Skip to main content
Log in

Diluted conventional media improve the microbial cultivability from aquarium seawater

  • Microbial Ecology and Environmental Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

The cultivation of microbial species remains a primary challenge in microbiology and obtaining pure cultures is essential for the study of microbial physiology and function. When isolating microorganisms from aquaculture environments, Vibrio are the most dominate isolates on the media that are commonly used. In order to expand our ability to study microbial species, an easy-operation and low-cost medium that can reduce the interference of Vibrio strains and increase the cultivability of other bacteria is urgently needed. We compared viable cell counts on conventional media (CM; including Marine Agar 2216 and LB media) and diluted media (DM; including 1/10-Marine Agar 2216, 1/10-LB). We also assessed the diversity of cultivable microorganisms under high and low nutrient conditions by a plate-wash strategy coupled with high-throughput sequencing of the V4 hypervariable region of the 16S rRNA gene. The results show that microbial communities from DM, especially 1/10-Marine Agar 2216, are more diverse than those obtained from CM. Vibrio isolates were reduced on DM. PICRUSt analysis revealed that nutrient composition is a significant contributor to the diversity and function of the cultivable microbial communities. Bacteria grown on CM possess more pathogenic characteristics, whereas DM favors the growth of bacteria that have multiple metabolic functions. Collectively, our data provide strong evidence that dilution of CM influences the cultivability of bacteria from aquaculture seawater. It also supports that DM can expand the range of microbial species that can be cultivated. This study also provides insights for media design in microbial cultivation from aquaculture systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Azevedo, N.F., Bragança, S.M., Simões, L.C., Cerqueira, L., Almeida, C., Keevil, C.W., and Vieira, M.J. 2012. Proposal for a method to estimate nutrient shock effects in bacteria. BMC Res. Notes 5, 422.

    Article  PubMed  PubMed Central  Google Scholar 

  • Bibi, F., Jeong, J.H., Chung, E.J., Jeon, C.O., and Chung, Y.R. 2014. Labrenzia suaedae sp. nov., a marine bacterium isolated from a halophyte, and emended description of the genus Labrenzia. Int. J. Syst. Evol. Microbiol. 64, 1116–1122.

    Article  CAS  PubMed  Google Scholar 

  • Bloomfield, S.F., Stewart, G.S., Dodd, C.E., Booth, I.R., and Power, E.G. 1998. The viable but non-culturable phenomenon explained? Microbiology 144, 1–3.

    Article  CAS  PubMed  Google Scholar 

  • Bourne, D.G., Young, N., Webster, N., Payne, M., Salmon, M., Demel, S., and Hall, M. 2004. Microbial community dynamics in a larval aquaculture system of the tropical rock lobster, Panulirus ornatus. Aquaculture 242, 31–51.

    Article  Google Scholar 

  • Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carini, P., Steindler, L., Beszteri, S., and Giovannoni, S.J. 2013. Nutrient requirements for growth of the extreme oligotroph ‘Candidatus Pelagibacter ubique’ HTCC1062 on a defined medium. ISME J. 7, 592–602.

    Article  CAS  PubMed  Google Scholar 

  • Cho, J.C. and Giovannoni, S.J. 2004. Cultivation and growth characteristics of a diverse group of oligotrophic marine Gamma-proteobacteria. Appl. Environ. Microbiol. 70, 432–440.

    Article  CAS  PubMed  Google Scholar 

  • Connon, S.A. and Giovannoni, S.J. 2002. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl. Environ. Microbiol. 68, 3878–3885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar, R.C. 2004. MUSCLE: multiple sequence alignment with improved accuracy and speed, pp. 728–729. In Computational Systems Bioinformatics Conference.

  • Edgar, R.C. 2013. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat. Methods 10, 996–998.

    Article  CAS  PubMed  Google Scholar 

  • Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C., and Knight, R. 2011. UCHIME improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194–2200.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fiksdal, L., Vik, E., Mills, A., and Staley, J. 1982. Nonstandard methods of enumerating bacteria in drinking water. J. Am. Water Works Assoc. 74, 313–318.

    Article  Google Scholar 

  • Ganesh, E.A. 2010. Monitoring of total heterotrophic bacteria and Vibrio spp. in an aquaculture pond. Curr. Res. J. Biol. Sci. 2, 48–52.

    Google Scholar 

  • Gibbs, R.A. and Hayes, C.R. 1988. The use of R2A medium and the spread plate method for the enumeration of heterotrophic bacteria in drinking water. Lett. Appl. Microbiol. 6, 19–21.

    Article  Google Scholar 

  • Gutierrez, T., Green, D.H., Nichols, P.D., Whitman, W.B., Semple, K.T., and Aitken, M.D. 2013. Polycyclovorans algicola gen. nov., sp. nov., an aromatic-hydrocarbon-degrading marine bacterium found associated with laboratory cultures of marine phytoplankton. Appl. Environ. Microbiol. 79, 205–214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Handelsman, J. 2004. Metagenomics: application of genomics to uncultured microorganisms. Microbiol. Mol. Biol. Rev. 68, 669–685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoff, K.A. 1989. Survival of Vibrio anguillarum and Vibrio salmonicida at different salinities. Appl. Environ. Microbiol. 55, 1775–1786.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Janssen, P.H., Yates, P.S., Grinton, B.E., Taylor, P.M., and Sait, M. 2002. Improved culturability of soil bacteria and isolation in pure culture of novel members of the divisions Acidobacteria, Actinobacteria, Proteobacteria, and Verrucomicrobia. Appl. Environ. Microbiol. 68, 2391–2396.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jones, J.G. 1970. Studies on freshwater bacteria: effect of medium composition and method on estimates of bacterial population. J. Appl. Bacteriol. 33, 679–686.

    Article  CAS  PubMed  Google Scholar 

  • Keller, M. and Zengler, K. 2004. Tapping into microbial diversity. Nat. Rev. Microbiol. 2, 141–150.

    Article  CAS  PubMed  Google Scholar 

  • Kelly, M.T. 1982. Effect of temperature and salinity on Vibrio (Beneckea) vulnificus occurrence in a Gulf Coast environment. Appl. Environ. Microbiol. 44, 820–824.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kelly, M.T., Hickman-Brenner, F.W., and Farmer III, J.J. 1991. Vibrio, pp. 384–395. In Balows, A., Hausler, W.J., Herrmann Jr, K.L., Isenberg, H.D., and Shadomy, H.J., (eds.), Manual of clinical microbiology, 5th ed., American Society for Microbiology, Washington, D.C., USA.

    Google Scholar 

  • Kim, H.M., Choi, D.H., Hwang, C.Y., and Cho, B.C. 2008. Nocardioides salarius sp. nov., isolated from seawater enriched with zooplankton. Int. J. Syst. Evol. Microbiol. 58, 2056–2064.

    Article  CAS  PubMed  Google Scholar 

  • Klappenbach, J.A., Dunbar, J.M., and Schmidt, T.M. 2000. rRNA operon copy number reflects ecological strategies of bacteria. Appl. Environ. Microbiol. 66, 1328–1333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Koch, A.L. 2001. Oligotrophs versus copiotrophs. Bioessays 23, 657–661.

    Article  CAS  PubMed  Google Scholar 

  • Kogure, K., Simidu, U., and Taga, N. 1979. A tentative direct microscopic method for counting living marine bacteria. Can. J. Microbiol. 25, 415–420.

    Article  CAS  PubMed  Google Scholar 

  • Langille, M.G.I., Zaneveld, J., Caporaso, J.G., McDonald, D., Knights, D., Reyes, J.A., Clemente, J.C., Burkepile, D.E., Thurber, R.L.V., Knight, R., et al. 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Locey, K.J. and Lennon, J.T. 2016. Scaling laws predict global microbial diversity. Proc. Natl. Acad. Sci. USA 113, 5970.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luo, H., Csuros, M., Hughes, A.L., and Moran, M.A. 2013. Evolution of divergent life history strategies in marine alphaproteobacteria. mBio 4, e00373–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacArthur, R.H. and Wilson, E.O. 1967. The theory of island biogeography. Princeton University Press.

  • Magoč, T. and Salzberg, S.L. 2011. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics 27, 2957–2963.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maki, J.S., LaCroix, S.J., Hopkins, B.S., and Staley, J.T. 1986. Recovery and diversity of heterotrophic bacteria from chlorinated drinking waters. Appl. Environ. Microbiol. 51, 1047–1055.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Marco-Noales, E., Biosca, E.G., and Amaro, C. 1999. Effects of salinity and temperature on long-term survival of the eel pathogen Vibrio vulnificus biotype 2 (serovar E). Appl. Environ. Microbiol. 65, 1117–1126.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Massa, S., Caruso, M., Trovatelli, F., and Tosques, M. 1998. Comparison of plate count agar and R2A medium for enumeration of heterotrophic bacteria in natural mineral water. J. Microbiol. Biotechnol. 14, 727–730.

    Article  Google Scholar 

  • Means, E.G., Hanami, L., Ridgway, H., and Olson, B. 1981. Evaluating mediums and plating techniques for enumerating bacteria in water distribution systems. J. Am. Water Works Assoc. 73, 585–590.

    Article  Google Scholar 

  • Militon, C., Jézéquel, R., Gilbert, F., Corsellis, Y., Sylvi, L., Cravo-Laureau, C., Duran, R., and Cuny, P. 2015. Dynamics of bacterial assemblages and removal of polycyclic aromatic hydrocarbons in oil-contaminated coastal marine sediments subjected to contrasted oxygen regimes. Environ. Sci. Pollut. Res. 22, 15260–15272.

    Article  CAS  Google Scholar 

  • Moral, A.D., Quesada, E., Bejar, V., and Ramos-Cormenzana, A. 1987. Evolution of bacterial flora from a subterranean saline well by graduated salinity changes in enrichment media. J. Appl. Microbiol. 62, 465–471.

    Google Scholar 

  • Moriarty, D.J.W. 1997. The role of microorganisms in aquaculture ponds. Aquaculture 151, 333–349.

    Article  Google Scholar 

  • Nichols, D. 2007. Cultivation gives context to the microbial ecologist. FEMS Microbiol. Ecol. 60, 351–357.

    Article  CAS  PubMed  Google Scholar 

  • Patrick, F.M. 1978. The use of membrane filtration and Marine Agar 2216E to enumerate marine heterotrophic bacteria. Aquaculture 13, 369–372.

    Article  Google Scholar 

  • Quast, C., Pruesse, E., Yilmaz, P., Gerken, J., Schweer, T., Yarza, P., Peplies, J., and Glöckner, F.O. 2013. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 41, D590–D596.

    Article  CAS  PubMed  Google Scholar 

  • Rappé, M.S., Connon, S.A., Vergin, K.L., and Giovannoni, S.J. 2002. Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418, 630–633.

    Article  CAS  PubMed  Google Scholar 

  • Rappé, M.S. and Giovannoni, S.J. 2003. The uncultured microbial majority. Annu. Rev. Microbiol. 57, 369–394.

    Article  CAS  PubMed  Google Scholar 

  • Reasoner, D.J. and Geldreich, E.E. 1985. A new medium for the enumeration and subculture of bacteria from potable water. Appl. Environ. Microbiol. 49, 1–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Roller, B.R.K., Stoddard, S.F., and Schmidt, T.M. 2016. Exploiting rRNA operon copy number to investigate bacterial reproductive strategies. Nat. Microbiol. 1, 16160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sandhya, S., Prabu, S.K., and Sundari, R.B.T. 1995. Microbial degradation of dibenzothiophene by Nocardioides. J. Environ. Sci. Health A 30, 1995–2006.

    Google Scholar 

  • Simidu, U. and Tsukamoto, K. 1985. Habitat segregation and biochemical activities of marine members of the family Vibrionaceae. Appl. Environ. Microbiol. 50, 781–790.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Song, J., Choo, Y.J., and Cho, J.C. 2008. Perlucidibaca piscinae gen. nov., sp. nov., a freshwater bacterium belonging to the family Moraxellaceae. Int. J. Syst. Evol. Microbiol. 58, 97–102.

    Article  CAS  PubMed  Google Scholar 

  • Staley, J.T. and Konopka, A. 1985. Measurement of in situ activities of nonphotosynthetic microorganisms in aquatic and terrestrial habitats. Annu. Rev. Micriobiol. 39, 321–346.

    Article  CAS  Google Scholar 

  • Stewart, E.J. 2012. Growing unculturable bacteria. J. Bacteriol. 194, 4151–4160.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Straškrabová, V. 1983. The effect of substrate shock on populations of starving aquatic bacteria. J. Appl. Microbiol. 54, 217–224.

    Google Scholar 

  • Sun, J., Steindler, L., Thrash, J.C., Halsey, K.H., Smith, D.P., Carter, A.E., Landry, Z.C., and Giovannoni, S.J. 2011. One carbon metabolism in SAR11 pelagic marine bacteria. PLoS One 6, e23973.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun, J., Todd, J.D., Thrash, J.C., Qian, Y., Qian, M.C., Temperton, B., Guo, J., Fowler, E.K., Aldrich, J.T., Nicora, C.D., et al. 2016. The abundant marine bacterium Pelagibacter simultaneously catabolizes dimethylsulfoniopropionate to the gases dimethyl sulfide and methanethiol. Nat. Microbiol. 1, 16065.

    Article  CAS  PubMed  Google Scholar 

  • Tanabe, M. and Kanehisa, M. 2012. Using the KEGG database resource. Curr. Protoc. Bioinformatics Chapter 1, Unit1.12.

  • Vartoukian, S.R., Palmer, R.M., and Wade, W.G. 2010. Strategies for culture of ‘unculturable’ bacteria. FEMS Microbiol. Lett. 309, 1–7.

    CAS  PubMed  Google Scholar 

  • Williams, K.P., Gillespie, J.J., Sobral, B.W.S., Nordberg, E.K., Snyder, E.E., Shallom, J.M., and Dickerman, A.W. 2010. Phylogeny of Gammaproteobacteria. J. Bacteriol. 192, 2305–2314.

    Article  CAS  PubMed  Google Scholar 

  • Wu, L., Yang, Y., Chen, S., Shi, Z.J., Zhao, M., Zhu, Z., Yang, S., Qu, Y., Ma, Q., He, Z., et al. 2017. Microbial functional trait of rRNA operon copy numbers increases with organic levels in anaerobic digesters. ISME J. 11, 2874–2878.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu, H.S., Roberts, N., Singleton, F.L., Attwell, R.W., Grimes, D.J., and Colwell, R.R. 1982. Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microb. Ecol. 8, 313–323.

    Article  CAS  PubMed  Google Scholar 

  • Zengler, K., Toledo, G., Rappe, M., Elkins, J., Mathur, E.J., Short, J.M., and Keller, M. 2002. Cultivating the uncultured. Proc. Natl. Acad. Sci. USA 99, 15681–15686.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This research was carried out with the support of China Agriculture Research System (CARS-48), China ASEAN Maritime Cooperation Fund Project (2016–2018), and the Fundamental Research Funds for Chinese Academy of Fishery Sciences (2017HY-ZD10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Huang.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Guo, J., Yang, Q. et al. Diluted conventional media improve the microbial cultivability from aquarium seawater. J Microbiol. 57, 759–768 (2019). https://doi.org/10.1007/s12275-019-9175-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-019-9175-7

Keywords

Navigation