Skip to main content
Log in

Fungi in salterns

  • Minireview
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Salterns are hypersaline extreme environments with unique physicochemical properties such as a salinity gradient. Although the investigation of microbiota in salterns has focused on archaea and bacteria, diverse fungi also thrive in the brine and soil of salterns. Fungi isolated from salterns are represented by black yeasts (Hortaea werneckii, Phaeotheca triangularis, Aureobasidium pullulans, and Trimmatostroma salinum), Cladosporium, Aspergillus, and Penicillium species. Most studies on saltern-derived fungi gave attention to black yeasts and their physiological characteristics, including growth under various culture conditions. Since then, biochemical and molecular tools have been employed to explore adaptation of these fungi to salt stress. Genome databases of several fungi in salterns are now publicly available and being used to elucidate salt tolerance mechanisms and discover the target genes for agricultural and industrial applications. Notably, the number of enzymes and novel metabolites known to be produced by diverse saltern-derived fungi has increased significantly. Therefore, fungi in salterns are not only interesting and important subjects to study fungal biodiversity and adaptive mechanisms in extreme environments, but also valuable bioresources with potential for biotechnological applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alamillo, E., Reyes-Becerril, M., Cuesta, A., and Angulo, C. 2017. Marine yeast Yarrowia lipolytica improves the immune responses in Pacific red snapper (Lutjanus peru) leukocytes. Fish Shellfish Immunol. 70, 48–56.

    Article  CAS  PubMed  Google Scholar 

  • Ali, I., Kanhayuwa, L., Rachdawong, S., and Rakshit, S.K. 2013. Identification, phylogenetic analysis and characterization of obligate halophilic fungi isolated from a man-made solar saltern in Phetchaburi province, Thailand. Ann. Microbiol. 63, 887–895.

    Article  Google Scholar 

  • Ali, I., Siwarungson, N., Punnapayak, H., Lotrakul, P., Prasongsuk, S., Bankeeree, W., and Rakshit, S. 2014. Screening of potential biotechnological applications from obligate halophilic fungi, isolated from a man-made solar saltern located in phetchaburi province, Thailand. Pak. J. Bot. 46, 983–988.

    Google Scholar 

  • Brauers, G., Ebel, R., Edrada, R., Wray, V., Berg, A., Grafe, U., and Proksch, P. 2001. Hortein, a new natural product from the fungus Hortaea werneckii associated with the sponge Aplysina aerophoba. J. Nat. Prod. 64, 651–652.

    Article  CAS  PubMed  Google Scholar 

  • Butinar, L., Frisvad, J.C., and Gunde-Cimerman, N. 2011. Hypersaline waters - a potential source of foodborne toxigenic aspergilli and penicillia. FEMS Microbiol. Ecol. 77, 186–199.

    Article  CAS  PubMed  Google Scholar 

  • Butinar, L., Sonjak, S., Zalar, P., Plemenitas, A., and Gunde-Cimerman, N. 2005a. Melanized halophilic fungi are eukaryotic members of microbial communities in hypersaline waters of solar salterns. Bot. Mar. 48, 73–79.

    Article  Google Scholar 

  • Butinar, L., Zalar, P., Frisvad, J.C., and Gunde-Cimerman, N. 2005b. The genus Eurotium - members of indigenous fungal community in hypersaline waters of salterns. FEMS Microbiol. Ecol. 51, 155–166.

    Article  CAS  PubMed  Google Scholar 

  • Cantrell, S.A., Casillas-Martinez, L., and Molina, M. 2006. Characterization of fungi from hypersaline environments of solar salterns using morphological and molecular techniques. Mycol. Res. 110, 962–970.

    Article  CAS  PubMed  Google Scholar 

  • Cantrell, S.A., Dianese, J.C., Fell, J., Gunde-Cimerman, N., and Zalar, P. 2011. Unusual fungal niches. Mycologia 103, 1161–1174.

    Article  CAS  PubMed  Google Scholar 

  • Cantrell, S.A., Tkavc, R., Gunde-Cimerman, N., Zalar, P., Acevedo, M., and Baez-Felix, C. 2013. Fungal communities of young and mature hypersaline microbial mats. Mycologia 105, 827–836.

    Article  PubMed  Google Scholar 

  • Castellani, A. 1964. A note on Glenosporella peralbida n. sp., a fungus found in three cases of Tinea alba palmaris. Mycopathol. Mycol. Appl. 23, 161–166.

    Article  CAS  PubMed  Google Scholar 

  • Chavez, R., Fierro, F., Garcia-Rico, R.O., and Vaca, I. 2015. Filamentous fungi from extreme environments as a promising source of novel bioactive secondary metabolites. Front. Microbiol. 6, 903.

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen, J., Xing, X.K., Zhang, L.C., Xing, Y.M., and Guo, S.X. 2012. Identification of Hortaea werneckii Isolated from mangrove plant Aegiceras comiculatum based on morphology and rDNA sequences. Mycopathologia 174, 457–466.

    Article  CAS  PubMed  Google Scholar 

  • Chi, Z., Ma, C., Wang, P., and Li, H.F. 2007. Optimization of medium and cultivation conditions for alkaline protease production by the marine yeast Aureobasidium pullulans. Bioresour. Technol. 98, 534–538.

    Article  CAS  PubMed  Google Scholar 

  • de Hoog, G.S. 1999. Ecology and evolution of black yeasts and their relatives. Stud. Mycol. 43, 3–4.

    Google Scholar 

  • de Hoog, G.S., Beguin, H., and Batenburg-van de Vegte, W.H. 1997. Phaeotheca triangularis, a new meristematic black yeast from a himidifier. Antonie van Leeuwenhoek 71, 289–295.

    Article  CAS  PubMed  Google Scholar 

  • De Leo, F., Lo Giudice, A., Alaimo, C., De Carlo, G., Rappazzo, A.C., Graziano, M., De Domenico, E., and Urzi, C. 2019. Occurrence of the black yeast Hortaea werneckii in the Mediterranean Sea. Extremophiles 23, 9–17.

    Article  CAS  PubMed  Google Scholar 

  • Dolapsakis, N.P., Tafas, T., Abatzopoulos, T.J., Ziller, S., and Economou-Amilli, A. 2005. Abundance and growth response of microalgae at Megalon Embolon solar saltworks in northern Greece: An aquaculture prospect. J. Appl. Phycol. 17, 39–49.

    Article  Google Scholar 

  • Figueroa, L., Jimenez, C., Rodriguez, J., Areche, C., Chavez, R., Henriquez, M., de la Cruz, M., Diaz, C., Segade, Y., and Vaca, I. 2015. 3-Nitroasterric acid derivatives from an Antarctic sponge-derived Pseudogymnoascus sp. fungus. J. Nat. Prod. 78, 919–923.

    Article  CAS  PubMed  Google Scholar 

  • Gasparic, M.B., Lenassi, M., Gostincar, C., Rotter, A., Plemenitas, A., Gunde-Cimerman, N., Gruden, K., and Zel, J. 2013. Insertion of a specific fungal 3′-phosphoadenosine-5′-phosphatase motif into a plant homologue improves halotolerance and drought tolerance of plants. PLoS One 8, e81872.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gostincar, C., Grube, M., de Hoog, S., Zalar, P., and Gunde-Cimerman, N. 2010. Extremotolerance in fungi: evolution on the edge. FEMS Microbiol. Ecol. 71, 2–11.

    Article  CAS  PubMed  Google Scholar 

  • Gunde-Cimerman, N., Plemenitas, A., and Oren, A. 2018. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol. Rev. 42, 353–375.

    Article  CAS  PubMed  Google Scholar 

  • Gunde-Cimerman, N., Ramos, J., and Plemenitas, A. 2009. Halotolerant and halophilic fungi. Mycol. Res. 113, 1231–1241.

    Article  CAS  PubMed  Google Scholar 

  • Gunde-Cimerman, N. and Zalar, P. 2014. Extremely halotolerant and halophilic fungi inhabit brine in solar salterns around the globe. Food Technol. Biotechnol. 52, 170–179.

    Google Scholar 

  • Gunde-Cimerman, N., Zalar, P., Hoog, S., and Plemenitas, A. 2000. Hypersaline waters in salterns - natural ecological niches for halophilic black yeasts. FEMS Microbiol. Ecol. 32, 235–240.

    CAS  Google Scholar 

  • Gunde-Cimerman, N., Zalar, P., Petrovic, U., Turk, M., Kogej, T., de Hoog, S., and Plemenitas, A. 2004. Fungi in salterns, pp. 103–113. In Ventosa, A. (ed.), Halophilic microorganisms. Springer Berling Heidelberg, Germany.

    Chapter  Google Scholar 

  • He, J., Wijeratne, E.M., Bashyal, B.P., Zhan, J., Seliga, C.J., Liu, M.X., Pierson, E.E., Pierson 3rd, L.S., VanEtten, H.D., and Gunatilaka, A.A. 2004. Cytotoxic and other metabolites of Aspergillus inhabiting the rhizosphere of Sonoran desert plants. J. Nat. Prod. 67, 1985–1991.

    Article  CAS  PubMed  Google Scholar 

  • Hohmann, S. 2002. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol. Mol. Biol. Rev. 66, 300–372.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Javor, B.J. 1983. Nutrients and ecology of the Western Salt and Exportadora de Sal saltern brines, pp. 195–205. In Schreiber, B.C. and Harner, H.L. (eds.), 6th Symposium on Salt, The Salt Institute, Toronto, Canada.

    Google Scholar 

  • Javor, B.J. 2002. Industrial microbiology of solar salt production. J. Ind. Microbiol. Biotechnol. 28, 42–47.

    Article  CAS  PubMed  Google Scholar 

  • Jiang, W., Ye, P., Chen, C.T., Wang, K., Liu, P., He, S., Wu, X., Gan, L., Ye, Y., and Wu, B. 2013. Two novel hepatocellular carcinoma cycle inhibitory cyclodepsipeptides from a hydrothermal vent crab-associated fungus Aspergillus clavatus C2WU. Mar. Drugs 11, 4761–4772.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kogej, T., Gorbushina, A.A., and Gunde-Cimerman, N. 2006. Hypersaline conditions induce changes in cell-wall melanization and colony structure in a halophilic and a xerophilic black yeast species of the genus Trimmatostroma. Mycol. Res. 110, 713–724.

    Article  PubMed  Google Scholar 

  • Kogej, T., Gostincar, C., Volkmann, M., Gorbushina, A.A., and Gunde Cimerman, N. 2005a. Mycosporines in extremophilic fungi-novel compelemntary osmolytes? Environ. Chem. 3, 105–110.

    Article  Google Scholar 

  • Kogej, T., Ramos, J., Plemenitas, A., and Gunde-Cimerman, N. 2005b. The halophilic fungus Hortaea werneckii and the halotolerant fungus Aureobasidium pullulans maintain low intracellular cation concentrations in hypersaline environments. Appl. Environ. Microbiol. 71, 6600–6605.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kogej, T., Stein, M., Volkmann, M., Gorbushina, A.A., Galinski, E.A., and Gunde-Cimerman, N. 2007. Osmotic adaptation of the halophilic fungus Hortaea werneckii: role of osmolytes and melanization. Microbiology 153, 4261–4273.

    Article  CAS  PubMed  Google Scholar 

  • Kozakiewicz, Z. 1989. Aspergillus species on stored products. Mycological Papers 161, 1–188.

    Google Scholar 

  • Kralj Kuncic, M., Kogej, T., Drobne, D., and Gunde-Cimerman, N. 2010. Morphological response of the halophilic fungal genus Wallemia to high salinity. Appl. Environ. Microbiol. 76, 329–337.

    Article  CAS  PubMed  Google Scholar 

  • Kushiner, D.J. 1978. Life in high salt and solute concentrations, pp. 317–368. In Kushiner, D.J. (ed.), Microbial life in extreme environments. Academic Press, London, UK.

    Google Scholar 

  • Larsen, H. 1986. Halophilic and halotolerant microorganisms-an overview and historical perspective. FEMS Microbiol. Rev. 2, 3–7.

    Article  Google Scholar 

  • Lebogang, L., Taylor, J.E., and Mubyana-John, T. 2009. A preliminary study of the fungi associated with saltpans in Botswana and their anti-microbial properties. Biorem. Biodiv. Bioavail. 3, 61–71.

    Google Scholar 

  • Lenassi, M., Gostincar, C., Jackman, S., Turk, M., Sadowski, I., Nislow, C., Jones, S., Birol, I., Cimerman, N.G., and Plemenitas, A. 2013. Whole genome duplication and enrichment of metal cation transporters revealed by de novo genome sequencing of extremely halotolerant black yeast Hortaea werneckii. PLoS One 8, e71328.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lenassi, M., Zajc, J., Gostincar, C., Gorjan, A., Gunde-Cimerman, N., and Plemenitas, A. 2011. Adaptation of the glycerol-3-phosphate dehydrogenase Gpd1 to high salinities in the extremely halotolerant Hortaea werneckii and halophilic Wallemia ichthyophaga. Fungal Biol. 115, 959–970.

    Article  CAS  PubMed  Google Scholar 

  • Li, Y., Ye, D., Chen, X., Lu, X., Shao, Z., Zhang, H., and Che, Y. 2009. Breviane spiroditerpenoids from an extreme-tolerant Penicillium sp. isolated from a deep sea sediment sample. J. Nat. Prod. 72, 912–916.

    Article  CAS  PubMed  Google Scholar 

  • Liu, T., Zhang, S., Zhu, J., Pan, H., Bai, J., Li, Z., Guan, L., Liu, G., Yuan, C., Wu, X., et al. 2015. Two new amides from a halotolerant fungus, Myrothecium sp. GS-17. J. Antibiot. (Tokyo) 68, 267–270.

    Article  CAS  Google Scholar 

  • Lu, Z.Y., Lin, Z.J., Wang, W.L., Du, L., Zhu, T.J., Fang, Y.C., Gu, Q.Q., and Zhu, W.M. 2008. Citrinin dimers from the halotolerant fungus Penicillium citrinum B-57. J. Nat. Prod. 71, 543–546.

    Article  CAS  PubMed  Google Scholar 

  • Ma, L.J., Roggers, S.O., Catranis, C.M., and Starmer, W.T. 2000. Detection and characterization of ancient fungi entrapped in glacial ice. Mycologia 92, 286–295.

    Article  Google Scholar 

  • Madkour, F.F. and Gaballah, M.M. 2012. Phytoplankton assemblage of a solar saltern in Port Fouad, Egypt. Oceanologia 54, 687–700.

    Article  Google Scholar 

  • Maturrano, L., Santos, F., Rossello-Mora, R., and Anton, J. 2006. Microbial diversity in Maras salterns, a hypersaline environment in the Peruvian Andes. Appl. Environ. Microbiol. 72, 3887–3895.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mok, W.Y., Catelo, F.P., and Barreto Da Silva, M.S. 1981. Occurrence of Exophiala werneckii on salted freshwater fish Osteoglossum bicirrhosum. Int. J. Food Sci. Technol. 16, 505–512.

    Article  Google Scholar 

  • Mudau, M.M. and Setati, M.E. 2006. Screening and identification of endomannanase-producing microfungi from hypersaline environments. Curr. Microbiol. 52, 477–481.

    Article  CAS  PubMed  Google Scholar 

  • Nayak, S.S., Gonsalves, V., and Nazareth, S.W. 2012. Isolation and salt tolerance of halophilic fungi from mangroves and solar salterns in Goa - India. Indian J. Mar. Sci. 41, 164–172.

    CAS  Google Scholar 

  • Nazareth, S. and Gonsalves, V. 2013. Aspergillus penicillioides-a true halophile existing in hypersaline and polyhaline econiches. Ann. Microbiol. 64, 397–402.

    Article  Google Scholar 

  • Nazareth, S.W. and Gonsalves, V. 2014. Halophilic Aspergillus penicillioides from athalassohaline, thalassohaline, and polyhaline environments. Front. Microbiol. 5, 412.

    Article  PubMed  PubMed Central  Google Scholar 

  • Niu, S., Liu, D., Hu, X., Proksch, P., Shao, Z., and Lin, W. 2014. Spiromastixones A-O, antibacterial chlorodepsidones from a deep-sea-derived Spiromastix sp. fungus. J. Nat. Prod. 77, 1021–1030.

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuki, T. 1962. Studies on the glass mould: On two species of Aspergillus isolated from glass. Bot. Mag. Tokyo 75, 436–442.

    Article  Google Scholar 

  • Oren, A. 2009. Saltern evaporation ponds as model systems for the study of primary production processes under hypersaline conditions. Aquat. Microb. Ecol. 56, 193–204.

    Article  Google Scholar 

  • Oren, A., Stambler, N., and Dubinsky, Z. 1992. On the red coloration of saltern crystallizer ponds. Int. J. Salt Lake Res. 1, 77–89.

    Article  Google Scholar 

  • Pedros-Alio, C. 2004. Trophic ecology of solar salterns, pp. 33–48. In Ventosa, A. (ed.), Halophilic microorganisms. Springer, Berlin, Heidelberg, Germany.

    Chapter  Google Scholar 

  • Petrovic, U., Gunde-Cimerman, N., and Plemenitas, A. 2002. Cellular responses to environmental salinity in the halophilic black yeast Hortaea werneckii. Mol. Microbiol. 45, 665–672.

    Article  CAS  PubMed  Google Scholar 

  • Pinto, C., Custodio, V., Nunes, M., Songy, A., Rabenoelina, F., Courteaux, B., Clement, C., Gomes, A.C., and Fontaine, F. 2018. Understand the potential role of Aureobasidium pullulans, a resident microorganism from grapevine, to prevent the infection caused by Diplodia seriata. Front. Microbiol. 9, 3047.

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasongsuk, S., Lotrakul, P., Ali, I., Bankeeree, W., and Punnapayak, H. 2018. The current status of Aureobasidium pullulans in biotechnology. Folia Microbiol. (Praha) 63, 129–140.

    Article  CAS  Google Scholar 

  • Rampelotto, P.H. 2013. Extremophiles and extreme environments. Life (Basel) 3, 482–485.

    Google Scholar 

  • Raol, G.G., Raol, B.V., Prajapati, V.S., and Bhavsar, N.H. 2015. Utilization of agro-industrial waste for beta-galactosidase production under solid state fermentation using halotolerant Aspergillus tubingensis GR1 isolate. 3 Biotech. 5, 411–421.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stierle, D.B., Stierle, A.A., Patacini, B., McIntyre, K., Girtsman, T., and Bolstad, E. 2011. Berkeleyones and related meroterpenes from a deep water acid mine waste fungus that inhibit the production of interleukin 1-β from induced inflammasomes. J. Nat. Prod. 74, 2273–2277.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tepsic, K., Gunde-Cimerman, N., and Frisvad, J.C. 1997. Growth and mycotoxin production by Aspergillus fumigatus strains isolated from a saltern. FEMS Microbiol. Lett. 157, 9–12.

    Article  CAS  Google Scholar 

  • Turk, M., Abramovic, Z., Plemenitas, A., and Gunde-Cimerman, N. 2007. Salt stress and plasma-membrane fluidity in selected extremophilic yeasts and yeast-like fungi. FEMS Yeast Res. 7, 550–557.

    Article  CAS  PubMed  Google Scholar 

  • Turk, M., Mejanelle, L., Sentjurc, M., Grimalt, J.O., Gunde-Cimerman, N., and Plemenitas, A. 2004. Salt-induced changes in lipid composition and membrane fluidity of halophilic yeast-like melanized fungi. Extremophiles 8, 53–61.

    Article  CAS  PubMed  Google Scholar 

  • Vaupotic, T., Gunde-Cimerman, N., and Plemenitas, A. 2007. Novel 3′-phosphoadenosine-5′-phosphatases from extremely halotolerant Hortaea werneckii reveal insight into molecular determinants of salt tolerance of black yeasts. Fungal Genet. Biol. 44, 1109–1122.

    Article  CAS  PubMed  Google Scholar 

  • Ventosa, A. and Arahal, D.R. 2011. Physicochemical characteristics of hypersaline environments and their biodiversity. Extremophiles 2, 247–262.

    Google Scholar 

  • Wang, L., Chi, Z., Wang, X., Liu, Z., and Li, J. 2007a. Diversity of lipase-producing yeasts from marine environments and oil hydrolysis by their crude enzymes. Ann. Microbiol. 57, 495–501.

    Article  CAS  Google Scholar 

  • Wang, W., Wang, Y., Tao, H., Peng, X., Liu, P., and Zhu, W. 2009. Cerebrosides of the halotolerant fungus Alternaria raphani isolated from a sea salt field. J. Nat. Prod. 72, 1695–1698.

    Article  CAS  PubMed  Google Scholar 

  • Wang, H., Zheng, J.K., Qu, H.J., Liu, P.P., Wang, Y., and Zhu, W.M. 2011a. A new cytotoxic indole-3-ethenamide from the halotolerant fungus Aspergillus sclerotiorum PT06-1. J. Antibiot. (Tokyo) 64, 679–681.

    Article  CAS  Google Scholar 

  • Wang, Y., Zheng, J., Liu, P., Wang, W., and Zhu, W. 2011b. Three new compounds from Aspergillus terreus PT06-2 grown in a high salt medium. Mar. Drugs 9, 1368–1378.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang, W., Zhu, T., Tao, H., Lu, Z., Fang, Y., Gu, Q., and Zhu, W. 2007b. Two new cytotoxic quinone type compounds from the halotolerant fungus Aspergillus variecolor. J. Antibiot. (Tokyo) 60, 603–607.

    Article  CAS  Google Scholar 

  • Wieland, A. and Kuhl, M. 2006. Regulation of photosynthesis and oxygen consumption in a hypersaline cyanobacterial mat (Camargue, France) by irradiance, temperature and salinity. FEMS Microbiol. Ecol. 55, 195–210.

    Article  CAS  PubMed  Google Scholar 

  • Xiao, L., Liu, H., Wu, N., Liu, M., Wei, J., Zhang, Y., and Lin, X. 2013. Characterization of the high cytochalasin E and rosellichalasin producing-Aspergillus sp. nov. F1 isolated from marine solar saltern in China. World J. Microbiol. Biotechnol. 29, 11–17.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y.L., Liao, W.Y., Liu, W.Y., Liaw, C.C., Shen, C.N., Huang, Z.Y., and Wu, S.H. 2009. Discovery of new natural products by intact-cell mass spectrometry and LC-SPE-NMR: malbranpyrroles, novel polyketides from thermophilic fungus Malbranchea sulfurea. Chemistry 15, 11573–11580.

    Article  CAS  PubMed  Google Scholar 

  • Zafrilla, B., Martinez-Espinosa, R.M., Alonso, M.A., and Bonete, M.J. 2010. Biodiversity of Archaea and floral of two inland saltern ecosystems in the Alto Vinalopo Valley, Spain. Saline Syst. 6, 10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zajc, J., Kogej, T., Galinski, E.A., Ramos, J., and Gunde-Cimerman, N. 2014. Osmoadaptation strategy of the most halophilic fungus, Wallemia ichthyophaga, growing optimally at salinities above 15% NaCl. Appl. Environ. Microbiol. 80, 247–256.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zajc, J., Liu, Y., Dai, W., Yang, Z., Hu, J., Gostincar, C., and Gunde-Cimerman, N. 2013. Genome and transcriptome sequencing of the halophilic fungus Wallemia ichthyophaga: haloadaptations present and absent. BMC Genomics 14, 617.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zalar, P., de Hoog, G.S., and Gunde-Cimerman, N. 1999a. Ecology of halotolerant dothideaceous black yeasts. Stud. Mycol. 43, 38–48.

    Google Scholar 

  • Zalar, P., de Hoog, G.S., and Gunde-Cimerman, N. 1999b. Trimmatostroma salinum, a new species from hypersaline water. Stud. Mycol. 43, 57–62.

    Google Scholar 

  • Zalar, P., de Hoog, G.S., Schroers, H.J., Frank, J.M., and Gunde-Cimerman, N. 2005. Taxonomy and phylogeny of the xerophilic genus Wallemia (Wallemiomycetes and Wallemiales, cl. et ord. nov.). Antonie van Leeuwenhoek 87, 311–328.

    Article  CAS  PubMed  Google Scholar 

  • Zalar, P., Frisvad, J.C., Gunde-Cimerman, N., Varga, J., and Samson, R.A. 2008. Four new species of Emericella from the Mediterranean region of Europe. Mycologia 100, 779–795.

    Article  PubMed  Google Scholar 

  • Zheng, J., Wang, Y., Wang, J., Liu, P., Li, J., and Zhu, W. 2013. Antimicrobial ergosteroids and pyrrole derivatives from halotolerant Aspergillus flocculosus PT05-1 cultured in a hypersaline medium. Extremophiles 17, 963–971.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by two individual grants from the National Marine Biodiversity Institute of Korea (MABIK, 2019M00400 and 2019M00700).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dawoon Chung.

Additional information

Conflicts of Interest

The authors have no conflicts of interest to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chung, D., Kim, H. & Choi, H.S. Fungi in salterns. J Microbiol. 57, 717–724 (2019). https://doi.org/10.1007/s12275-019-9195-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-019-9195-3

Keywords

Navigation