Skip to main content

Antarctic tundra soil metagenome as useful natural resources of cold-active lignocelluolytic enzymes

Abstract

Lignocellulose composed of complex carbohydrates and aromatic heteropolymers is one of the principal materials for the production of renewable biofuels. Lignocellulose-degrading genes from cold-adapted bacteria have a potential to increase the productivity of biological treatment of lignocellulose biomass by providing a broad range of treatment temperatures. Antarctic soil metagenomes allow to access novel genes encoding for the cold-active lignocellulose-degrading enzymes, for biotechnological and industrial applications. Here, we investigated the metagenome targeting cold-adapted microbes in Antarctic organic matter-rich soil (KS 2-1) to mine lignolytic and celluloytic enzymes by performing single molecule, real-time metagenomic (SMRT) sequencing. In the assembled Antarctic metagenomic contigs with relative long reads, we found that 162 (1.42%) of total 11,436 genes were annotated as carbohydrate-active enzymes (CAZy). Actinobacteria, the dominant phylum in this soil’s metagenome, possessed most of candidates of lignocellulose catabolic genes like glycoside hydrolase families (GH13, GH26, and GH5) and auxiliary activity families (AA7 and AA3). The predicted lignocellulose degradation pathways in Antarctic soil metagenome showed synergistic role of various CAZyme harboring bacterial genera including Streptomyces, Streptosporangium, and Amycolatopsis. From phylogenetic relationships with cellular and environmental enzymes, several genes having potential for participating in overall lignocellulose degradation were also found. The results indicated the presence of lignocellulose-degrading bacteria in Antarctic tundra soil and the potential benefits of the lignocelluolytic enzymes as candidates for cold-active enzymes which will be used for the future biofuel-production industry.

This is a preview of subscription content, access via your institution.

References

  • Aislabie, J.M., Jordan, S., and Barker, G.M. 2008. Relation between soil classification and bacterial diversity in soils of the Ross Sea region, Antarctica. Geoderma 144, 9–20.

    Article  CAS  Google Scholar 

  • Caporaso, J.G., Bittinger, K., Bushman, F.D., DeSantis, T.Z., Andersen, G.L., and Knight, R. 2009. Pynast: A flexible tool for aligning sequences to a template alignment. Bioinformatics 26, 266–267.

    Article  Google Scholar 

  • Chin, C.S., Alexander, D.H., Marks, P., Klammer, A.A., Drake, J., Heiner, C., Clum, A., Copeland, A., Huddleston, J., and Eichler, E.E. 2013. Nonhybrid, finished microbial genome assemblies from long-read SMRT sequencing data. Nat. Methods 10, 563–569.

    Article  CAS  Google Scholar 

  • Cole, J.R., Wang, Q., Fish, J.A., Chai, B., McGarrell, D.M., Sun, Y., Brown, C.T., Porras-Alfaro, A., Kuske, C.R., and Tiedje, J.M. 2014. Ribosomal database project: Data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42, D633–642.

    Article  CAS  Google Scholar 

  • Devasia, S. and Nair, A.J. 2016. Screening of potent laccase producing organisms based on the oxidation pattern of different phenolic substrates. Int. J. Curr. Microbiol. Appl. Sci. 5, 127–137.

    Article  CAS  Google Scholar 

  • Devi, P., Kandasamy, S., Chendrayan, K., and Uthandi, S. 2016. Laccase producing Streptomyces bikiniensis CSC 12 isolated from compost. J. Microbiol. Biotechnol. Food Sci. 6, 794–798.

    Article  CAS  Google Scholar 

  • Dey, G., Palit, S., Banerjee, R., and Maiti, B. 2002. Purification and characterization of maltooligosaccharide-forming amylase from Bacillus circulans GRS 313. J. Ind. Microbiol. Biotechnol. 28, 193–200.

    Article  CAS  Google Scholar 

  • Dhar, H., Kasana, R.C., Dutt, S., and Gulati, A. 2015. Cloning and expression of low temperature active endoglucanase EG5C from Paenibacillus sp. IHB B 3084. Int. J. Biol. Macromol. 81, 259–266.

    Article  CAS  Google Scholar 

  • Ducros, V., Czjzek, M., Belaich, A., Gaudin, C., Fierobe, H.P., Belaich, J.P., Davies, G.J., and Haser, R. 1995. Crystal structure of the catalytic domain of a bacterial cellulase belonging to family 5. Structure 3, 939–949.

    Article  CAS  Google Scholar 

  • Edgar, R.C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461.

    Article  CAS  Google Scholar 

  • Foong, F., Hamamoto, T., Shoseyov, O., and Doi, R.H. 1991. Nucleotide sequence and characteristics of endoglucanase gene engB from Clostridium cellulovorans. J. Gen. Microbiol. 137, 1729–1736.

    Article  CAS  Google Scholar 

  • Garsoux, G., Lamotte, J., Gerday, C., and Feller, G. 2004. Kinetic and structural optimization to catalysis at low temperatures in a psychrophilic cellulase from the antarctic bacterium Pseudoalteromonas haloplanktis. Biochem. J. 384, 247–253.

    Article  CAS  Google Scholar 

  • Goldstein, I.S. 1981. Composition of biomass. In Goldstein, I.S. (ed.), Organic Chemicals from Biomass, pp. 9–19. CRC Press Inc., Boca Raton, FL, USA.

    Google Scholar 

  • Granja-Travez, R.S., Wilkinson, R.C., Persinoti, G.F., Squina, F.M., Fülöp, V., and Bugg, T.D. 2018. Structural and functional characterisation of multi-copper oxidase CueO from lignin-degrading bacterium Ochrobactrum sp. reveal its activity towards lignin model compounds and lignosulfonate. FEBS J. 285, 1684–1700.

    Article  CAS  Google Scholar 

  • Huerta-Cepas, J., Forslund, K., Coelho, L.P., Szklarczyk, D., Jensen, L.J., von Mering, C., and Bork, P. 2017. Fast genome-wide functional annotation through orthology assignment by eggNOG-mapper. Mol. Biol. Evol. 34, 2115–2122.

    Article  CAS  Google Scholar 

  • Iyo, A.H. and Forsberg, C.W. 1999. A cold-active glucanase from the ruminal Bacteriumfibrobacter succinogenes S85. Appl. Environ. Microbiol. 65, 995–998.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jiménez, D.J., de Lima Brossi, M.J., Schückel, J., Kračun, S.K., Willats, W.G.T., and van Elsas, J.D. 2016. Characterization of three plant biomass-degrading microbial consortia by metagenomics-and metasecretomics-based approaches. Appl. Microbiol. Biotechnol. 100, 10463–10477.

    Article  Google Scholar 

  • Johnson, E. 2016. Integrated enzyme production lowers the cost of cellulosic ethanol. Biofuel Bioprod. Biorefin. 10, 164–174.

    Article  CAS  Google Scholar 

  • Kikani, B. and Singh, S. 2011. Single step purification and characterization of a thermostable and calcium independent α-amylase from Bacillus amyloliquifaciens TSWK1-1 isolated from Tulsi Shyam hot spring reservoir, Gujarat (India). Int. J. Biol. Macromol. 48, 676–681.

    Article  CAS  Google Scholar 

  • Kim, J.H., Ahn, I.Y., Lee, K.S., Chung, H., and Choi, H.G. 2007. Vegetation of Barton peninsula in the neighbourhood of King Sejong Station (King George Island, maritime Antarctic). Polar. Biol. 30, 903–916.

    Article  Google Scholar 

  • Kim, S.C., Kim, J.S., Hong, B.R., Hong, S.G., Kim, J.H., and Lee, K.S. 2016. Assembly processes of moss and lichen community with snow melting at the coastal region of the Barton peninsula, maritime Antarctic. J. Ecol. Environ. 40, 8.

    Article  Google Scholar 

  • Kim, C., Lorenz, W.W., Hoopes, J.T., and Dean, J.F. 2001. Oxidation of phenolate siderophores by the multicopper oxidase encoded by the Escherichia coli yacK gene. J. Bacteriol. 183, 4866–4875.

    Article  CAS  Google Scholar 

  • Kuddus, M. 2014. Bio-statistical approach for optimization of cold-active α-amylase production by novel psychrotolerant M. foliorum GA2 in solid state fermentation. Biocatal. Agric. Biotechnol. 3, 175–181.

    Article  Google Scholar 

  • Kumar, S., Stecher, G., Li, M., Knyaz, C., and Tamura, K. 2018. Mega X: Molecular evolutionary genetics analysis across computing platforms. Mol. Biol. Evol. 35, 1547–1549.

    Article  CAS  Google Scholar 

  • Lee, Y.I., Lim, H.S., and Yoon, H.I. 2004. Geochemistry of soils of king george island, South Shetland Islands, West Antarctica: Implications for pedogenesis in cold polar regions. Geochim. Cosmochim. Acta. 68, 4319–4333.

    Article  CAS  Google Scholar 

  • Levasseur, A., Drula, E., Lombard, V., Coutinho, P.M., and Henrissat, B. 2013. Expansion of the enzymatic repertoire of the CAZy database to integrate auxiliary redox enzymes. Biotechnol. Biofuels 6, 41.

    Article  CAS  Google Scholar 

  • Li, P.E., Lo, C.C., Anderson, J.J., Davenport, K.W., Bishop-Lilly, K.A., Xu, Y., Ahmed, S., Feng, S., Mokashi, V.P., and Chain, P.S. 2016. Enabling the democratization of the genomics revolution with a fully integrated web-based bioinformatics platform. Nucleic Acids Res. 45, 67–80.

    Article  CAS  Google Scholar 

  • Lim, W.J., Park, S.R., An, C.L., Lee, J.Y., Hong, S.Y., Shin, E.C., Kim, E.J., Kim, J.O., Kim, H., and Yun, H.D. 2003. Cloning and characterization of a thermostable intracellular α-amylase gene from the hyperthermophilic bacterium Thermotoga maritima MSB8. Res. Microbiol. 154, 681–687.

    Article  CAS  Google Scholar 

  • Liu, X.D. and Xu, Y. 2008. A novel raw starch digesting α-amylase from a newly isolated Bacillus sp. YX-1: Purification and characterization. Bioresour. Technol. 99, 4315–4320.

    Article  CAS  Google Scholar 

  • Makhalanyane, T.P., Van Goethem, M.W., and Cowan, D.A. 2016. Microbial diversity and functional capacity in polar soils. Curr. Opin. Biotechnol. 38, 159–166.

    Article  CAS  Google Scholar 

  • Manisha, and Yadav, S.K. 2017. Technological advances and applications of hydrolytic enzymes for valorization of lignocellulosic biomass. Bioresour. Technol. 245, 1727–1739.

    Article  CAS  Google Scholar 

  • Martins, L.O., Soares, C.M., Pereira, M.M., Teixeira, M., Costa, T., Jones, G.H., and Henriques, A.O. 2002. Molecular and biochemical characterization of a highly stable bacterial laccase that occurs as a structural component of the Bacillus subtilis endospore coat. J. Biol. Chem. 277, 18849–18859.

    Article  CAS  Google Scholar 

  • Mathews, S.L., Smithson, C.E., and Grunden, A.M. 2016. Purification and characterization of a recombinant laccase-like multi-copper oxidase from Paenibacillus glucanolyticus SLM1. J. Appl. Microbiol. 121, 1335–1345.

    Article  CAS  Google Scholar 

  • Matzke, J., Schwermann, B., and Bakker, E.P. 1997. Acidostable and acidophilic proteins: The example of the α-amylase from Alicyclobacillus acidocaldarius. Comp. Biochem. Physiol. 118, 475–479.

    Article  CAS  Google Scholar 

  • Maurya, D.P., Singla, A., and Negi, S. 2015. An overview of key pretreatment processes for biological conversion of lignocellulosic biomass to bioethanol. 3 Biotech. 5, 597–609.

    Article  Google Scholar 

  • McDonald, A.G., Boyce, S., and Tipton, K.F. 2008. ExplorEnz: The primary source of the IUBMB enzyme list. Nucleic Acids Res. 37, D593–D597.

    Article  Google Scholar 

  • Moghadam, M.S., Albersmeier, A., Winkler, A., Cimmino, L., Rise, K., Hohmann-Marriott, M.F., Kalinowski, J., Rückert, C., Wentzel, A., and Lale, R. 2016. Isolation and genome sequencing of four Arctic marine Psychrobacter strains exhibiting multicopper oxidase activity. BMC Genomics 17, 117.

    Article  Google Scholar 

  • Niederberger, T.D., McDonald, I.R., Hacker, A.L., Soo, R.M., Barrett, J.E., Wall, D.H., and Cary, S.C. 2008. Microbial community composition in soils of Northern Victoria Land, Antarctica. Environ. Microbiol. 10, 1713–1724.

    Article  CAS  Google Scholar 

  • Niladevi, K.N., Jacob, N., and Prema, P. 2008. Evidence for a halotolerant-alkaline laccase in Streptomyces psammoticus: Purification and characterization. Process Biochem. 43, 654–660.

    Article  CAS  Google Scholar 

  • Nurachman, Z., Kurniasih, S.D., Puspitawati, F., Hadi, S., Radjasa, O.K., and Natalia, D. 2010. Cloning of the endoglucanase gene from a Bacillus amyloliquefaciens PSM3.1 in Escherichia coli revealed catalytic triad residues thr-his-glu. Am. J. Biochem. Biotechnol. 6, 268–274.

    Article  CAS  Google Scholar 

  • O’Leary, N.A., Wright, M.W., Brister, J.R., Ciufo, S., Haddad, D., McVeigh, R., Rajput, B., Robbertse, B., Smith-White, B., and Ako-Adjei, D., et al. 2016. Reference sequence (RefSeq) database at NCBI: current status, taxonomic expansion, and functional annotation. Nucleic Acids Res. 44, D733–D745.

    Article  Google Scholar 

  • Oh, H.N., Lee, T.K., Park, J.W., No, J.H., Kim, D., and Sul, W.J. 2017. Metagenomic SMRT sequencing-based exploration of novel lignocellulose-degrading capability in wood detritus from Torreya nucifera in Bija Forest on Jeju island. J. Microbiol. Biotechnol. 27, 1670–1680.

    Article  CAS  Google Scholar 

  • Pedersen, M., Johansen, K.S., and Meyer, A.S. 2011. Low temperature lignocellulose pretreatment: effects and interactions of pretreatment pH are critical for maximizing enzymatic monosaccharide yields from wheat straw. Biotechnol. Biofuels 4, 11.

    Article  CAS  Google Scholar 

  • Pereira, J.H., Chen, Z., McAndrew, R.P., Sapra, R., Chhabra, S.R., Sale, K.L., Simmons, B.A., and Adams, P.D. 2010. Biochemical characterization and crystal structure of endoglucanase Cel5a from the hyperthermophilic Thermotoga maritima. J. Struct. Biol. 172, 372–379.

    Article  CAS  Google Scholar 

  • Rabemanolontsoa, H. and Saka, S. 2016. Various pretreatments of lignocellulosics. Bioresour. Technol. 199, 83–91.

    Article  CAS  Google Scholar 

  • Rhoads, A. and Au, K.F. 2015. PacBio sequencing and its applications. Genomics Proteomics Bioinformatics 13, 278–289.

    Article  Google Scholar 

  • Samie, N., Noghabi, K.A., Gharegozloo, Z., Zahiri, H.S., Ahmadian, G., Sharafi, H., Behrozi, R., and Vali, H. 2012. Psychrophilic α-amylase from Aeromonas veronii NS07 isolated from farm soils. Process Biochem. 47, 1381–1387.

    Article  CAS  Google Scholar 

  • Seemann, T. 2014. Prokka: rapid prokaryotic genome annotation. Bioinformatics 30, 2068–2069.

    Article  CAS  Google Scholar 

  • Shafiei, M., Ziaee, A.A., and Amoozegar, M.A. 2010. Purification and biochemical characterization of a novel SDS and surfactant stable, raw starch digesting, and halophilic α-amylase from a moderately halophilic bacterium, Nesterenkonia sp. strain F. Process Biochem. 45, 694–699.

    Article  CAS  Google Scholar 

  • Simmons, C.W., Reddy, A.P., D’haeseleer, P., Khudyakov, J., Billis, K., Pati, A., Simmons, B.A., Singer, S.W., Thelen, M.P., and VanderGheynst, J.S. 2014. Metatranscriptomic analysis of lignocellulolytic microbial communities involved in high-solids decomposition of rice straw. Biotechnol. Biofuels 7, 495.

    Article  Google Scholar 

  • Struvay, C. and Feller, G. 2012. Optimization to low temperature activity in psychrophilic enzymes. Int. J. Mol. Sci. 13, 11643–11665.

    Article  CAS  Google Scholar 

  • Sun, Y. and Cheng, J. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresour. Technol. 83, 1–11.

    Article  CAS  Google Scholar 

  • Tian, M., Du, D., Zhou, W., Zeng, X., and Cheng, G. 2017. Phenol degradation and genotypic analysis of dioxygenase genes in bacteria isolated from sediments. Braz. J. Microbiol. 48, 305–313.

    Article  CAS  Google Scholar 

  • Ventorino, V., Ionata, E., Birolo, L., Montella, S., Marcolongo, L., de Chiaro, A., Espresso, F., Faraco, V., and Pepe, O. 2016. Lignocellulose-adapted endo-cellulase producing streptomyces strains for bioconversion of cellulose-based materials. Front. Microbiol. 7, 2061.

    Article  Google Scholar 

  • Wang, C., Dong, D., Wang, H., Müller, K., Qin, Y., Wang, H., and Wu, W. 2016a. Metagenomic analysis of microbial consortia enriched from compost: new insights into the role of actinobacteria in lignocellulose decomposition. Biotechnol. Biofuels 9, 22.

    Article  Google Scholar 

  • Wang, L., Nie, Y., Tang, Y.Q., Song, X.M., Cao, K., Sun, L.Z., Wang, Z.J., and Wu, X.L. 2016b. Diverse bacteria with lignin degrading potentials isolated from two ranks of coal. Front. Microbiol. 7, 1428.

    PubMed  PubMed Central  Google Scholar 

  • Yeager, C.M., Gallegos-Graves, V., Dunbar, J., Hesse, C.N., Daligault, H., and Kuske, C.R. 2017. Polysaccharide degradation capability of Actinomycetales soil isolates from a Semiarid Grassland of the Colorado Plateau. Appl. Environ. Microbiol. 83, pii: e03020-16.

  • Yin, Y., Mao, X., Yang, J., Chen, X., Mao, F., and Xu, Y. 2012. Dbcan: A web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 40, W445–W451.

    Article  CAS  Google Scholar 

  • Yu, N.H., Kim, J.A., Jeong, M.H., Cheong, Y.H., Hong, S.G., Jung, J.S., Koh, Y.J., and Hur, J.S. 2014. Diversity of endophytic fungi associated with bryophyte in the maritime Antarctic (King George Island). Polar Biol. 37, 27–36.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant to the Korea Polar Research Institute (PE19090) and by the Collaborative Genome Program of the Korea Institute of Marine Science and Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries (MOF) (No. 20180430).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dockyu Kim or Woo Jun Sul.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oh, H.N., Park, D., Seong, H.J. et al. Antarctic tundra soil metagenome as useful natural resources of cold-active lignocelluolytic enzymes. J Microbiol. 57, 865–873 (2019). https://doi.org/10.1007/s12275-019-9217-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-019-9217-1

Keywords

  • metagenomics
  • lignocellulose degradation
  • SMRT sequencing
  • CAZy
  • cold-active enzymes
  • Antarctica