Skip to main content
Log in

Isolation, cultivation, and genome analysis of proteorhodopsin-containing SAR116-clade strain Candidatus Puniceispirillum marinum IMCC1322

  • Microbial Ecology and Environmental Microbiology
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Strain IMCC1322 was isolated from a surface water sample from the East Sea of Korea. Based on 16S rRNA analysis, IMCC1322 was found to belong to the OCS28 sub-clade of SAR116. The cells appeared as short vibrioids in logarithmic-phase culture, and elongated spirals during incubation with mitomycin or in aged culture. Growth characteristics of strain IMCC1322 were further evaluated based on genomic information; proteorhodopsin (PR), carbon monoxide dehydrogenase, and dimethylsulfoniopropionate (DMSP)-utilizing enzymes. IMCC1322 PR was characterized as a functional retinylidene protein that acts as a light-driven proton pump in the cytoplasmic membrane. However, the PR-dependent phototrophic potential of strain IMCC1322 was only observed under CO-inhibited and nutrient-limited culture conditions. A DMSP-enhanced growth response was observed in addition to cultures grown on C1 compounds like methanol, formate, and methane sulfonate. Strain IMCC1322 cultivation analysis revealed biogeochemical processes characteristic of the SAR116 group, a dominant member of the microbial community in euphotic regions of the ocean. The polyphasic taxonomy of strain IMCC1322 is given as Candidatus Puniceispirillum marinum, and was confirmed by chemotaxonomic tests, in addition to 16S rRNA phylogeny and cultivation analyses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Balashov, S.P. and Lanyi, J.K. 2007. Xanthorhodopsin: Proton pump with a carotenoid antenna. Cell. Mol. Life Sci. 64, 2323–2328.

    Article  CAS  PubMed  Google Scholar 

  • Bano, N. and Hollibaugh, J.T. 2002. Phylogenetic composition of bacterioplankton assemblages from the Arctic Ocean. Appl. Environ. Microbiol. 68, 505–518.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beja, O., Spudich, E.N., Spudich, J.L., Leclerc, M., and DeLong, E.F. 2001. Proteorhodopsin phototrophy in the ocean. Nature 411, 786–789.

    Article  CAS  PubMed  Google Scholar 

  • Britschgi, T.B. and Giovannoni, S.J. 1991. Phylogenetic analysis of a natural marine bacterioplankton population by rRNA gene cloning and sequencing. Appl. Environ. Microbiol. 57, 1707–1713.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chin, B.Y. and Otterbein, L.E. 2009. Carbon monoxide is a poison… to microbes! CO as a bactericidal molecule. Curr. Opin. Pharmacol. 9, 490–500.

    Article  CAS  PubMed  Google Scholar 

  • Cho, J.C. and Giovannoni, S.J. 2004. Cultivation and growth characteristics of a diverse group of oligotrophic marine Gamma-proteobacteria. Appl. Environ. Microbiol. 70, 432–440.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cho, J.C. and Giovannoni, S.J. 2006. Pelagibaca bermudensis gen. nov., sp. nov., a novel marine bacterium within the Roseobacter clade in the order Rhodobacterales. Int. J. Syst. Evol. Microbiol. 56, 855–859.

    Article  CAS  PubMed  Google Scholar 

  • Choo, Y.J., Lee, K., Song, J., and Cho, J.C. 2007. Puniceicoccus vermicola gen. nov., sp. nov., a novel marine bacterium, and description of Puniceicoccaceae fam. nov., Puniceicoccales ord. nov., Opitutaceae fam. nov., Opitutales ord. nov. and Opitutae classis nov. in the phylum ‘Verrucomicrobia’. Int. J. Syst. Evol. Microbiol. 57, 532–537.

    Article  CAS  PubMed  Google Scholar 

  • Connon, S.A. and Giovannoni, S.J. 2002. High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl. Environ. Microbiol. 68, 3878–3885.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Douglas, E. 1967. Carbon monoxide solubilities in sea water. J. Phys. Chem. 71, 1931–1933.

    Article  CAS  PubMed  Google Scholar 

  • Dupont, C.L., Rusch, D.B., Yooseph, S., Lombardo, M.J., Richter, R.A., Valas, R., Novotny, M., Yee-Greenbaum, J., Selengut, J.D., Haft, D.H., et al. 2012. Genomic insights to SAR86, an abundant and uncultivated marine bacterial lineage. ISME J. 6, 1186- 1199.

    Google Scholar 

  • Finn, R.D., Tate, J., Mistry, J., Coggill, P.C., Sammut, S.J., Hotz, H.R., Ceric, G., Forslund, K., Eddy, S.R., Sonnhammer, E.L., et al. 2008. The Pfam protein families database. Nucleic Acids Res. 36, D281- D288.

    Google Scholar 

  • Giovannoni, S.J., Bibbs, L., Cho, J.C., Stapels, M.D., Desiderio, R., Vergin, K.L., Rappe, M.S., Laney, S., Wilhelm, L.J., Tripp, H.J., et al. 2005. Proteorhodopsin in the ubiquitous marine bacterium SAR11. Nature 438, 82–85.

    Article  CAS  PubMed  Google Scholar 

  • Giovannoni, S.J., Britschgi, T.B., Moyer, C.L., and Field, K.G. 1990. Genetic diversity in Sargasso Sea bacterioplankton. Nature 345, 60–63.

    Article  CAS  PubMed  Google Scholar 

  • Giovannoni, S.J. and Rappé, M.S. 2000. Evolution, diversity, and molecular ecology of marine prokaryotes, pp. 47–84. In Kirchman, D.L.E. (ed.), Microbial ecology of the oceans. Wiley-Liss New York, USA.

    Google Scholar 

  • Gómez-Consarnau, L., Akram, N., Lindell, K., Pedersen, A., Neutze, R., Milton, D.L., González, J.M., and Pinhassi, J. 2010. Proteor-hodopsin phototrophy promotes survival of marine bacteria during starvation. PLoS Biol. 8, e1000358.

    Google Scholar 

  • Gómez-Consarnau, L., González, J.M., Coll-Llado, M., Gourdon, P., Pascher, T., Neutze, R., Pedros-Alio, C., and Pinhassi, J. 2007. Light stimulates growth of proteorhodopsin-containing marine Flavobacteria. Nature 445, 210–213.

    Article  CAS  PubMed  Google Scholar 

  • González, J.M., Fernández-Gómez, B., Fernàndez-Guerra, A., Gomez-Consarnau, L., Sánchez, O., Coll-Lladó, M., Del Campo, J., Escudero, L., Rodríguez-Martínez, R., Alonso-Saez, L., et al. 2008. Genome analysis of the proteorhodopsin-containing marine bacterium Polaribacter sp. MED152 (Flavobacteria). Proc. Natl. Acad. Sci. USA 105, 8724–8729.

    Article  PubMed  Google Scholar 

  • Grote, J., Bayindirli, C., Bergauer, K., Carpintero de Moraes, P., Chen, H., D’Ambrosio, L., Edwards, B., Fernandez-Gómez, B., Hamisi, M., Logares, R., et al. 2011. Draft genome sequence of strain HIMB100, a cultured representative of the SAR116 clade of marine Alphaproteobacteria. Stand. Genomic Sci. 5, 269–278.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Johnson, E.T., Baron, D.B., Naranjo, B., Bond, D.R., Schmidt-Dan-nert, C., and Gralnick, J.A. 2010. Enhancement of survival and electricity production in an engineered bacterium by light-driven proton pumping. Appl. Environ. Microbiol. 76, 4123–4129.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jorgensen, J.H., Turnidge, J.D., and Washington, J.A. 1999. Antibacterial susceptibility tests: dilution and disk diffusion method, pp. 1526–1543. In Murray, P.R., Baron, E.J., Pfaller, M.A., Tenover, F.C., and Yolken, R.H. (eds.), Manual of clinical microbiology. American Society for Microbiology, Washington, DC, USA.

    Google Scholar 

  • Kang, I., Oh, H.M., Kang, D., and Cho, J.C. 2013. Genome of a SAR-116 bacteriophage shows the prevalence of this phage type in the oceans. Proc. Natl. Acad. Sci. USA 110, 12343–12348.

    Article  PubMed  Google Scholar 

  • Kim, S.Y., Waschuk, S.A., Brown, L.S., and Jung, K.H. 2008. Screening and characterization of proteorhodopsin color-tuning mutations in Escherichia coli with endogenous retinal synthesis. Bio-chim. Biophys. Acta 1777, 504–513.

    Article  CAS  Google Scholar 

  • King, G.M. and Weber, C.F. 2007. Distribution, diversity and ecology of aerobic CO-oxidizing bacteria. Nat. Rev. Microbiol. 5, 107–118.

    Article  CAS  PubMed  Google Scholar 

  • Ludwig, W., Strunk, O., Westram, R., Richter, L., Meier, H., Yadhu-kumar, Buchner, A., Lai, T., Steppi, S., Jobb, G., et al. 2004. ARB: a software environment for sequence data. Nucleic Acids Res. 32, 1363–1371.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macleod, R.A. 1965. The question of the existence of specific marine bacteria. Bacteriol. Rev. 29, 9–24.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Minnikin, D.E., O’Donnell, A.G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A., and Parlett, J.H. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2, 233–241.

    Article  CAS  Google Scholar 

  • Moran, M.A., Buchan, A., González, J.M., Heidelberg, J.F., Whitman, W.B., Kiene, R.P., Henriksen, J.R., King, G.M., Belas, R., Fuqua, C., et al. 2004. Genome sequence of Silicibacter pomeroyi reveals adaptations to the marine environment. Nature 432, 910–913.

    Article  CAS  PubMed  Google Scholar 

  • Moran, M.A. and Miller, W.L. 2007. Resourceful heterotrophs make the most of light in the coastal ocean. Nat. Rev. Microbiol. 5, 792–800.

    Article  CAS  PubMed  Google Scholar 

  • Mullins, T.D., Britschgi, T.B., Krest, R.L., and Giovannoni, S.J. 1995. Genetic comparisons reveal the same unknown bacterial lineages in Atlantic and Pacific bacterioplankton communities. Limnol. Oceanogr. 40, 148–158.

    Article  CAS  Google Scholar 

  • Noble, R.T. and Fuhrman, J.A. 1998. Use of SYBR Green I for rapid epifluorescence counts of marine viruses and bacteria. Aquat. Microb. Ecol. 14, 113–118.

    Article  Google Scholar 

  • Oh, H.M., Kang, I., Lee, K., Jang, Y., Lim, S.I., and Cho, J.C. 2011. Complete genome sequence of strain IMCC9063, belonging to SAR11 subgroup 3, isolated from the Arctic Ocean. J. Bacteriol. 193, 3379–3380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oh, H.M., Kwon, K.K., Kang, I., Kang, S.G., Lee, J.H., Kim, S.J., and Cho, J.C. 2010. Complete genome sequence of “Candidatus Puni-ceispirillum marinum” IMCC1322, a representative of the SAR116 clade in the Alphaproteobacteria. J. Bacteriol. 192, 3240–3241.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohta, K. 1997. Diurnal variations of carbon monoxide concentration in the equatorial Pacific upwelling region. Oceanogr. Lit. Rev. 44, 1258.

    Google Scholar 

  • Pruesse, E., Quast, C., Knittel, K., Fuchs, B.M., Ludwig, W., Peplies, J., and Glockner, F.O. 2007. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35, 7188–7196.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Purcell, E.M. 1977. Life at low reynolds number. Am. J. Phys. 45, 3–11.

    Article  Google Scholar 

  • Rappé, M.S., Kemp, P.F., and Giovannoni, S.J. 1997. Phylogenetic diversity of marine coastal picoplankton 16S rRNA genes cloned from the continental shelf off Cape Hatteras, North Carolina. Limnol. Oceanogr. 42, 811–826.

    Article  Google Scholar 

  • Reasoner, D.J. and Geldreich, E.E. 1985. A new medium for the enumeration and subculture of bacteria from potable water. Appl. Environ. Microbiol. 49, 1–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reisch, C.R., Moran, M.A., and Whitman, W.B. 2011. Bacterial cata-bolism of dimethylsulfoniopropionate (DMSP). Front. Micro-biol. 2, 172.

    CAS  Google Scholar 

  • Sabehi, G., Loy, A., Jung, K.H., Partha, R., Spudich, J.L., Isaacson, T., Hirschberg, J., Wagner, M., and Beja, O. 2005. New insights into metabolic properties of marine bacteria encoding proteor-hodopsins. PLoS Biol. 3, e273.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schwalbach, M.S., Brown, M., and Fuhrman, J.A. 2005. Impact of light on marine bacterioplankton community structure. Aquat. Microb. Ecol. 39, 235–245.

    Article  Google Scholar 

  • Spring, S., Lunsdorf, H., Fuchs, B.M., and Tindall, B.J. 2009. The photosynthetic apparatus and its regulation in the aerobic gam-maproteobacterium Congregibacter litoralis gen. nov., sp. nov. PLoS One 4, e4866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steindler, L., Schwalbach, M.S., Smith, D.P., Chan, F., and Giovan-noni, S.J. 2011. Energy starved Candidatus Pelagibacter ubique substitutes light-mediated ATP production for endogenous carbon respiration. PLoS One 6, e19725.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stingl, U., Desiderio, R.A., Cho, J.C., Vergin, K.L., and Giovannoni, S.J. 2007a. The SAR92 clade: an abundant coastal clade of cul-turable marine bacteria possessing proteorhodopsin. Appl. Environ. Microbiol. 73, 2290–2296.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stingl, U., Tripp, H.J., and Giovannoni, S.J. 2007b. Improvements of high-throughput culturing yielded novel SAR11 strains and other abundant marine bacteria from the Oregon coast and the Bermuda Atlantic time series study site. ISME J. 1, 361–371.

    Article  CAS  PubMed  Google Scholar 

  • Stubbins, A., Uher, G., Law, C.S., Mopper, K., Robinson, C., and Up-still-Goddard, R.C. 2006. Open-ocean carbon monoxide photoproduction. Deep Sea Res. Part II Top. Stud. Oceanogr. 53, 1695–1705.

    Article  Google Scholar 

  • Swofford, D.L. 2002. PAUP: phylogenetic analysis using parsimony, version 4.0b10. Sinauer Associates, Sunderland, MA, USA.

    Google Scholar 

  • Treusch, A.H., Vergin, K.L., Finlay, L.A., Donatz, M.G., Burton, R.M., Carlson, C.A., and Giovannoni, S.J. 2009. Seasonality and vertical structure of microbial communities in an ocean gyre. ISME J. 3, 1148–1163.

    Article  PubMed  Google Scholar 

  • Vergin, K.L., Rappe, M.S., and Giovannoni, S.J. 2001. Streamlined method to analyze 16S rRNA gene clone libraries. BioTechniques 30, 938–944.

    Article  CAS  PubMed  Google Scholar 

  • Walter, J.M., Greenfield, D., Bustamante, C., and Liphardt, J. 2007. Light-powering Escherichia coli with proteorhodopsin. Proc. Natl. Acad. Sci. USA 104, 2408–2412.

    Article  CAS  PubMed  Google Scholar 

  • Wang, W.W., Sineshchekov, O.A., Spudich, E.N., and Spudich, J.L. 2003. Spectroscopic and photochemical characterization of a deep ocean proteorhodopsin. J. Biol. Chem. 278, 33985–33991.

    Article  CAS  PubMed  Google Scholar 

  • Worden, Z.A. and Not, F. 2008. Ecology and diversity of picoeu-karyotes, pp. 159–205. In Kirchman, D.L.E. (ed.), Microbial ecology of the oceans, 2nd ed. John Wiley & Sons, Inc., New York, USA.

    Chapter  Google Scholar 

  • Yoch, D.C. 2002. Dimethylsulfoniopropionate: Its sources, role in the marine food web, and biological degradation to dimethyl-sulfide. Appl. Environ. Microbiol. 68, 5804–5815.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zafiriou, O.C., Andrews, S.S., and Wang, W. 2003. Concordant estimates of oceanic carbon monoxide source and sink processes in the Pacific yield a balanced global “blue‐water” CO budget. Global Biogeochem. Cycles 17, 1015.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Marine Biotechnology Program of the Korea Institute of Marine Science and Technology Promotion (KIMST) funded by the Ministry of Oceans and Fisheries (MOF) [No. 20180430]; and by the Korea National Research Fund [NRF-2017R1D1A1B03034706].

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hyun-Myung Oh or Jang-Cheon Cho.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, J., Kwon, K.K., Lim, SI. et al. Isolation, cultivation, and genome analysis of proteorhodopsin-containing SAR116-clade strain Candidatus Puniceispirillum marinum IMCC1322. J Microbiol. 57, 676–687 (2019). https://doi.org/10.1007/s12275-019-9001-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-019-9001-2

Keywords

Navigation