Abstract
Lignocellulose composed of complex carbohydrates and aromatic heteropolymers is one of the principal materials for the production of renewable biofuels. Lignocellulose-degrading genes from cold-adapted bacteria have a potential to increase the productivity of biological treatment of lignocellulose biomass by providing a broad range of treatment temperatures. Antarctic soil metagenomes allow to access novel genes encoding for the cold-active lignocellulose-degrading enzymes, for biotechnological and industrial applications. Here, we investigated the metagenome targeting cold-adapted microbes in Antarctic organic matter-rich soil (KS 2-1) to mine lignolytic and celluloytic enzymes by performing single molecule, real-time metagenomic (SMRT) sequencing. In the assembled Antarctic metagenomic contigs with relative long reads, we found that 162 (1.42%) of total 11,436 genes were annotated as carbohydrate-active enzymes (CAZy). Actinobacteria, the dominant phylum in this soil’s metagenome, possessed most of candidates of lignocellulose catabolic genes like glycoside hydrolase families (GH13, GH26, and GH5) and auxiliary activity families (AA7 and AA3). The predicted lignocellulose degradation pathways in Antarctic soil metagenome showed synergistic role of various CAZyme harboring bacterial genera including Streptomyces, Streptosporangium, and Amycolatopsis. From phylogenetic relationships with cellular and environmental enzymes, several genes having potential for participating in overall lignocellulose degradation were also found. The results indicated the presence of lignocellulose-degrading bacteria in Antarctic tundra soil and the potential benefits of the lignocelluolytic enzymes as candidates for cold-active enzymes which will be used for the future biofuel-production industry.
This is a preview of subscription content, access via your institution.
References
Aislabie, J.M., Jordan, S., and Barker, G.M. 2008. Relation between soil classification and bacterial diversity in soils of the Ross Sea region, Antarctica. Geoderma 144, 9–20.
Caporaso, J.G., Bittinger, K., Bushman, F.D., DeSantis, T.Z., Andersen, G.L., and Knight, R. 2009. Pynast: A flexible tool for aligning sequences to a template alignment. Bioinformatics 26, 266–267.
Chin, C.S., Alexander, D.H., Marks, P., Klammer, A.A., Drake, J., Heiner, C., Clum, A., Copeland, A., Huddleston, J., and Eichler, E.E. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10, 563–569.
Cole, J.R., Wang, Q., Fish, J.A., Chai, B., McGarrell, D.M., Sun, Y., Brown, C.T., Porras-Alfaro, A., Kuske, C.R., and Tiedje, J.M. 2014. Ribosomal database project: Data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42, D633–642.
Devasia, S. and Nair, A.J. 2016. Screening of potent laccase producing organisms based on the oxidation pattern of different phenolic substrates. Int. J. Curr. Microbiol. Appl. Sci. 5, 127–137.
Devi, P., Kandasamy, S., Chendrayan, K., and Uthandi, S. 2016. Laccase producing Streptomyces bikiniensis CSC 12 isolated from compost. J. Microbiol. Biotechnol. Food Sci. 6, 794–798.
Dey, G., Palit, S., Banerjee, R., and Maiti, B. 2002. Purification and characterization of maltooligosaccharide-forming amylase from Bacillus circulans GRS 313. J. Ind. Microbiol. Biotechnol. 28, 193–200.
Dhar, H., Kasana, R.C., Dutt, S., and Gulati, A. 2015. Cloning and expression of low temperature active endoglucanase EG5C from Paenibacillus sp. IHB B 3084. Int. J. Biol. Macromol. 81, 259–266.
Ducros, V., Czjzek, M., Belaich, A., Gaudin, C., Fierobe, H.P., Belaich, J.P., Davies, G.J., and Haser, R. 1995. Crystal structure of the catalytic domain of a bacterial cellulase belonging to family 5. Structure 3, 939–949.
Edgar, R.C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461.
Foong, F., Hamamoto, T., Shoseyov, O., and Doi, R.H. 1991. Nucleotide sequence and characteristics of endoglucanase gene engB from Clostridium cellulovorans. J. Gen. Microbiol. 137, 1729–1736.
Garsoux, G., Lamotte, J., Gerday, C., and Feller, G. 2004. Kinetic and structural optimization to catalysis at low temperatures in a psychrophilic cellulase from the antarctic bacterium Pseudoalteromonas haloplanktis. Biochem. J. 384, 247–253.
Goldstein, I.S. 1981. Composition of biomass. In Goldstein, I.S. (ed.), Organic Chemicals from Biomass, pp. 9–19. CRC Press Inc., Boca Raton, FL, USA.
Granja-Travez, R.S., Wilkinson, R.C., Persinoti, G.F., Squina, F.M., Fülöp, V., and Bugg, T.D. 2018. Structural and functional characterisation of multi-copper oxidase CueO from lignin-degrading bacterium Ochrobactrum sp. reveal its activity towards lignin model compounds and lignosulfonate. FEBS J. 285, 1684–1700.
Huerta-Cepas, J., Forslund, K., Coelho, L.P., Szklarczyk, D., Jensen, L.J., von Mering, C., and Bork, P. 2017. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol. Biol. Evol. 34, 2115–2122.
Iyo, A.H. and Forsberg, C.W. 1999. A cold-active glucanase from the ruminal Bacteriumfibrobacter succinogenes S85. Appl. Environ. Microbiol. 65, 995–998.
Jiménez, D.J., de Lima Brossi, M.J., Schückel, J., Kračun, S.K., Willats, W.G.T., and van Elsas, J.D. 2016. Characterization of three plant biomass-degrading microbial consortia by metagenomics-and metasecretomics-based approaches. Appl. Microbiol. Biotechnol. 100, 10463–10477.
Johnson, E. 2016. Integrated enzyme production lowers the cost of cellulosic ethanol. Biofuel Bioprod. Biorefin. 10, 164–174.
Kikani, B. and Singh, S. 2011. Single step purification and characterization of a thermostable and calcium independent α-amylase from Bacillus amyloliquifaciens TSWK1-1 isolated from Tulsi Shyam hot spring reservoir, Gujarat (India). Int. J. Biol. Macromol. 48, 676–681.
Kim, J.H., Ahn, I.Y., Lee, K.S., Chung, H., and Choi, H.G. 2007. Vegetation of Barton peninsula in the neighbourhood of King Sejong Station (King George Island, maritime Antarctic). Polar. Biol. 30, 903–916.
Kim, S.C., Kim, J.S., Hong, B.R., Hong, S.G., Kim, J.H., and Lee, K.S. 2016. Assembly processes of moss and lichen community with snow melting at the coastal region of the Barton peninsula, maritime Antarctic. J. Ecol. Environ. 40, 8.
Kim, C., Lorenz, W.W., Hoopes, J.T., and Dean, J.F. 2001. Oxidation of phenolate siderophores by the multicopper oxidase encoded by the Escherichia coli yacK gene. J. Bacteriol. 183, 4866–4875.
Kuddus, M. 2014. Bio-statistical approach for optimization of cold-active α-amylase production by novel psychrotolerant M. foliorum GA2 in solid state fermentation. Biocatal. Agric. Biotechnol. 3, 175–181.
Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. 2018. Mega X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549.
Lee, Y.I., Lim, H.S., and Yoon, H.I. 2004. Geochemistry of soils of king george island, South Shetland Islands, West Antarctica: Implications for pedogenesis in cold polar regions. Geochim. Cosmochim. Acta. 68, 4319–4333.
Levasseur, A., Drula, E., Lombard, V., Coutinho, P.M., and Henrissat, B. 2013. Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol. Biofuels 6, 41.
Li, P.E., Lo, C.C., Anderson, J.J., Davenport, K.W., Bishop-Lilly, K.A., Xu, Y., Ahmed, S., Feng, S., Mokashi, V.P., and Chain, P.S. 2016. Enabling the democratization of the genomics revolution with a fully integrated web-based bioinformatics platform. Nucleic Acids Res. 45, 67–80.
Lim, W.J., Park, S.R., An, C.L., Lee, J.Y., Hong, S.Y., Shin, E.C., Kim, E.J., Kim, J.O., Kim, H., and Yun, H.D. 2003. Cloning and characterization of a thermostable intracellular α-amylase gene from the hyperthermophilic bacterium Thermotoga maritima MSB8. Res. Microbiol. 154, 681–687.
Liu, X.D. and Xu, Y. 2008. A novel raw starch digesting α-amylase from a newly isolated Bacillus sp. YX-1: Purification and characterization. Bioresour. Technol. 99, 4315–4320.
Makhalanyane, T.P., Van Goethem, M.W., and Cowan, D.A. 2016. Microbial diversity and functional capacity in polar soils. Curr. Opin. Biotechnol. 38, 159–166.
Manisha, and Yadav, S.K. 2017. Technological advances and applications of hydrolytic enzymes for valorization of lignocellulosic biomass. Bioresour. Technol. 245, 1727–1739.
Martins, L.O., Soares, C.M., Pereira, M.M., Teixeira, M., Costa, T., Jones, G.H., and Henriques, A.O. 2002. Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. J. Biol. Chem. 277, 18849–18859.
Mathews, S.L., Smithson, C.E., and Grunden, A.M. 2016. Purification and characterization of a recombinant laccase-like multi-copper oxidase from Paenibacillus glucanolyticus SLM1. J. Appl. Microbiol. 121, 1335–1345.
Matzke, J., Schwermann, B., and Bakker, E.P. 1997. Acidostable and acidophilic proteins: The example of the α-amylase from Alicyclobacillus acidocaldarius. Comp. Biochem. Physiol. 118, 475–479.
Maurya, D.P., Singla, A., and Negi, S. 2015. An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech. 5, 597–609.
McDonald, A.G., Boyce, S., and Tipton, K.F. 2008. ExplorEnz: The primary source of the IUBMB enzyme list. Nucleic Acids Res. 37, D593–D597.
Moghadam, M.S., Albersmeier, A., Winkler, A., Cimmino, L., Rise, K., Hohmann-Marriott, M.F., Kalinowski, J., Rückert, C., Wentzel, A., and Lale, R. 2016. Isolation and genome sequencing of four Arctic marine Psychrobacter strains exhibiting multicopper oxidase activity. BMC Genomics 17, 117.
Niederberger, T.D., McDonald, I.R., Hacker, A.L., Soo, R.M., Barrett, J.E., Wall, D.H., and Cary, S.C. 2008. Microbial community composition in soils of Northern Victoria Land, Antarctica. Environ. Microbiol. 10, 1713–1724.
Niladevi, K.N., Jacob, N., and Prema, P. 2008. Evidence for a halotolerant-alkaline laccase in Streptomyces psammoticus: Purification and characterization. Process Biochem. 43, 654–660.
Nurachman, Z., Kurniasih, S.D., Puspitawati, F., Hadi, S., Radjasa, O.K., and Natalia, D. 2010. Cloning of the endoglucanase gene from a Bacillus amyloliquefaciens PSM3.1 in Escherichia coli revealed catalytic triad residues thr-his-glu. Am. J. Biochem. Biotechnol. 6, 268–274.
O’Leary, N.A., Wright, M.W., Brister, J.R., Ciufo, S., Haddad, D., McVeigh, R., Rajput, B., Robbertse, B., Smith-White, B., and Ako-Adjei, D., et al. 2016. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745.
Oh, H.N., Lee, T.K., Park, J.W., No, J.H., Kim, D., and Sul, W.J. 2017. Metagenomic SMRT sequencing-based exploration of novel lignocellulose-degrading capability in wood detritus from Torreya nucifera in Bija Forest on Jeju island. J. Microbiol. Biotechnol. 27, 1670–1680.
Pedersen, M., Johansen, K.S., and Meyer, A.S. 2011. Low temperature lignocellulose pretreatment: effects and interactions of pretreatment pH are critical for maximizing enzymatic monosaccharide yields from wheat straw. Biotechnol. Biofuels 4, 11.
Pereira, J.H., Chen, Z., McAndrew, R.P., Sapra, R., Chhabra, S.R., Sale, K.L., Simmons, B.A., and Adams, P.D. 2010. Biochemical characterization and crystal structure of endoglucanase Cel5a from the hyperthermophilic Thermotoga maritima. J. Struct. Biol. 172, 372–379.
Rabemanolontsoa, H. and Saka, S. 2016. Various pretreatments of lignocellulosics. Bioresour. Technol. 199, 83–91.
Rhoads, A. and Au, K.F. 2015. PacBio sequencing and its applications. Genomics Proteomics Bioinformatics 13, 278–289.
Samie, N., Noghabi, K.A., Gharegozloo, Z., Zahiri, H.S., Ahmadian, G., Sharafi, H., Behrozi, R., and Vali, H. 2012. Psychrophilic α-amylase from Aeromonas veronii NS07 isolated from farm soils. Process Biochem. 47, 1381–1387.
Seemann, T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069.
Shafiei, M., Ziaee, A.A., and Amoozegar, M.A. 2010. Purification and biochemical characterization of a novel SDS and surfactant stable, raw starch digesting, and halophilic α-amylase from a moderately halophilic bacterium, Nesterenkonia sp. strain F. Process Biochem. 45, 694–699.
Simmons, C.W., Reddy, A.P., D’haeseleer, P., Khudyakov, J., Billis, K., Pati, A., Simmons, B.A., Singer, S.W., Thelen, M.P., and VanderGheynst, J.S. 2014. Metatranscriptomic analysis of lignocellulolytic microbial communities involved in high-solids decomposition of rice straw. Biotechnol. Biofuels 7, 495.
Struvay, C. and Feller, G. 2012. Optimization to low temperature activity in psychrophilic enzymes. Int. J. Mol. Sci. 13, 11643–11665.
Sun, Y. and Cheng, J. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83, 1–11.
Tian, M., Du, D., Zhou, W., Zeng, X., and Cheng, G. 2017. Phenol degradation and genotypic analysis of dioxygenase genes in bacteria isolated from sediments. Braz. J. Microbiol. 48, 305–313.
Ventorino, V., Ionata, E., Birolo, L., Montella, S., Marcolongo, L., de Chiaro, A., Espresso, F., Faraco, V., and Pepe, O. 2016. Lignocellulose-adapted endo-cellulase producing streptomyces strains for bioconversion of cellulose-based materials. Front. Microbiol. 7, 2061.
Wang, C., Dong, D., Wang, H., Müller, K., Qin, Y., Wang, H., and Wu, W. 2016a. Metagenomic analysis of microbial consortia enriched from compost: new insights into the role of actinobacteria in lignocellulose decomposition. Biotechnol. Biofuels 9, 22.
Wang, L., Nie, Y., Tang, Y.Q., Song, X.M., Cao, K., Sun, L.Z., Wang, Z.J., and Wu, X.L. 2016b. Diverse bacteria with lignin degrading potentials isolated from two ranks of coal. Front. Microbiol. 7, 1428.
Yeager, C.M., Gallegos-Graves, V., Dunbar, J., Hesse, C.N., Daligault, H., and Kuske, C.R. 2017. Polysaccharide degradation capability of Actinomycetales soil isolates from a Semiarid Grassland of the Colorado Plateau. Appl. Environ. Microbiol. 83, pii: e03020-16.
Yin, Y., Mao, X., Yang, J., Chen, X., Mao, F., and Xu, Y. 2012. Dbcan: A web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 40, W445–W451.
Yu, N.H., Kim, J.A., Jeong, M.H., Cheong, Y.H., Hong, S.G., Jung, J.S., Koh, Y.J., and Hur, J.S. 2014. Diversity of endophytic fungi associated with bryophyte in the maritime Antarctic (King George Island). Polar Biol. 37, 27–36.
Acknowledgements
This research was supported by a grant to the Korea Polar Research Institute (PE19090) and by the Collaborative Genome Program of the Korea Institute of Marine Science and Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries (MOF) (No. 20180430).
Author information
Authors and Affiliations
Corresponding authors
Rights and permissions
About this article
Cite this article
Oh, H.N., Park, D., Seong, H.J. et al. Antarctic tundra soil metagenome as useful natural resources of cold-active lignocelluolytic enzymes. J Microbiol. 57, 865–873 (2019). https://doi.org/10.1007/s12275-019-9217-1
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12275-019-9217-1
Keywords
- metagenomics
- lignocellulose degradation
- SMRT sequencing
- CAZy
- cold-active enzymes
- Antarctica