Skip to main content
Log in

A newly characterized exopolysaccharide from Sanghuangporus sanghuang

  • Systems and Synthetic Microbiology and Bioinformatics
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Sanghuangporus sanghuang is a well-known pharmacodynamic and economically important edible fungus associated with mulberry (Morus spp.). A distinctly new exopolysaccharide (EPS), designated SHP-2 was obtained from S. sanghuang P0988 broth, and its structure and anti-aging prosperity were characterized. SHP-2 was found to be composed of a back-bone of →4)-β-Manp-(1→4)-α-Araf-(1→3,4)-α-Glcp(1→3,4)-α-Glcp-(1→3,4)-α-Glcp-(1→3,4)-α-Glcp-(1→3,4)-α-Glcp-(1→6)-α-Galp-(1→4)-β-Manp-(1→ and five branches, including four α-D-Glcp-(1→ and one α-D-Manp-(1→SHP-2 was shown to increase antioxidant enzyme activities including catalase (CAT) and superoxide dismutase (SOD) activities, as well as trolox equivalent antioxidant (TEAC) capacity in serum of mice pre-treated with D-Gal, while reducing lipofuscin levels. SHP-2 exerted a favorable influence on immune organ coefficients and ameliorated the histopathological hepatic lesions and apoptosis in hepatocytes of D-galactose-aged mice almost in a dose-dependent manner. Using the same analytical methods, on comparison with previously studied EPS compounds (i.e. SHP-1), SHP-2 was found to have more complex structure, larger molecule weight, and different anti-aging properties. The results presented here suggest that not only does EPS bioactivity vary with respect to molecular structures and molecule weight, but that multiple structures with different activity can be expressed by a single fungal strain. These results may help understanding the anti-aging prosperity of these polysaccharides for use in health foods or dietary supplements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Beatty, C.H., Bocek, R.M., Herrington, P.T., Lamy, C., and Hoskins, M.K. 1982. Aged rhesus skeletal muscle: histochemistry and lipofuscin content. Age 5, 1–9.

    Article  CAS  Google Scholar 

  • Chen, Y.L., Mao, W.J., Tao, H.W., Zhu, W.M., Yan, M.X., Liu, X., Guo, T.T., and Guo, T. 2015. Preparation and characterization of a novel extracellular polysaccharide with antioxidant activity, from the mangrove-associated fungus Fusarium oxysporum. Mar. Biotechnol. 17, 219–228.

    Article  CAS  PubMed  Google Scholar 

  • Cheng, N., Ren, N., Gao, H., Lei, X., Zheng, J., and Cao, W. 2013. Antioxidant and hepatoprotective effects of Schisandra chinensis pollen extract on CCl4-induced acute liver damage in mice. Food Chem. Toxicol. 55, 234–240.

    Article  CAS  PubMed  Google Scholar 

  • Colantoni, A., Idilman, R., de Maria, N., Duffner, L.A., Van Thiel, D.H., Witte, P.L., and Kovacs, E.J. 2001. Evidence of oxidative injury during aging of the liver in a mouse model. J. Am. Aging Assoc. 24, 51–57.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dai, Y.C., Zhou, L.W., Cui, B.K., Chen, Y.Q., and Decock, C. 2010. Current advances in Phellinus sensu lato: medicinal species, functions, metabolites and mechanisms. Appl. Microbiol. Biotechnol. 87, 1587–1593.

    Article  CAS  PubMed  Google Scholar 

  • Ding, X., Hou, Y.L., and Hou, W.R. 2012. Structure elucidation and antioxidant activity of a novel polysaccharide isolated from Boletus speciosus Forst. Int. J. Biol. Macromol. 50, 613–618.

    Article  CAS  PubMed  Google Scholar 

  • Fu, L.H., Wang, Y.P., Wang, J.J., Yang, Y.R., and Hao, L.M. 2013. Evaluation of the antioxidant activity of extracellular polysaccharides from Morchella esculenta. Food Funct. 4, 871–879.

    Article  CAS  PubMed  Google Scholar 

  • Gaspar, J., Mathieu, J., and Alvarez, P. 2017. 2-Hydroxypropyl-betacylodextrin (HPβCD) reduces age-related lipofuscin accumulation through a cholesterol-associated pathway. Sci. Rep. 7, 2197.

  • Hu, X.Q., Huang, Y.Y., Dong, Q.F., Song, L.Y., Yuan, F., and Yu, R.M. 2011. Structure characterization and antioxidant activity of a novel polysaccharide isolated from pulp tissues of Litchi chinensis. J. Agric. Food Chem. 59, 11548–11552.

    Article  CAS  PubMed  Google Scholar 

  • Jeon, T., Hwang, S.G., Jung, Y.H., Yang, H.S., Sung, N.Y., Lee, J., Park, D.K., and Yoo, Y.C. 2011. Inhibitory effect of oral administration of Sangwhang mushroom (Phellinus linteus) grown on germinated brown rice on experimental lung metastasis and tumor growth in mice. Food Sci. Biotechnol. 20, 209–214.

    Article  Google Scholar 

  • Jing, Y.S., Zhu, J.H., Liu, T., Bi, S.X., Hu, X.J., Chen, Z.Y., Song, L.Y., Lv, W.J., and Yu, R.M. 2015. Structural characterization and biological activities of a novel polysaccharide from cultured Cordyceps militaris and its sulfated derivative. J. Agr. Food Chem. 63, 3464–3471.

    Article  CAS  Google Scholar 

  • Kang, J., Cui, S.W., Phillips, G.O., Chen, J., Guo, Q.B., and Wang, Q. 2011. New studies on gum ghatti (Anogeissus latifolia) part III: Structure characterization of a globular polysaccharide fraction by 1D, 2D NMR spectroscopy and methylation analysis. Food Hydrocoll. 25, 1999–2007.

    Article  CAS  Google Scholar 

  • Kraus, G.A. and Man, T.O. 1986. An improved reductive methylation procedure for quinones. Synth. Commun. 16, 1037–1042.

    Article  CAS  Google Scholar 

  • Li, L., Jiang, Y.J., Yang, X.Y., Liu, Y., Wang, J.Y., and Man, C.X. 2014. Immunoregulatory effects on Caco-2 cells and mice of exopolysaccharides isolated from Lactobacillus acidophilus NCFM. Food Funct. 5, 3261–3268.

    Article  CAS  PubMed  Google Scholar 

  • Ma, X.K., Guo, D.D., Peterson, E.C., Dun, Y., and Li, D.Y. 2016. Structural characterization and anti-aging activity of a novel extracellular polysaccharide from fungus Phellinus sp. in a mammalian system. Food Funct. 7, 3468–3479.

    Article  CAS  PubMed  Google Scholar 

  • Ma, X.K., Ma, Y., Peterson, E.C., Guo, W.Y., Li, Z.Y., and Li, Y. 2018. Structural characterization of two endopolysaccharides from Phellinus sp. and their immunologic effects by intragastric administration in a healthy mammalian model. Food Funct. 9, 1224- 1234.

  • Ma, Y., Mao, D., Geng, L., Wang, Z., and Xu, C. 2013. Production, fractionation, characterization of extracellular polysaccharide from a newly isolated Trametes gibbosa and its hypoglycemic activity. Carbohydr. Polym. 96, 460–465.

    Article  CAS  PubMed  Google Scholar 

  • Ma, X.K., Zhang, H., Peterson, E.C., and Chen, L. 2014. Enhancing exopolysaccharide antioxidant formation and yield from Phellinus species through medium optimization studies. Carbohydr. Polym. ai]107, 214–220.

    Google Scholar 

  • Patra, P., Das, D., Behera, B., Maiti, T.K., and Islam, S.S. 2012. Structure elucidation of an immunoenhancing pectic polysaccharide isolated from aqueous extract of pods of green bean (Phaseolus vulgaris L.). Carbohyd. Polym. 87, 2169–2175.

    Article  CAS  Google Scholar 

  • Perse, M., Injac, R., and Erman, A. 2013. Oxidative status and lipofuscin accumulation in urothelial cells of bladder in aging mice. PLoS One 8, e59638.

  • Sohal, R.S. and Wolfe, L.S. 1986. Lipofuscin: characteristics and significance. Prog. Brain Res. 70, 171–183.

    Article  CAS  PubMed  Google Scholar 

  • Sun, Y., Liang, H., Zhang, X., Tong, H., and Liu, J. 2009. Structural elucidation and immunological activity of a polysaccharide from the fruiting body of Armillaria mellea. Bioresour. Technol. 100, 1860–1863.

    Article  CAS  PubMed  Google Scholar 

  • Terman, A. and Brunk, U.T. 2004. Lipofuscin. Int. J. Biochem. Cell Biol. 36, 1400–1404.

    Article  CAS  PubMed  Google Scholar 

  • Terman, A., Dalen, H., Eaton, J.W., Neuzil, J., and Brunk, U.T. 2004. Aging of cardiac myocytes in culture: oxidative stress, lipofuscin accumulation, and mitochondrial turnover. Ann. N. Y. Acad. Sci. 1019}, 70–77

    Article  CAS  PubMed  Google Scholar 

  • Tian, J.S., Zhang, X., Liu, H., Xiang, H., Xing, J., Zhang, L.Z., and Qin, X.M. 2017. The hematinic effect of Colla corii asini (Ejiao) using 1H-NMR metabolomics coupled with correlation analysis in APH-induced anemic rats. RSC Adv. 7, 8952–8962.

    Article  CAS  Google Scholar 

  • Wasser, S.P. 2011. Current findings, future trends, and unsolved problems in studies of medicinal mushrooms. Appl. Microbiol. Biotechnol. 89, 1323–1332.

    Article  CAS  PubMed  Google Scholar 

  • Wu, S.H., Dai, Y.C., Hattori, T., Yu, T.W., Wang, D.M., Parmasto, E., Chang, H.Y., and Shih, S.Y. 2012. Species clarification for the medicinally valuable ‘sanghuang’ mushroom. Bot. Stud. 53, 135–149.

    Google Scholar 

  • Yang, Y., Ye, L., Zhang, J., Liu, Y., and Tang, Q. 2009. Structural analysis of a bioactive polysaccharide, PISP1, from the medicinal mushroom Phellinus igniarius. Biosci. Biotechnol. Biochem. 73, 134–139.

    Article  CAS  PubMed  Google Scholar 

  • Yang, L.Q. and Zhang, L.M. 2009. Chemical structural and chain conformational characterization of some bioactive polysaccharides isolated from natural sources. Carbohyd. Polym. 76, 349- 361.

  • Yang, Y., Zhang, J., Liu, Y., Tang, Q., Zhao, Z., and Xia, W. 2007. Structural elucidation of a 3-O-methyl-D-galactose-containing neutral polysaccharide from the fruiting bodies of Phellinus igniarius. Carbohydr. Res. 342, 1063–1070.

    Article  CAS  PubMed  Google Scholar 

  • Ye, M., Chen, W.X., Qiu, T., Yuan, R.Y., Ye, Y.W., and Cai, J.M. 2012. Structural characterisation and anti-ageing activity of extracellular polysaccharide from a strain of Lachnum sp. Food Chem. 132, 338–343.

    Article  CAS  PubMed  Google Scholar 

  • Ye, S.F., Hou, Z.Q., and Zhang, Q.Q. 2007. Protective effects of Phellinus linteus extract against iron overload-mediated oxidative stress in cultured rat hepatocytes. Phytother. Res. 21, 948–953.

    Article  PubMed  Google Scholar 

  • Zhao, C., Liao, Z., Wu, X., Liu, Y., Liu, X., Lin, Z., Huang, Y., and Liu, B. 2014. Isolation, purification, and structural features of a polysaccharide from Phellinus linteus and its hypoglycemic effect in alloxan-induced diabetic mice. J. Food Sci. 79, H1002-H1010.

  • Zhou, L.W., Vlasák, J., Decock, C., Assefa, A., Stenlid, J., Abate, D., Wu, S.H., and Dai, Y.C. 2016. Global diversity and taxonomy of the Inonotus linteus complex (Hymenochaetales, Basidiomycota): Sanghuangporus gen. nov., Tropicoporus excentrodendri and T. guanacastensis gen. et spp. nov., and 17 new combinations. Fungal Divers. 77, 335–347.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Fundamental Research Funds for the Central Universities of China (Grant No. GK201702014, GK201603110, and GK201806007) and National Key R&D Program of China (2017YFD0800200).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiao-kui Ma or Jian Liang.

Additional information

Conflicts of Interest

There are no conflicts of interest.

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ma, Xk., She, X., Peterson, E.C. et al. A newly characterized exopolysaccharide from Sanghuangporus sanghuang. J Microbiol. 57, 812–820 (2019). https://doi.org/10.1007/s12275-019-9036-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-019-9036-4

Keywords

Navigation