Skip to main content
Log in

Reduction of selenite to elemental Se(0) with simultaneous degradation of phenol by co-cultures of Phanerochaete chrysosporium and Delftia lacustris

  • Microbial Ecology and Environmental Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

The simultaneous removal of phenol and selenite from synthetic wastewater was investigated by adopting two different co-culturing techniques using the fungus Phanerochaete chrysosporium and the bacterium Delftia lacustris. Separately grown biomass of the fungus and the bacterium (suspended co-culture) was incubated with different concentrations of phenol (0–1,200 mg/L) and selenite (10 mg/L). The selenite ions were biologically reduced to extracellular Se(0) nanoparticles (3.58 nm diameter) with the simultaneous degradation of up to 800 mg/L of phenol. Upon growing the fungus and the bacterium together using an attached growth co-culture, the bacterium grew as a biofilm onto the fungus. The extracellularly produced Se(0) in the attached growth co-culture had a minimum diameter of 58.5 nm. This co-culture was able to degrade completely 50 mg/L phenol, but was completely inhibited at a phenol concentration of 200 mg/L.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdelwahab, O., Amin, N.K., and El-Ashtoukhy, E.Z. 2009. Electrochemical removal of phenol from oil refinery wastewater. J. Hazard. Mater. 163, 711–716.

    Article  CAS  PubMed  Google Scholar 

  • Almendariz, F.J., Meraz, M., Olmos, A.D., and Monroy, O. 2005. Phenolic refinery wastewater biodegradation by expanded granular sludge bed bioreactor. Water Sci. Technol. 52, 391–396.

    Article  CAS  PubMed  Google Scholar 

  • Banwell, C.N. and McCash, E.M. 1983. Fundamentals of molecular spectroscopy. McGrawHill Education, Europe.

    Google Scholar 

  • Cheng, Z., Li, C., Kennes, C., Ye, J., Chen, D., Zhang, S., Chen, J., and Yu, J. 2017. Improved biodegradation potential of chlorobenzene by a mixed fungal-bacterial consortium. Int. J. Biodeter. Biodegr. 123, 276–285.

    Article  CAS  Google Scholar 

  • Espinosa-Ortiz, E.J., Gonzalez-Gil, G., Saikaly, P.E., van Hullebusch, E.D., and Lens, P.N.L. 2015. Effects of selenium oxyanions on the white-rot fungus Phanerochaete chrysosporium. Appl. Microbiol. Biotechnol. 99, 2405–2418.

    Article  CAS  PubMed  Google Scholar 

  • Espinosa-Ortiz, E.J., Pechaud, Y., Lauchnor, E., Rene, E.R., Gerlach, R., Peyton, B.M., van Hullebusch, E.D., and Lens, P.N.L. 2016. Effect of selenite on the morphology and respiratory activity of Phanerochaete chrysosporium biofilms. Bioresour. Technol. 210, 138–145.

    Article  CAS  PubMed  Google Scholar 

  • Farkas, V., Felinger, A., Hegedűsova, A., Dékány, I., and Pernyeszi, T. 2013. Comparative study of the kinetics and equilibrium of phenol biosorption on immobilized white-rot fungus Phanerochaete chrysosporium from aqueous solution. Colloids Surf. B Biointerfaces 103, 381–390.

    Article  CAS  PubMed  Google Scholar 

  • Gadd, G.M. 2007. Geomycol: biogeochemical transformations of rocks, minerals, metals, and radionuclides by fungi, bioweathering, and bioremediation. Mycol. Res. 111, 3–49.

    Article  CAS  PubMed  Google Scholar 

  • Guleria, A., Chakraborty, S., Neogy, S., Maurya, D.K., and Adhikari, S. 2018. Controlling the phase and morphology of amorphous Se nanoparticles: their prolonged stabilization and anticancer efficacy. Chem. Commun. 54, 8753–8756.

    Article  CAS  Google Scholar 

  • Hailei, W., Ping, L., Ying, W., Lei, L., and Jianming, Y. 2017. Metagenomic insight into the bioaugmentation mechanism of Phanerochaete chrysosporium in an activated sludge system treating coking wastewater. J. Hazard. Mater. 32, 820–829.

    Article  CAS  Google Scholar 

  • Harrison, J.J., Ceri, H., Yerly, J., Rabiei, M., Hu, Y., Marinuzzi, R., and Turner, R.J. 2007. Metal ions may suppressor enhance cellular differentiation in Candida albicans and Candida tropicalis biofilms. Appl. Environ. Microbiol. 73, 4940–4949.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hashemi, W.I., Maraqa, M.A., Rao, M.V., and Hossain, M.M. 2015. Characterization and removal of phenolic compounds from condensate-oil refinery wastewater. Desalination Water Treat. 54, 660–671.

    Article  CAS  Google Scholar 

  • Huang, C., Zeng, G., Huang, D., Lai, C., Xu, P., Zhang, C., Cheng, M., Wan, J., Liang, H., and Zhang, Y. 2017. Effect of Phanerochaete chrysosporium inoculation on bacterial community and metal stabilization in lead-contaminated agricultural waste composting. Bioresour. Technol. 243, 294–303.

    Article  CAS  PubMed  Google Scholar 

  • Jørgensen, N.O., Brandt, K.K., Nybroe, O., and Hansen, M. 2009. Delftia lacustris sp. nov., a peptidoglycan-degrading bacterium from fresh water, and emended description of Delftia tsuruhatensis as a peptidoglycan-degrading bacterium. Int. J. Syst. Evol. Microbiol. 59, 2195–2199.

    Article  CAS  PubMed  Google Scholar 

  • Kessi, J. and Hanselmann, K.W. 2004. Similarities between the abiotic reduction of selenite with glutathione and the dissimilatory reaction mediated by Rhodospirillum rubrum and Escherichia coli. J. Biol. Chem. 279, 50662–50669.

    Article  CAS  PubMed  Google Scholar 

  • Klein, D.A. and Paschke, M.W. 2004. Filamentous fungi: the indeterminate lifestyle and microbial ecology. Microb. Ecol. 47, 224–235.

    Article  CAS  PubMed  Google Scholar 

  • Lawson, S. and Macy, J.M. 1995. Bioremediation of selenite in oil refinery wastewater. Appl. Microbiol. Biotechnol. 43, 762–765.

    Article  Google Scholar 

  • Liu, S.H., Zeng, G.M., Niu, Q.Y., Liu, Y., Zhou, L., Jiang, L.H., Tan, X.F., Xu, P., Zhang, C., and Cheng, M. 2017. Bioremediation mechanisms of combined pollution of PAHs and heavy metals by bacteria and fungi: A mini review. Bioresour. Technol. 224, 25–33.

    Article  CAS  PubMed  Google Scholar 

  • Mandal, A. and Chakrabarty, D. 2011. Isolation of nanocellulose from waste sugarcane bagasse (SCB) and its characterization. Carbohydr. Polym. 86, 1291–1299.

    Article  CAS  Google Scholar 

  • Nurdogan, Y., Evans, P., and Sonstegard, J. 2012. Selenium removal from oil refinery wastewater using advanced biological metal removal (ABMet®) process, pp. 229–241. In Proceedings of the water environment federation, WEFTEC, Session 1–10.

  • Paszczynski, A. and Crawford, R.L. 1995. Potential for bioremediation of xenobiotic compounds by the white-rot fungus Phanerochaete chrysosporium. Biotechnol. Prog. 11, 368–379.

    Article  CAS  Google Scholar 

  • Pradeep, N.V., Anupama, S., Navya, K., Shalini, H.N., Idris, M., and Hampannavar, U.S. 2015. Biological removal of phenol from wastewaters: a mini review. Appl. Water Sci. 5, 105–112.

    Article  CAS  Google Scholar 

  • Presentato, A., Piacenza, E., Anikovskiy, M., Cappelletti, M., Zannoni, D., and Turner, R.J. 2017. Biosynthesis of selenium nano-particles and nanorods as a product of selenite bioconversion by the aerobic bacterium Rhodococcus aetherivorans BCP1. New Biotechnol. 41, 1–8.

    Article  CAS  Google Scholar 

  • Tan, L.C., Nancharaiah, Y.V., van Hullebusch, E.D., and Lens, P.N.L. 2016. Selenium: environmental significance, pollution, and biological treatment technologies. Biotechnol. Adv. 34, 886–907.

    Article  CAS  PubMed  Google Scholar 

  • Vessieres, A., Salmain, M., Brossier, P., and Jaouen, G. 1999. Carbonyl metallo immuno assay: a new application for fourier transform infrared spectroscopy. J. Pharma. Biomed. Anal. 21, 625–633.

    Article  CAS  Google Scholar 

  • Wadgaonkar, S.L., Nachariah, V.Y., Jacob, C., Esposito, G., and Lens, P.N.L. 2019. Microbial transformation of Se oxyanions in cultures of Delftia lacustris grown under aerobic conditions. J. Microbiol. 57, 362–371.

    Article  CAS  PubMed  Google Scholar 

  • Wang, X., Song, W., Qian, H., Zhang, D., Pan, X., and Gadd, G.M. 2018. Stabilizing interaction of exopolymers with nano Se and impact on mercury immobilization in soil and groundwater. Environ. Sci. Nano 5, 456–466.

    Article  CAS  Google Scholar 

  • Werkeneh, A.A., Rene, E.R., and Lens, P.N.L. 2017. Simultaneous removal of selenite and phenol from wastewater in an upflow fungal pellet bioreactor. J. Chem. Technol. Biotechnol. 93, 1003–1011.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Prof. Debabrata Chakraborty and Dr. Arup Mandal (Department of Polymer Science and Technology, University of Calcutta, India) for their support with the FT-IR, SEM and TEM analysis. This work was supported by the Marie Sklodowska-Curie European Joint Doctorate (EJD) in Advanced Biological Waste-To-Energy Technologies (ABWET) funded from Horizon 2020 [grant number 643071].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eldon R. Rene.

Additional information

Conflict of Interest

Competing financial interests: S.C. declares no competing financial interests. E.R.R. declares no competing financial interests. P.N.L.L. declares no competing financial interests.

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chakraborty, S., Rene, E.R. & Lens, P.N.L. Reduction of selenite to elemental Se(0) with simultaneous degradation of phenol by co-cultures of Phanerochaete chrysosporium and Delftia lacustris. J Microbiol. 57, 738–747 (2019). https://doi.org/10.1007/s12275-019-9042-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-019-9042-6

Keywords

Navigation