Journal of Microbiology

, Volume 57, Issue 9, pp 717–724 | Cite as

Fungi in salterns

  • Dawoon ChungEmail author
  • Haryun Kim
  • Hyun Seok Choi


Salterns are hypersaline extreme environments with unique physicochemical properties such as a salinity gradient. Although the investigation of microbiota in salterns has focused on archaea and bacteria, diverse fungi also thrive in the brine and soil of salterns. Fungi isolated from salterns are represented by black yeasts (Hortaea werneckii, Phaeotheca triangularis, Aureobasidium pullulans, and Trimmatostroma salinum), Cladosporium, Aspergillus, and Penicillium species. Most studies on saltern-derived fungi gave attention to black yeasts and their physiological characteristics, including growth under various culture conditions. Since then, biochemical and molecular tools have been employed to explore adaptation of these fungi to salt stress. Genome databases of several fungi in salterns are now publicly available and being used to elucidate salt tolerance mechanisms and discover the target genes for agricultural and industrial applications. Notably, the number of enzymes and novel metabolites known to be produced by diverse saltern-derived fungi has increased significantly. Therefore, fungi in salterns are not only interesting and important subjects to study fungal biodiversity and adaptive mechanisms in extreme environments, but also valuable bioresources with potential for biotechnological applications.


salterns halotolerant and halophilic fungi black yeasts biotechnological applications of fungi 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



This work was supported by two individual grants from the National Marine Biodiversity Institute of Korea (MABIK, 2019M00400 and 2019M00700).


  1. Alamillo, E., Reyes-Becerril, M., Cuesta, A., and Angulo, C. 2017. Marine yeast Yarrowia lipolytica improves the immune responses in Pacific red snapper (Lutjanus peru) leukocytes. Fish Shellfish Immunol. 70, 48–56.CrossRefGoogle Scholar
  2. Ali, I., Kanhayuwa, L., Rachdawong, S., and Rakshit, S.K. 2013. Identification, phylogenetic analysis and characterization of obligate halophilic fungi isolated from a man-made solar saltern in Phetchaburi province, Thailand. Ann. Microbiol. 63, 887–895.CrossRefGoogle Scholar
  3. Ali, I., Siwarungson, N., Punnapayak, H., Lotrakul, P., Prasongsuk, S., Bankeeree, W., and Rakshit, S. 2014. Screening of potential biotechnological applications from obligate halophilic fungi, isolated from a man-made solar saltern located in phetchaburi province, Thailand. Pak. J. Bot. 46, 983–988.Google Scholar
  4. Brauers, G., Ebel, R., Edrada, R., Wray, V., Berg, A., Grafe, U., and Proksch, P. 2001. Hortein, a new natural product from the fungus Hortaea werneckii associated with the sponge Aplysina aerophoba. J. Nat. Prod. 64, 651–652.CrossRefGoogle Scholar
  5. Butinar, L., Frisvad, J.C., and Gunde-Cimerman, N. 2011. Hypersaline waters - a potential source of foodborne toxigenic aspergilli and penicillia. FEMS Microbiol. Ecol. 77, 186–199.CrossRefGoogle Scholar
  6. Butinar, L., Sonjak, S., Zalar, P., Plemenitas, A., and Gunde-Cimerman, N. 2005a. Melanized halophilic fungi are eukaryotic members of microbial communities in hypersaline waters of solar salterns. Bot. Mar. 48, 73–79.CrossRefGoogle Scholar
  7. Butinar, L., Zalar, P., Frisvad, J.C., and Gunde-Cimerman, N. 2005b. The genus Eurotium - members of indigenous fungal community in hypersaline waters of salterns. FEMS Microbiol. Ecol. 51, 155–166.CrossRefGoogle Scholar
  8. Cantrell, S.A., Casillas-Martinez, L., and Molina, M. 2006. Characterization of fungi from hypersaline environments of solar salterns using morphological and molecular techniques. Mycol. Res. 110, 962–970.CrossRefGoogle Scholar
  9. Cantrell, S.A., Dianese, J.C., Fell, J., Gunde-Cimerman, N., and Zalar, P. 2011. Unusual fungal niches. Mycologia 103, 1161–1174.CrossRefGoogle Scholar
  10. Cantrell, S.A., Tkavc, R., Gunde-Cimerman, N., Zalar, P., Acevedo, M., and Baez-Felix, C. 2013. Fungal communities of young and mature hypersaline microbial mats. Mycologia 105, 827–836.CrossRefGoogle Scholar
  11. Castellani, A. 1964. A note on Glenosporella peralbida n. sp., a fungus found in three cases of Tinea alba palmaris. Mycopathol. Mycol. Appl. 23, 161–166.CrossRefGoogle Scholar
  12. Chavez, R., Fierro, F., Garcia-Rico, R.O., and Vaca, I. 2015. Filamentous fungi from extreme environments as a promising source of novel bioactive secondary metabolites. Front. Microbiol. 6, 903.CrossRefGoogle Scholar
  13. Chen, J., Xing, X.K., Zhang, L.C., Xing, Y.M., and Guo, S.X. 2012. Identification of Hortaea werneckii Isolated from mangrove plant Aegiceras comiculatum based on morphology and rDNA sequences. Mycopathologia 174, 457–466.CrossRefGoogle Scholar
  14. Chi, Z., Ma, C., Wang, P., and Li, H.F. 2007. Optimization of medium and cultivation conditions for alkaline protease production by the marine yeast Aureobasidium pullulans. Bioresour. Technol. 98, 534–538.CrossRefGoogle Scholar
  15. de Hoog, G.S. 1999. Ecology and evolution of black yeasts and their relatives. Stud. Mycol. 43, 3–4.Google Scholar
  16. de Hoog, G.S., Beguin, H., and Batenburg-van de Vegte, W.H. 1997. Phaeotheca triangularis, a new meristematic black yeast from a himidifier. Antonie van Leeuwenhoek 71, 289–295.CrossRefGoogle Scholar
  17. De Leo, F., Lo Giudice, A., Alaimo, C., De Carlo, G., Rappazzo, A.C., Graziano, M., De Domenico, E., and Urzi, C. 2019. Occurrence of the black yeast Hortaea werneckii in the Mediterranean Sea. Extremophiles 23, 9–17.CrossRefGoogle Scholar
  18. Dolapsakis, N.P., Tafas, T., Abatzopoulos, T.J., Ziller, S., and Economou-Amilli, A. 2005. Abundance and growth response of microalgae at Megalon Embolon solar saltworks in northern Greece: An aquaculture prospect. J. Appl. Phycol. 17, 39–49.CrossRefGoogle Scholar
  19. Figueroa, L., Jimenez, C., Rodriguez, J., Areche, C., Chavez, R., Henriquez, M., de la Cruz, M., Diaz, C., Segade, Y., and Vaca, I. 2015. 3-Nitroasterric acid derivatives from an Antarctic sponge-derived Pseudogymnoascus sp. fungus. J. Nat. Prod. 78, 919–923.CrossRefGoogle Scholar
  20. Gasparic, M.B., Lenassi, M., Gostincar, C., Rotter, A., Plemenitas, A., Gunde-Cimerman, N., Gruden, K., and Zel, J. 2013. Insertion of a specific fungal 3′-phosphoadenosine-5′-phosphatase motif into a plant homologue improves halotolerance and drought tolerance of plants. PLoS One 8, e81872.CrossRefGoogle Scholar
  21. Gostincar, C., Grube, M., de Hoog, S., Zalar, P., and Gunde-Cimerman, N. 2010. Extremotolerance in fungi: evolution on the edge. FEMS Microbiol. Ecol. 71, 2–11.CrossRefGoogle Scholar
  22. Gunde-Cimerman, N., Plemenitas, A., and Oren, A. 2018. Strategies of adaptation of microorganisms of the three domains of life to high salt concentrations. FEMS Microbiol. Rev. 42, 353–375.CrossRefGoogle Scholar
  23. Gunde-Cimerman, N., Ramos, J., and Plemenitas, A. 2009. Halotolerant and halophilic fungi. Mycol. Res. 113, 1231–1241.CrossRefGoogle Scholar
  24. Gunde-Cimerman, N. and Zalar, P. 2014. Extremely halotolerant and halophilic fungi inhabit brine in solar salterns around the globe. Food Technol. Biotechnol. 52, 170–179.Google Scholar
  25. Gunde-Cimerman, N., Zalar, P., Hoog, S., and Plemenitas, A. 2000. Hypersaline waters in salterns - natural ecological niches for halophilic black yeasts. FEMS Microbiol. Ecol. 32, 235–240.Google Scholar
  26. Gunde-Cimerman, N., Zalar, P., Petrovic, U., Turk, M., Kogej, T., de Hoog, S., and Plemenitas, A. 2004. Fungi in salterns, pp. 103–113. In Ventosa, A. (ed.), Halophilic microorganisms. Springer Berling Heidelberg, Germany.CrossRefGoogle Scholar
  27. He, J., Wijeratne, E.M., Bashyal, B.P., Zhan, J., Seliga, C.J., Liu, M.X., Pierson, E.E., Pierson 3rd, L.S., VanEtten, H.D., and Gunatilaka, A.A. 2004. Cytotoxic and other metabolites of Aspergillus inhabiting the rhizosphere of Sonoran desert plants. J. Nat. Prod. 67, 1985–1991.CrossRefGoogle Scholar
  28. Hohmann, S. 2002. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol. Mol. Biol. Rev. 66, 300–372.CrossRefGoogle Scholar
  29. Javor, B.J. 1983. Nutrients and ecology of the Western Salt and Exportadora de Sal saltern brines, pp. 195–205. In Schreiber, B.C. and Harner, H.L. (eds.), 6th Symposium on Salt, The Salt Institute, Toronto, Canada.Google Scholar
  30. Javor, B.J. 2002. Industrial microbiology of solar salt production. J. Ind. Microbiol. Biotechnol. 28, 42–47.CrossRefGoogle Scholar
  31. Jiang, W., Ye, P., Chen, C.T., Wang, K., Liu, P., He, S., Wu, X., Gan, L., Ye, Y., and Wu, B. 2013. Two novel hepatocellular carcinoma cycle inhibitory cyclodepsipeptides from a hydrothermal vent crab-associated fungus Aspergillus clavatus C2WU. Mar. Drugs 11, 4761–4772.CrossRefGoogle Scholar
  32. Kogej, T., Gorbushina, A.A., and Gunde-Cimerman, N. 2006. Hypersaline conditions induce changes in cell-wall melanization and colony structure in a halophilic and a xerophilic black yeast species of the genus Trimmatostroma. Mycol. Res. 110, 713–724.CrossRefGoogle Scholar
  33. Kogej, T., Gostincar, C., Volkmann, M., Gorbushina, A.A., and Gunde Cimerman, N. 2005a. Mycosporines in extremophilic fungi-novel compelemntary osmolytes? Environ. Chem. 3, 105–110.CrossRefGoogle Scholar
  34. Kogej, T., Ramos, J., Plemenitas, A., and Gunde-Cimerman, N. 2005b. The halophilic fungus Hortaea werneckii and the halotolerant fungus Aureobasidium pullulans maintain low intracellular cation concentrations in hypersaline environments. Appl. Environ. Microbiol. 71, 6600–6605.CrossRefGoogle Scholar
  35. Kogej, T., Stein, M., Volkmann, M., Gorbushina, A.A., Galinski, E.A., and Gunde-Cimerman, N. 2007. Osmotic adaptation of the halophilic fungus Hortaea werneckii: role of osmolytes and melanization. Microbiology 153, 4261–4273.CrossRefGoogle Scholar
  36. Kozakiewicz, Z. 1989. Aspergillus species on stored products. Mycological Papers 161, 1–188.Google Scholar
  37. Kralj Kuncic, M., Kogej, T., Drobne, D., and Gunde-Cimerman, N. 2010. Morphological response of the halophilic fungal genus Wallemia to high salinity. Appl. Environ. Microbiol. 76, 329–337.CrossRefGoogle Scholar
  38. Kushiner, D.J. 1978. Life in high salt and solute concentrations, pp. 317–368. In Kushiner, D.J. (ed.), Microbial life in extreme environments. Academic Press, London, UK.Google Scholar
  39. Larsen, H. 1986. Halophilic and halotolerant microorganisms-an overview and historical perspective. FEMS Microbiol. Rev. 2, 3–7.CrossRefGoogle Scholar
  40. Lebogang, L., Taylor, J.E., and Mubyana-John, T. 2009. A preliminary study of the fungi associated with saltpans in Botswana and their anti-microbial properties. Biorem. Biodiv. Bioavail. 3, 61–71.Google Scholar
  41. Lenassi, M., Gostincar, C., Jackman, S., Turk, M., Sadowski, I., Nislow, C., Jones, S., Birol, I., Cimerman, N.G., and Plemenitas, A. 2013. Whole genome duplication and enrichment of metal cation transporters revealed by de novo genome sequencing of extremely halotolerant black yeast Hortaea werneckii. PLoS One 8, e71328.CrossRefGoogle Scholar
  42. Lenassi, M., Zajc, J., Gostincar, C., Gorjan, A., Gunde-Cimerman, N., and Plemenitas, A. 2011. Adaptation of the glycerol-3-phosphate dehydrogenase Gpd1 to high salinities in the extremely halotolerant Hortaea werneckii and halophilic Wallemia ichthyophaga. Fungal Biol. 115, 959–970.CrossRefGoogle Scholar
  43. Li, Y., Ye, D., Chen, X., Lu, X., Shao, Z., Zhang, H., and Che, Y. 2009. Breviane spiroditerpenoids from an extreme-tolerant Penicillium sp. isolated from a deep sea sediment sample. J. Nat. Prod. 72, 912–916.CrossRefGoogle Scholar
  44. Liu, T., Zhang, S., Zhu, J., Pan, H., Bai, J., Li, Z., Guan, L., Liu, G., Yuan, C., Wu, X., et al. 2015. Two new amides from a halotolerant fungus, Myrothecium sp. GS-17. J. Antibiot. (Tokyo) 68, 267–270.CrossRefGoogle Scholar
  45. Lu, Z.Y., Lin, Z.J., Wang, W.L., Du, L., Zhu, T.J., Fang, Y.C., Gu, Q.Q., and Zhu, W.M. 2008. Citrinin dimers from the halotolerant fungus Penicillium citrinum B-57. J. Nat. Prod. 71, 543–546.CrossRefGoogle Scholar
  46. Ma, L.J., Roggers, S.O., Catranis, C.M., and Starmer, W.T. 2000. Detection and characterization of ancient fungi entrapped in glacial ice. Mycologia 92, 286–295.CrossRefGoogle Scholar
  47. Madkour, F.F. and Gaballah, M.M. 2012. Phytoplankton assemblage of a solar saltern in Port Fouad, Egypt. Oceanologia 54, 687–700.CrossRefGoogle Scholar
  48. Maturrano, L., Santos, F., Rossello-Mora, R., and Anton, J. 2006. Microbial diversity in Maras salterns, a hypersaline environment in the Peruvian Andes. Appl. Environ. Microbiol. 72, 3887–3895.CrossRefGoogle Scholar
  49. Mok, W.Y., Catelo, F.P., and Barreto Da Silva, M.S. 1981. Occurrence of Exophiala werneckii on salted freshwater fish Osteoglossum bicirrhosum. Int. J. Food Sci. Technol. 16, 505–512.CrossRefGoogle Scholar
  50. Mudau, M.M. and Setati, M.E. 2006. Screening and identification of endomannanase-producing microfungi from hypersaline environments. Curr. Microbiol. 52, 477–481.CrossRefGoogle Scholar
  51. Nayak, S.S., Gonsalves, V., and Nazareth, S.W. 2012. Isolation and salt tolerance of halophilic fungi from mangroves and solar salterns in Goa - India. Indian J. Mar. Sci. 41, 164–172.Google Scholar
  52. Nazareth, S. and Gonsalves, V. 2013. Aspergillus penicillioides-a true halophile existing in hypersaline and polyhaline econiches. Ann. Microbiol. 64, 397–402.CrossRefGoogle Scholar
  53. Nazareth, S.W. and Gonsalves, V. 2014. Halophilic Aspergillus penicillioides from athalassohaline, thalassohaline, and polyhaline environments. Front. Microbiol. 5, 412.CrossRefGoogle Scholar
  54. Niu, S., Liu, D., Hu, X., Proksch, P., Shao, Z., and Lin, W. 2014. Spiromastixones A-O, antibacterial chlorodepsidones from a deep-sea-derived Spiromastix sp. fungus. J. Nat. Prod. 77, 1021–1030.CrossRefGoogle Scholar
  55. Ohtsuki, T. 1962. Studies on the glass mould: On two species of Aspergillus isolated from glass. Bot. Mag. Tokyo 75, 436–442.CrossRefGoogle Scholar
  56. Oren, A. 2009. Saltern evaporation ponds as model systems for the study of primary production processes under hypersaline conditions. Aquat. Microb. Ecol. 56, 193–204.CrossRefGoogle Scholar
  57. Oren, A., Stambler, N., and Dubinsky, Z. 1992. On the red coloration of saltern crystallizer ponds. Int. J. Salt Lake Res. 1, 77–89.CrossRefGoogle Scholar
  58. Pedros-Alio, C. 2004. Trophic ecology of solar salterns, pp. 33–48. In Ventosa, A. (ed.), Halophilic microorganisms. Springer, Berlin, Heidelberg, Germany.CrossRefGoogle Scholar
  59. Petrovic, U., Gunde-Cimerman, N., and Plemenitas, A. 2002. Cellular responses to environmental salinity in the halophilic black yeast Hortaea werneckii. Mol. Microbiol. 45, 665–672.CrossRefGoogle Scholar
  60. Pinto, C., Custodio, V., Nunes, M., Songy, A., Rabenoelina, F., Courteaux, B., Clement, C., Gomes, A.C., and Fontaine, F. 2018. Understand the potential role of Aureobasidium pullulans, a resident microorganism from grapevine, to prevent the infection caused by Diplodia seriata. Front. Microbiol. 9, 3047.CrossRefGoogle Scholar
  61. Prasongsuk, S., Lotrakul, P., Ali, I., Bankeeree, W., and Punnapayak, H. 2018. The current status of Aureobasidium pullulans in biotechnology. Folia Microbiol. (Praha) 63, 129–140.CrossRefGoogle Scholar
  62. Rampelotto, P.H. 2013. Extremophiles and extreme environments. Life (Basel) 3, 482–485.Google Scholar
  63. Raol, G.G., Raol, B.V., Prajapati, V.S., and Bhavsar, N.H. 2015. Utilization of agro-industrial waste for beta-galactosidase production under solid state fermentation using halotolerant Aspergillus tubingensis GR1 isolate. 3 Biotech. 5, 411–421.CrossRefGoogle Scholar
  64. Stierle, D.B., Stierle, A.A., Patacini, B., McIntyre, K., Girtsman, T., and Bolstad, E. 2011. Berkeleyones and related meroterpenes from a deep water acid mine waste fungus that inhibit the production of interleukin 1-β from induced inflammasomes. J. Nat. Prod. 74, 2273–2277.CrossRefGoogle Scholar
  65. Tepsic, K., Gunde-Cimerman, N., and Frisvad, J.C. 1997. Growth and mycotoxin production by Aspergillus fumigatus strains isolated from a saltern. FEMS Microbiol. Lett. 157, 9–12.CrossRefGoogle Scholar
  66. Turk, M., Abramovic, Z., Plemenitas, A., and Gunde-Cimerman, N. 2007. Salt stress and plasma-membrane fluidity in selected extremophilic yeasts and yeast-like fungi. FEMS Yeast Res. 7, 550–557.CrossRefGoogle Scholar
  67. Turk, M., Mejanelle, L., Sentjurc, M., Grimalt, J.O., Gunde-Cimerman, N., and Plemenitas, A. 2004. Salt-induced changes in lipid composition and membrane fluidity of halophilic yeast-like melanized fungi. Extremophiles 8, 53–61.CrossRefGoogle Scholar
  68. Vaupotic, T., Gunde-Cimerman, N., and Plemenitas, A. 2007. Novel 3′-phosphoadenosine-5′-phosphatases from extremely halotolerant Hortaea werneckii reveal insight into molecular determinants of salt tolerance of black yeasts. Fungal Genet. Biol. 44, 1109–1122.CrossRefGoogle Scholar
  69. Ventosa, A. and Arahal, D.R. 2011. Physicochemical characteristics of hypersaline environments and their biodiversity. Extremophiles 2, 247–262.Google Scholar
  70. Wang, L., Chi, Z., Wang, X., Liu, Z., and Li, J. 2007a. Diversity of lipase-producing yeasts from marine environments and oil hydrolysis by their crude enzymes. Ann. Microbiol. 57, 495–501.CrossRefGoogle Scholar
  71. Wang, W., Wang, Y., Tao, H., Peng, X., Liu, P., and Zhu, W. 2009. Cerebrosides of the halotolerant fungus Alternaria raphani isolated from a sea salt field. J. Nat. Prod. 72, 1695–1698.CrossRefGoogle Scholar
  72. Wang, H., Zheng, J.K., Qu, H.J., Liu, P.P., Wang, Y., and Zhu, W.M. 2011a. A new cytotoxic indole-3-ethenamide from the halotolerant fungus Aspergillus sclerotiorum PT06-1. J. Antibiot. (Tokyo) 64, 679–681.CrossRefGoogle Scholar
  73. Wang, Y., Zheng, J., Liu, P., Wang, W., and Zhu, W. 2011b. Three new compounds from Aspergillus terreus PT06-2 grown in a high salt medium. Mar. Drugs 9, 1368–1378.CrossRefGoogle Scholar
  74. Wang, W., Zhu, T., Tao, H., Lu, Z., Fang, Y., Gu, Q., and Zhu, W. 2007b. Two new cytotoxic quinone type compounds from the halotolerant fungus Aspergillus variecolor. J. Antibiot. (Tokyo) 60, 603–607.CrossRefGoogle Scholar
  75. Wieland, A. and Kuhl, M. 2006. Regulation of photosynthesis and oxygen consumption in a hypersaline cyanobacterial mat (Camargue, France) by irradiance, temperature and salinity. FEMS Microbiol. Ecol. 55, 195–210.CrossRefGoogle Scholar
  76. Xiao, L., Liu, H., Wu, N., Liu, M., Wei, J., Zhang, Y., and Lin, X. 2013. Characterization of the high cytochalasin E and rosellichalasin producing-Aspergillus sp. nov. F1 isolated from marine solar saltern in China. World J. Microbiol. Biotechnol. 29, 11–17.CrossRefGoogle Scholar
  77. Yang, Y.L., Liao, W.Y., Liu, W.Y., Liaw, C.C., Shen, C.N., Huang, Z.Y., and Wu, S.H. 2009. Discovery of new natural products by intact-cell mass spectrometry and LC-SPE-NMR: malbranpyrroles, novel polyketides from thermophilic fungus Malbranchea sulfurea. Chemistry 15, 11573–11580.CrossRefGoogle Scholar
  78. Zafrilla, B., Martinez-Espinosa, R.M., Alonso, M.A., and Bonete, M.J. 2010. Biodiversity of Archaea and floral of two inland saltern ecosystems in the Alto Vinalopo Valley, Spain. Saline Syst. 6, 10.CrossRefGoogle Scholar
  79. Zajc, J., Kogej, T., Galinski, E.A., Ramos, J., and Gunde-Cimerman, N. 2014. Osmoadaptation strategy of the most halophilic fungus, Wallemia ichthyophaga, growing optimally at salinities above 15% NaCl. Appl. Environ. Microbiol. 80, 247–256.CrossRefGoogle Scholar
  80. Zajc, J., Liu, Y., Dai, W., Yang, Z., Hu, J., Gostincar, C., and Gunde-Cimerman, N. 2013. Genome and transcriptome sequencing of the halophilic fungus Wallemia ichthyophaga: haloadaptations present and absent. BMC Genomics 14, 617.CrossRefGoogle Scholar
  81. Zalar, P., de Hoog, G.S., and Gunde-Cimerman, N. 1999a. Ecology of halotolerant dothideaceous black yeasts. Stud. Mycol. 43, 38–48.Google Scholar
  82. Zalar, P., de Hoog, G.S., and Gunde-Cimerman, N. 1999b. Trimmatostroma salinum, a new species from hypersaline water. Stud. Mycol. 43, 57–62.Google Scholar
  83. Zalar, P., de Hoog, G.S., Schroers, H.J., Frank, J.M., and Gunde-Cimerman, N. 2005. Taxonomy and phylogeny of the xerophilic genus Wallemia (Wallemiomycetes and Wallemiales, cl. et ord. nov.). Antonie van Leeuwenhoek 87, 311–328.CrossRefGoogle Scholar
  84. Zalar, P., Frisvad, J.C., Gunde-Cimerman, N., Varga, J., and Samson, R.A. 2008. Four new species of Emericella from the Mediterranean region of Europe. Mycologia 100, 779–795.CrossRefGoogle Scholar
  85. Zheng, J., Wang, Y., Wang, J., Liu, P., Li, J., and Zhu, W. 2013. Antimicrobial ergosteroids and pyrrole derivatives from halotolerant Aspergillus flocculosus PT05-1 cultured in a hypersaline medium. Extremophiles 17, 963–971.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea 2019

Authors and Affiliations

  1. 1.National Marine Biodiversity Institute of KoreaSeocheonRepublic of Korea

Personalised recommendations