Performance comparison of fecal preservative and stock solutions for gut microbiome storage at room temperature

Abstract

The gut microbiome, which is symbiotic within the human body, assists in human digestion. It plays significant roles in identifying intestinal disease as well as in maintaining a healthy body with functional immune and metabolic activities. To confirm the consistency of fecal intestinal microbial research, it is necessary to study the changes in intestinal microbial flora according to the fecal collection solution and storage period. We collected fecal samples from three healthy Korean adults. To examine the efficacy of fecal collection solution, we used NBgene-Gut, OMNIgene-Gut, 70% ethanol (Ethanol-70%), and RNAlater. The samples were stored for up to two months at room temperature using three different methods, and we observed changes in microbial communities over time. We analyzed clusters of changes in the microbial flora by observing fecal stock solutions and metagenome sequencing performed over time. In particular, we confirmed the profiling of alpha and beta diversity and microbial classification according to the differences in intestinal environment among individuals. We also confirmed that the microbial profile remained stable for two months and that the microbial profile did not change significantly over time. In addition, our results suggest the possibility of verifying microbial profiling even for long-term storage of a single sample. In conclusion, collecting fecal samples using a stock solution rather than freezing feces seems to be relatively reproducible and stable for GUT metagenome analysis. Therefore, stock solution tubes in intestinal microbial research can be used without problems.

This is a preview of subscription content, access via your institution.

References

  1. Bahl, M.I., Bergström, A., and Licht, T.R. 2012. Freezing fecal samples prior to DNA extraction affects the Firmicutes to Bacteroidetes ratio determined by downstream quantitative PCR analysis. FEMS Microbiol. Lett.329, 193–197.

    CAS  Article  Google Scholar 

  2. Blum, H.E. 2017. The human microbiome: an emerging key player in health and disease. Arch. Clin. Biomed. Res.1, 85–95.

    Article  Google Scholar 

  3. Bolyen, E., Rideout, J.R., Dillon, M.R., Bokulich, N.A., Abnet, C.C., Al-Ghalith, G.A., Alexander, H., Alm, E.J., Arumugam, M., Asnicar, F., et al. 2019. Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat. Biotechnol.37, 852–857.

    CAS  Article  Google Scholar 

  4. Cho, I. and Blaser, M.J. 2012. The human microbiome: at the interface of health and disease. Nat. Rev. Genet.13, 260–270.

    CAS  Article  Google Scholar 

  5. Collins, F.S., Morgan, M., and Patrinos, A. 2003. The human genome project: lessons from large-scale biology. Science300, 286–290.

    CAS  Article  Google Scholar 

  6. Costea, P.I., Zeller, G., Sunagawa, S., Pelletier, E., Alberti, A., Levenez, F., Tramontano, M., Driessen, M., Hercog, R., Jung, F.E., et al. 2017. Towards standards for human fecal sample processing in metagenomic studies. Nat. Biotechnol.35, 1069–1076.

    CAS  Article  Google Scholar 

  7. David, L.A., Materna, A.C., Friedman, J., Campos-Baptista, M.I., Blackburn, M.C., Perrotta, A., Erdman, S.E., and Alm, E.J. 2014. Host lifestyle affects human microbiota on daily timescales. Genome Biol.15, R89.

    Article  Google Scholar 

  8. Dominianni, C., Wu, J., Hayes, R.B., and Ahn, J. 2014. Comparison of methods for fecal microbiome biospecimen collection. BMC Microbiol.14, 103.

    Article  Google Scholar 

  9. Fisher, R.A. 1936. The use of multiple measurements in taxonomic problems. Ann. Eugen.7, 179–188.

    Article  Google Scholar 

  10. Fouhy, F., Deane, J., Rea, M.C., O’Sullivan, O., Ross, R.P., O’Callaghan, G., Plant, B.J., and Stanton, C. 2015. The effects of freezing on faecal microbiota as determined using MiSeq sequencing and culture-based investigations. PLoS One10, e0119355.

    Article  Google Scholar 

  11. Hale, V.L., Tan, C.L., Knight, R., and Amato, K.R. 2015. Effect of preservation method on spider monkey (Ateles geoffroyi) fecal microbiota over 8 weeks. J. Microbiol. Methods113, 16–26.

    Article  Google Scholar 

  12. Hale, V.L., Tan, C.L., Niu, K., Yang, Y., Cui, D., Zhao, H., Knight, R., and Amato, K.R. 2016. Effects of field conditions on fecal microbiota. J. Microbiol. Methods130, 180–188.

    Article  Google Scholar 

  13. Human Microbiome Project Consortium. 2012. Structure, function and diversity of the healthy human microbiome. Nature486, 207–214.

    Article  Google Scholar 

  14. Ihekweazu, F.D. and Versalovic, J. 2018. Development of the pediatric gut microbiome: impact on health and disease. Am. J. Med. Sci.356, 413–423.

    Article  Google Scholar 

  15. Johnson, J.S., Spakowicz, D.J., Hong, B.Y., Petersen, L.M., Demkowicz, P., Chen, L., Leopold, S.R., Hanson, B.M., Agresta, H.O., Gerstein, M., et al. 2019. Evaluation of 16S rRNA gene sequencing for species and strain-level microbiome analysis. Nat. Commun.10, 5029.

    Article  Google Scholar 

  16. Knights, D., Silverberg, M.S., Weersma, R.K., Gevers, D., Dijkstra, G., Huang, H., Tyler, A.D., van Sommeren, S., Imhann, F., Stempak, J.M., et al. 2014. Complex host genetics influence the microbiome in inflammatory bowel disease. Genome Med.6, 107.

    Article  Google Scholar 

  17. Ley, R.E., Hamady, M., Lozupone, C., Turnbaugh, P.J., Ramey, R.R., Bircher, J.S., Schlegel, M.L., Tucker, T.A., Schrenzel, M.D., Knight, R., et al. 2008. Evolution of mammals and their gut microbes. Science320, 1647–1651.

    CAS  Article  Google Scholar 

  18. Lynch, S.V. and Pedersen, O. 2016. The human intestinal microbiome in health and disease. N. Engl. J. Med.375, 2369–2379.

    CAS  Article  Google Scholar 

  19. Nam, Y.D., Jung, M.J., Roh, S.W., Kim, M.S., and Bae, J.W. 2011. Comparative analysis of Korean human gut microbiota by barcoded pyrosequencing. PLoS One6, e22109.

    CAS  Article  Google Scholar 

  20. Park, S.T. and Kim, J. 2016. Trends in next-generation sequencing and a new era for whole genome sequencing. Int. Neurourol. J.20, S76–S83.

    Article  Google Scholar 

  21. Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S., Manichanh, C., Nielsen, T., Pons, N., Levenez, F., Yamada, T., et al. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature464, 59–65.

    CAS  Article  Google Scholar 

  22. Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Glockner, F.O. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res.41, D590–D596.

    CAS  Article  Google Scholar 

  23. Ravi, R.K., Walton, K., and Khosroheidari, M. 2018. MiSeq: A next generation sequencing platform for genomic analysis. Methods Mol. Biol.1706, 223–232.

    CAS  Article  Google Scholar 

  24. Rodriguez, J.M., Murphy, K., Stanton, C., Ross, R.P., Kober, O.I., Juge, N., Avershina, E., Rudi, K., Narbad, A., Jenmalm, M.C., et al. 2015. The composition of the gut microbiota throughout life, with an emphasis on early life. Microb. Ecol. Health Dis.26, 26050.

    PubMed  Google Scholar 

  25. Santiago, A., Panda, S., Mengels, G., Martinez, X., Azpiroz, F., Dore, J., Guarner, F., and Manichanh, C. 2014. Processing faecal samples: a step forward for standards in microbial community analysis. BMC Microbiol.14, 112.

    Article  Google Scholar 

  26. Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W.S., and Huttenhower, C. 2011. Metagenomic biomarker discovery and explanation. Genome Biol.12, R60.

    Article  Google Scholar 

  27. Sinha, R., Chen, J., Amir, A., Vogtmann, E., Shi, J., Inman, K.S., Flores, R., Sampson, J., Knight, R., and Chia, N. 2016. Collecting fecal samples for microbiome analyses in epidemiology studies. Cancer Epidemiol. Biomarkers Prev.25, 407–416.

    Article  Google Scholar 

  28. Spor, A., Koren, O., and Ley, R. 2011. Unravelling the effects of the environment and host genotype on the gut microbiome. Nat. Rev. Microbiol.9, 279–290.

    CAS  Article  Google Scholar 

  29. Thursby, E. and Juge, N. 2017. Introduction to the human gut microbiota. Biochem. J.474, 1823–1836.

    CAS  Article  Google Scholar 

  30. Tigchelaar, E.F., Bonder, M.J., Jankipersadsing, S.A., Fu, J., Wijmenga, C., and Zhernakova, A. 2016. Gut microbiota composition associated with stool consistency. Gut65, 540–542.

    CAS  Article  Google Scholar 

  31. Turnbaugh, P.J., Hamady, M., Yatsunenko, T., Cantarel, B.L., Duncan, A., Ley, R.E., Sogin, M.L., Jones, W.J., Roe, B.A., Affourtit, J.P., et al. 2009. A core gut microbiome in obese and lean twins. Nature457, 480–484.

    CAS  Article  Google Scholar 

  32. Vandeputte, D., Falony, G., Vieira-Silva, S., Tito, R.Y., Joossens, M., and Raes, J. 2016. Stool consistency is strongly associated with gut microbiota richness and composition, enterotypes and bacterial growth rates. Gut65, 57–62.

    CAS  Article  Google Scholar 

  33. Vogtmann, E., Chen, J., Amir, A., Shi, J., Abnet, C.C., Nelson, H., Knight, R., Chia, N., and Sinha, R. 2017. Comparison of collection methods for fecal samples in microbiome studies. Am. J. Epidemiol.185, 115–123.

    Article  Google Scholar 

  34. Wang, Z., Zolnik, C.P., Qiu, Y., Usyk, M., Wang, T., Strickler, H.D., Isasi, C.R., Kaplan, R.C., Kurland, I.J., Qi, Q., et al. 2018. Comparison of fecal collection methods for microbiome and metabolomics studies. Front. Cell. Infect. Microbiol.8, 301.

    Article  Google Scholar 

  35. Warnes, G.R., Bolker, B., Bonebakker, L., Genteman, R., Liaw, W., Lumley, T., Maechler, M., Magnusson A., Moeller, S., Schwartz, M., et al. 2015. gplots: Various R programming tools for plotting data. R package version 2.17.0.

  36. Wu, G.D., Lewis, J.D., Hoffmann, C., Chen, Y.Y., Knight, R., Bittinger, K., Hwang, J., Chen, J., Berkowsky, R., Nessel, L., et al. 2010. Sampling and pyrosequencing methods for characterizing bacterial communities in the human gut using 16S sequence tags. BMC Microbiol.10, 206.

    Article  Google Scholar 

  37. Young, V.B. 2017. The role of the microbiome in human health and disease: an introduction for clinicians. BMJ356, j831.

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank CEO Samuel Hwang (Theragen Bio, Republic of Korea) for supporting the sample preparation, sequencing, and computing system for bioinformatics analyses.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Kyudong Han or Yong Ju Ahn.

Ethics declarations

The authors declare that there are no conflicts of interest.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Park, C., Yun, K.E., Chu, J.M. et al. Performance comparison of fecal preservative and stock solutions for gut microbiome storage at room temperature. J Microbiol. 58, 703–710 (2020). https://doi.org/10.1007/s12275-020-0092-6

Download citation

Keywords

  • gut microbiome
  • stock solution
  • fecal collection tube
  • metagenome
  • room temperature