.B., Deterding, L.J., Li, R., Chrysovergis, K., and Wade, P.A. 2018. An obesity-associated gut microbiome reprograms the intestinal epigenome and leads to altered colonic gene expression. Genome Biol. 19, 7.

    PubMed  PubMed Central  Google Scholar 

  • Raoult, D. 2009. Probiotics and obesity: a link? Nat. Rev. Microbiol. 7, 616.

    CAS  PubMed  Google Scholar 

  • Rössner, S. 2002. Obesity: the disease of the twenty-first century. Int. J. Obes. 26, S2–S4.

    Google Scholar 

  • Rouxinol-Dias, A.L., Pinto, A.R., Janeiro, C., Rodrigues, D., Moreira, M., Dias, J., and Pereira, P. 2016. Probiotics for the control of obesity–Its effect on weight change. Porto Biomed. J. 1, 12–24.

    PubMed  PubMed Central  Google Scholar 

  • Sakai, T., Taki, T., Nakamoto, A., Shuto, E., Tsutsumi, R., Toshimitsu, T., Makino, S., and Ikegami, S. 2013. Lactobacillus plan-tarum OLL2712 regulates glucose metabolism in C57BL/6 mice fed a high-fat diet. J. Nutr. Sci. Vitaminol. 59, 144–147.

    CAS  PubMed  Google Scholar 

  • Shen, Z.H., Zhu, C.X., Quan, Y.S., Yang, Z.Y., Wu, S., Luo, W.W., Tan, B., and Wang, X.Y. 2018. Relationship between intestinal microbiota and ulcerative colitis: mechanisms and clinical application of probiotics and fecal microbiota transplantation. World J. Gastroenterol. 24, 5–14.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Son, S.H., Jeon, H.L., Yang, S.J., Lee, N.K., and Paik, H.D. 2017. In vitro characterization of Lactobacillus brevis KU15006, an isolate from kimchi, reveals anti-adhesion activity against foodborne pathogens and antidiabetic properties. Microb. Pathog. 112, 135–141.

    CAS  PubMed  Google Scholar 

  • Sood, A., Midha, V., Makharia, G.K., Ahuja, V., Singal, D., Goswami, P., and Tandon, R.K. 2009. The probiotic preparation, VSL# 3 induces remission in patients with mild-to-moderately active ulcerative colitis. Clin. Gastroenterol. Hepatol. 7, 1202–1209.

    PubMed  Google Scholar 

  • Timmerman, H.M., Koning, C.J.M., Mulder, L., Rombouts, F.M., and Beynen, A.C. 2004. Monostrain, multistrain and multispecies probiotics-a comparison of functionality and efficacy. Int. J. Food Microbiol. 96, 219–233.

    CAS  PubMed  Google Scholar 

  • Turnbaugh, P.J., Bäckhed, F., Fulton, L., and Gordon, J.I. 2008. Diet-induced obesity is linked to marked but reversible alterations in the mouse distal gut microbiome. Cell Host Microbe 3, 213–223.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Turnbaugh, P.J., Ley, R.E., Mahowald, M.A., Magrini, V., Mardis, E.R., and Gordon, J.I. 2006. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 1027–1031.

    Google Scholar 

  • Wang, J., Tang, H., Zhang, C., Zhao, Y., Derrien, M., Rocher, E., van Hylckama Vlieg, J.E.T., Strissel, K., Zhao L., Obin, M., et al. 2015. Modulation of gut microbiota during probiotic-mediated attenuation of metabolic syndrome in high fat diet-fed mice. ISME J. 9, 1–15.

    PubMed  Google Scholar 

  • Watson, R.R. and Preedy, V.R. 2015. Probiotics, prebiotics, and synbiotics: Bioactive foods in health promotion. Academic Press, San Diego, California, USA.

    Google Scholar 

  • Yin, Y.N., Yu, Q.F., Fu, N., Liu, X.W., and Lu, F.G. 2010. Effects of four Bifidobacteria on obesity in high-fat diet induced rats. World J. Gastroenterol. 16, 3394–3401.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoo, S.R., Kim, Y.J., Park, D.Y., Jung, U.J., Jeon, S.M., Ahn, Y.T., Huh, C.S., McGregor, R., and Choi, M.S. 2013. Probiotics L. plantarum and L. curvatus in combination alter hepatic lipid metabolism and suppress diet-induced obesity. Obesity 21, 2571–2578.

    CAS  PubMed  Google Scholar 

  • Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613–1617.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yu, M.H., Lee, H.J., Im, H.G., Hwang, B.M.H., Kim, H.J., and Lee, I.S. 2005. The effects of kimchi with Monascus purpureus on the body weight gain and lipid metabolism in rats fed high fat diet. J. Life Sci. 15, 536–541.

    Google Scholar 

  • Zhang, X., Wu, Q., Zhao, Y., Aimy, A., and Yang, X. 2019. Consumption of post-fermented Jing-Wei Fuzhuan brick tea alleviates liver dysfunction and intestinal microbiota dysbiosis in high fructose diet-fed mice. RSC Adv. 9, 17501–17513.

    CAS  Google Scholar 

  • Zuo, T., Wong, S.H., Cheung, C.P., Lam, K., Lui, R., Cheung, K., Zhang, F., Tang, W., Ching, J.Y.L., Wu, J.C.Y., et al. 2018. Gut fungal dysbiosis correlates with reduced efficacy of fecal microbiota transplantation in Clostridium difficile infection. Nat. Commun. 9, 3663.

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (No. 2019R1C1C1002208).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dae-Hun Park or Hong-Seok Son.

Additional information

Conflict of Interest

The authors declared that they have no conflict of interest.

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic Supplementary Material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Park, SE., Kwon, S.J., Cho, KM. et al. Intervention with kimchi microbial community ameliorates obesity by regulating gut microbiota. J Microbiol. 58, 859–867 (2020). https://doi.org/10.1007/s12275-020-0266-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-020-0266-2

Keywords

  • obesity
  • kimchi microbial community
  • metabolomics
  • amplicon sequencing
  • microbiota