Skip to main content
Log in

Antibacterial strategies inspired by the oxidative stress and response networks

  • Review
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Oxidative stress arises from an imbalance between the excessive accumulation of reactive oxygen species (ROS) and a cell’s capability to readily detoxify them. Although ROS are spontaneously generated during the normal oxygen respiration and metabolism, the ROS generation is usually augmented by redox-cycling agents, membrane disrupters, and bactericidal antibiotics, which contributes their antimicrobial bioactivity. It is noted that all the bacteria deploy an arsenal of inducible antioxidant defense systems to cope with the devastating effect exerted by the oxidative stress: these systems include the antioxidant effectors such as catalases and the master regulators such as OxyR. The oxidative stress response is not essential for normal growth, but critical to survive the oxidative stress conditions that the bacterial pathogens may encounter due to the host immune response and/or the antibiotic treatment. Based on these, we here define the ROS-inspired antibacterial strategies to enhance the oxidative stress of ROS generation and/or to compromise the bacterial response of ROS detoxification, by delineating the ROSgenerating antimicrobials and the core concept of the bacterial response against the oxidative stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Åslund, F., Zheng, M., Beckwith, J., and Storz, G. 1999. Regulation of the OxyR transcription factor by hydrogen peroxide and the cellular thiol-disulfide status. Proc. Natl. Acad. Sci. USA 96, 6161–6165.

    Article  PubMed  Google Scholar 

  • Bae, H.W. and Cho, Y.H. 2012. Mutational analysis of Pseudomonas aeruginosa OxyR to define the regions required for peroxide resistance and acute virulence. Res. Microbiol. 163, 55–63.

    Article  PubMed  CAS  Google Scholar 

  • Barber, A.E., Norton, J.P., Spivak, A.M., and Mulvey, M.A. 2013. Urinary tract infections: current and emerging management strategies. Clin. Infect. Dis. 57, 719–724.

    Article  PubMed  PubMed Central  Google Scholar 

  • Brynildsen, M.P., Winkler, J.A., Spina, C.S., MacDonald, I.C., and Collins, J.J. 2013. Potentiating antibacterial activity by predictably enhancing endogenous microbial ROS production. Nat. Biotechnol. 31, 160–165.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Choi, Y.S., Shin, D.H., Chung, I.Y., Kim, S.H., Heo, Y.J., and Cho, Y.H. 2007. Identification of Pseudomonas aeruginosa genes crucial for hydrogen peroxide resistance. J. Microbiol. Biotechnol. 17, 1344–1352.

    PubMed  Google Scholar 

  • Choi, H., Yang, Z., and Weisshaar, J.C. 2015. Single-cell, real-time detection of oxidative stress induced in Escherichia coli by the antimicrobial peptide CM25. Proc. Natl. Acad. Sci. USA 112, 303–310.

    Article  CAS  Google Scholar 

  • Christman, M.F., Storz, G., and Ames, B.N. 1989. OxyR, a positive regulator of hydrogen peroxide-inducible genes in Escherichia coli and Salmonella Typhimurium, is homologous to a family of bacterial regulatory proteins. Proc. Natl. Acad. Sci. USA 86, 3484–3488.

    Article  PubMed  CAS  Google Scholar 

  • Chua, N.G., Zhou, Y.P., Tan, T.T., Lingegowda, P.B., Lee, W., Lim, T.P., Teo, J., Cai, Y., and Kwa, A.L. 2014. Polymyxin B with dual carbapenem combination therapy against carbapenemase-producing Klebsiella pneumoniae. J. Infect. 70, 309–311.

    Article  PubMed  Google Scholar 

  • Cremers, C.M. and Jakob, U. 2013. Oxidant sensing by reversible disulfide bond formation. J. Biol. Chem. 288, 26489–26496.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Crofts, T.S., Gasparrini, A.J., and Dantas, G. 2017. Next-generation approaches to understand and combat the antibiotic resistome. Nat. Rev. Microbiol. 15, 422–434.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cunha, B.A. 1988. Nitrofurantoin-current concepts. Urology 32, 67–71.

    Article  PubMed  CAS  Google Scholar 

  • Dahl, J.U., Gray, M.J., and Jakob, U. 2015. Protein quality control under oxidative stress conditions. J. Mol. Biol. 427, 1549–1563.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Davies, M.J. 2016. Protein oxidation and peroxidation. Biochem. J. 473, 805–825.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dizaj, S.M., Lotfipour, F., Barzegar-Jalali, M., Zarrintan, M.H., and Adibkia, K. 2014. Antimicrobial activity of the metals and metal oxide nanoparticles. Mater. Sci. Eng. C Mater. Biol. Appl. 44, 278–284.

    Article  PubMed  CAS  Google Scholar 

  • Dwyer, D.J., Kohanski, M.A., Hayete, B., and Collins, J.J. 2007. Gyrase inhibitors induce an oxidative damage cellular death pathway in Escherichia coli. Mol. Syst. Biol. 3, 91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Golomb, B.A., Koslik, H.J., and Redd, A.J. 2015. Fluoroquinoloneinduced serious, persistent, multisymptom adverse effects. BMJ Case Rep. 2015, bcr2015209821.

    Google Scholar 

  • Guilhot, C., Jander, G., Martin, N.L., and Beckwith J. 1995. Evidence that the pathway of disulfide bond formation in Escherichia coli involves interactions between the cysteines of DsbB and DsbA. Proc. Natl. Acad. Sci. USA 92, 9895–9899.

    Article  PubMed  CAS  Google Scholar 

  • Haridas, V., Kim, S.O., Nishimura, G., Hausladen, A., Stamler, J.S., and Gutterman, J.U. 2005. Avicinylation (thioesterification): A protein modification that can regulate the response to oxidative and nitrosative stress. Proc. Natl. Acad. Sci. USA 102, 10088–10093.

    Article  PubMed  CAS  Google Scholar 

  • Harris, E.D. 1992. Regulation of antioxidant enzymes. FASEB J. 6, 2675–2683.

    Article  PubMed  CAS  Google Scholar 

  • Helander, I.M., Kilpeläinen, I., and Vaara, M. 1994. Increased substitution of phosphate groups in lipopolysaccharides and lipid A of the polymyxin-resistant pmrA mutants of Salmonella Typhimurium: a 31P-NMR study. Mol. Microbiol. 11, 481–487.

    Article  PubMed  CAS  Google Scholar 

  • Hillion, M. and Antelmann, H. 2015. Thiol-based redox switches in prokaryotes. Biol. Chem. 396, 415–444.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Heo, Y.J., Chung, I.Y., Cho, W.J., Lee, B.Y., Kim, J.H., Choi, K.H., Lee, J.W., Hasset, D.J., and Cho, Y.H. 2010. The major catalase gene (katA) of Pseudomonas aeruginosa PA14 is under both positive and negative control of the global transactivator OxyR in response to hydrogen peroxide. J. Bacteriol. 192, 381–390.

    Article  PubMed  CAS  Google Scholar 

  • Ho, N.T., Desai, D., and Zaman, M.H. 2015. Rapid and specific drug quality testing assay for artemisinin and its derivatives using a luminescent reaction and novel microfluidic technology. Am. J. Trop. Med. Hyg. 92, 24–30.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Imlay, J.A. 2008. Cellular defenses against superoxide and hydrogen peroxide. Annu. Rev. Biochem. 77, 755–776.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Imlay, J.A. 2013. The molecular mechanisms and physiological consequences of oxidative stress: Lessons from a model bacterium. Nat. Rev. Microbiol. 11, 443–454.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Iyanagi, T. and Yamazaki, I. 1970. One-electron-transfer reaction in biochemical systems. Biochim. Biophys. Acta 216, 282–294.

    Article  PubMed  CAS  Google Scholar 

  • Janeczko, M., Demchuk, O.M., Strzelecka, D., Kubiński, K., and Masłyk, M. 2016. New family of antimicrobial agents derived from 1,4-naphthoquinone. Eur. J. Med. Chem. 124, 1019–1025.

    Article  PubMed  CAS  Google Scholar 

  • Jang, H.J., Chung, I.Y., Lim, C., Chung, S., Kim, B.O., Kim, E.S., Kim, S.H., and Cho, Y.H. 2019. Redirecting an anticancer to an antibacterial hit against methicillin-resistant Staphylococcus aureus. Front. Microbiol. in press.

    Book  Google Scholar 

  • Jo, I., Chung, I.Y., Bae, H.W., Kim, J.S., Song, S., Cho, Y.H., and Ha, N.C. 2015. Structural details of the OxyR peroxide-sensing mechanism. Proc. Natl. Acad. Sci. USA 112, 6443–6448.

    Article  PubMed  CAS  Google Scholar 

  • Jo, I., Park, N., Chung, I.Y., Cho, Y.H., and Ha, N.C. 2016. Crystal structures of the disulfide reductase DsbM from Pseudomonas aeruginosa. Acta Crystallogr. D Struct. Biol. 72, 1100–1109.

    Article  PubMed  CAS  Google Scholar 

  • Justo, J.A. and Bosso, J.A. 2015. Adverse reactions associated with systemic polymyxin therapy. Pharmacotherapy 35, 28–33.

    Article  PubMed  CAS  Google Scholar 

  • Kalghatgi, S., Spina, C.S., Costello, J.C., Liesa, M., Morones-Ramirez, J.R., Slomovic, S., Molina, A., Shirihai, O.S., and Collins, J.J. 2013. Bactericidal antibiotics induce mitochondrial dysfunction and oxidative damage in mammalian cells. Sci. Transl. Med. 5, 192ra85.

    Article  CAS  Google Scholar 

  • Keren, I., Wu, Y., Inocencio, J., Mulcahy, L.R., and Lewis, K. 2013. Killing by bactericidal antibiotics does not depend on reactive oxygen species. Science 339, 1213–1216.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S.H., Lee, B.Y., Lau, G.W., and Cho, Y.H. 2009. IscR modulates catalase A (KatA) activity, peroxide resistance, and full virulence of Pseudomonas aeruginosa PA14. J. Microbiol. Biotechnol. 19, 1520–1526.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S.O., Merchant, K., Nudelman, R., Beyer, W.F.Jr., Keng, T., DeAngelo, J., Hausladen, A., and Stamler, J.S. 2002. OxyR: A molecular code for redox-related signaling. Cell 109, 383–396.

    Article  PubMed  CAS  Google Scholar 

  • Kim, B.H., Yoo, J., Park, S.H., Jung, J.K., Cho, H., and Chung, Y. 2006. Synthesis and evaluation of antitumor activity of novel 1,4-naphthoquinone derivatives (IV). Arch. Pharm. Res. 29, 123–130.

    Article  PubMed  CAS  Google Scholar 

  • Kohanski, M.A., Dwyer, D.J., Hayete, B., Lawrence, C.A., and Collins, J.J. 2007. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130, 797–810.

    Article  PubMed  CAS  Google Scholar 

  • Kullik, I., Toledano, M.B., Tartaglia, L.A., and Storz, G. 1995. Mutational analysis of the redox-sensitive transcriptional regulator OxyR: Regions important for oxidation and transcriptional activation. J. Bacteriol. 177, 1275–1284.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lau, G.W., Britigan, B.E., and Hassett, D.J. 2005. Pseudomonas aeruginosa OxyR is required for full virulence in rodent and insect models of infection and for resistance to human neutrophils. Infect. Immun. 73, 2550–2553.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee, J.S., Heo, Y.J., Lee, J.K., and Cho, Y.H. 2005. KatA, the major catalase, is critical for osmoprotection and virulence in Pseudomonas aeruginosa PA14. Infect. Immun. 73, 4399–4403.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li, M., Guan, X., Wang, X., Xu, H., Bai, Y., Zhang, X., and Qiao, M. 2014. DsbM affects aminoglycoside resistance in Pseudomonas aeruginosa by the reduction of OxyR. FEMS Microbiol. Lett. 352, 184–189.

    Article  PubMed  CAS  Google Scholar 

  • Linke, K. and Jakob, U. 2003. Not every disulfide lasts forever: Disulfide bond formation as a redox switch. Antioxid. Redox. Sign. 5, 425–434.

    Article  CAS  Google Scholar 

  • Liu, Y. and Imlay, J.A. 2013. Cell death from antibiotics without the involvement of reactive oxygen species. Science 339, 1210–1213.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu, X., Sun, M., Cheng, Y., Yang, R., Wen, Y., Chen, Z., and Li, J. 2016. OxyR is a key regulator in response to oxidative stress in Streptomyces avermitilis. Microbiology 162, 707–716.

    Article  PubMed  CAS  Google Scholar 

  • Mahlapuu, M., Håkansson, J., Ringstad, L., and Björn, C. 2016. Antimicrobial peptides: An emerging category of therapeutic agents. Front. Cell. Infect. Microbiol. 6, 1–12.

    Article  CAS  Google Scholar 

  • Maisch, T., Baier, J., Franz, B., Maier, M., Landthaler, M., Szeimies, R.M., and Bäumler, W. 2007. The role of singlet oxygen and oxygen concentration in photodynamic inactivation of bacteria. Proc. Natl. Acad. Sci. USA 104, 7223–7228.

    Article  PubMed  CAS  Google Scholar 

  • Maisch, T., Eichner, A., Späth, A., Gollmer, A., König, B., Regensburger, J., and Bäumler, W. 2014. Fast and effective photodynamic inactivation of multiresistant bacteria by cationic riboflavin derivatives. PLoS One 9, e111792.

    Article  CAS  Google Scholar 

  • Marrakchi, M., Liu, X., and Andreescu, S. 2014. Oxidative stress and antibiotic resistance in bacterial pathogens: State of the art, methodologies, and future trends. Adv. Exp. Med. Biol. 806, 483–498.

    Article  PubMed  CAS  Google Scholar 

  • Martinez, P.G., Winston, G.W., Metash-Dickey, C., O’Hara, S.C.M., and Livingstone, D.R. 1995. Nitrofurantoin-stimulated reactive oxygen species production and genotoxicity in digestive gland microsomes and cytosol of the common mussel (Mytilus edulis L.). Toxicol. Appl. Pharmacol. 131, 332–341.

    Article  CAS  Google Scholar 

  • McDonnell, G. and Russell, A.D. 1999. Antiseptics and disinfectants: Activity, action, and resistance. Clin. Microbiol. Rev. 12, 147–179.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Muangphrom, P., Seki, H., Fukushima, E.O., and Muranaka, T. 2016. Artemisinin-based antimalarial research: application of biotechnology to the production of artemisinin, its mode of action, and the mechanism of resistance of Plasmodium parasites. J. Nat. Med. 70, 318–334.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Neill, P.M. and Posner, G.H. 2004. A medicinal chemistry perspective on artemisinin and related endoperoxidases. J. Med. Chem. 47, 2945–2964.

    Article  PubMed  CAS  Google Scholar 

  • Palmer, L.D. and Skaar, E.P. 2016. Transition metals and virulence in bacteria. Annu. Rev. Genet. 50, 67–91.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pryor, W.A. 1986. Oxy-radicals and related species: Their formation, lifetimes, and reactions. Annu. Rev. Physiol. 48, 657–667.

    Article  PubMed  CAS  Google Scholar 

  • Ren, Y., Ma, G., Peng, L., Ren, Y., and Zhang, F. 2015. Active screening of multi-drug resistant bacteria effectively prevent and control the potential infections. Cell. Biochem. Biophys. 71, 1235–1238.

    Article  PubMed  CAS  Google Scholar 

  • Rodrigo-Troyano, A. and Silbia, O. 2017. The respiratory threat posed by multidrug resistant Gram-negative bacteria. Respirology 22, 1288–1299.

    Article  PubMed  Google Scholar 

  • Sampson, T.R., Liu, X., Schroeder, M.R., Kraft, C.S., Burd, E.M., and Weiss, D.S. 2012. Rapid killing of Acinetobacter baumannii by polymyxins is mediated by a hydroxyl radical death pathway. Antimicrob. Agents Chemother. 56, 5642–5649.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sasaki, K., Abe, H., and Yoshizaki, F. 2002. In vitro antifungal activity of naphthoquinone derivatives. Biol. Pharm. Bull. 25, 669–670.

    Article  PubMed  CAS  Google Scholar 

  • Sato, H. and Feix, J.B. 2006. Peptide-membrane interactions and mechanisms of membrane destruction by amphipathic α-helical antimicrobial peptides. Biochim. Biophys. Acta 1758, 1245–1256.

    Article  PubMed  CAS  Google Scholar 

  • Scaiano, J.C., Lissi, E.A., and Stewart, L.C. 1984. Quenching of triplet macromolecules by small molecules. The role of energy migration. J. Am. Chem. Soc. 106, 1539–1542.

    Article  CAS  Google Scholar 

  • Schlievert, P.M., Merriman, J.A., Salgado-Pabón, W., Mueller, E.A., Spaulding, A.R., Vu, B.G., Chuang-Smith, O.N., Kohler, P.L., and Kirby, J.R. 2013. Menaquinone analogs inhibit growth of bacterial pathogens. Antimicrob. Agents Chemother. 57, 5432–5437.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Seaver, L.C. and Imlay, J.A. 2001. Hydrogen peroxide fluxes and compartmentalization inside growing Escherichia coli. J. Bacteriol. 183, 7182–7189.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shukla, V., Mishra, S.K., and Pant, H.C. 2011. Oxidative stress in neurodegeneration. Adv. Pharmacol. Sci. 2011, 1–13.

    Article  CAS  Google Scholar 

  • Sies, H., Berndt, C., and Jones, E.P. 2017. Oxidative stress. Annu. Rev. Biochem. 86, 715–748.

    Article  PubMed  CAS  Google Scholar 

  • Tam, V.H., Schilling, A.N., Vo, G., Kabbara, S., Kwa, A.L., Wiederhold, N.P., and Lewis, R.E. 2005. Pharmacodynamics of polymyxin B against Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 49, 3624–3630.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Teramoto, H., Inui, M., and Yukawa, H. 2013. OxyR acts as a transcriptional repressor of hydrogen peroxide-inducible antioxidant genes in Corynebacterium glutamicum R. FEBS J. 280, 3298–3312.

    Article  PubMed  CAS  Google Scholar 

  • Toledano, M.B., Kullik, I., Trinh, F., Baird, P.T., Schneider, T.D., and Storz, G. 1994. Redox-dependent shift of OxyR-DNA contacts along an extended DNA-binding site: a mechanism for differential promotor selection. Cell 78, 897–909.

    Article  PubMed  CAS  Google Scholar 

  • Tomasz, M. 1976. H2O2 generation during the redox cycling of mitomycin C and DNA-bound mitomycin C. Chem. Biol. Interact. 13, 89–97.

    Article  PubMed  CAS  Google Scholar 

  • Vatansever, F., de Melo, W.C.M.A., Avici, P., Vecchio, D., Sadasivam, M., Gupta, A., Chandran, R., Karimi, M., Parizotto, N.A., Yin, R., et al. 2013. Antimicrobial strategies centered around reactive oxygen species–bactericidal antibiotics, photodynamic therapy, and beyond. FEMS Microbiol. Rev. 37, 955–989.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang, X., Mukhopadhyay, P., Wood, M.J., Outten, F.W., Opdyke, J.A., and Storz, G. 2006. Mutational analysis to define an activating region on the redox-sensitive transcriptional regulator OxyR. J. Bacteriol. 188, 8335–8342.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wei, Q., Minh, P.N., Dötsch, A., Hildebrand, F., Panmanee, W., Elfarash, A., Schulz, S., Plaisance, S., Charlier, D., Hassett, D., et al. 2012. Global regulation of gene expression by OxyR in an important human opportunistic pathogen. Nucleic Acids Res. 40, 4320–4333.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • West, A.P., Brodsky, I.E., Rahner, C., Woo, D.K., Erdjument-Bromage, H., Tempst, P., Walsh, M.C., Choi, Y., Shadel, G.S., and Ghosh, S. 2011. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472, 476–480.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yan, Z.Q., Wang, D.D., Ding, L., Cui, H.Y., Jin, H., Yang, X.Y., Yang, J.S., and Qin, B. 2015. Mechanism of artemisinin phytotoxicity action: induction of reactive oxygen species and cell death in lettuce seedlings. Plant Physiol. Biochem. 88, 53–59.

    Article  PubMed  CAS  Google Scholar 

  • Youns, M., Efferth, T., Reichling, J., Fellenberg, K., Bauer, A., and Hoheisel, J.D. 2009. Gene expression profiling identifies novel key players involved in the cytotoxic effect of artesunate on pancreatic cancer cells. Biochem. Pharmacol. 78, 273–283.

    Article  PubMed  CAS  Google Scholar 

  • Zheng, M., Åslund, F., and Storz, G. 1998. Activation of the OxyR transcription factor by reversible disulfide bond formation. Science 279, 1718–1721.

    Article  PubMed  CAS  Google Scholar 

  • Zhou, H.J., Wang, W.Q., Wu, G.D., Lee, J., and Li, A. 2007. Artesunate inhibits angiogenesis and downregulates vascular endothelial growth factor expression in chronic myeloid leukemia K562 cells. Vascul. Pharmacol. 47, 131–138.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to You-Hee Cho.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S.Y., Park, C., Jang, HJ. et al. Antibacterial strategies inspired by the oxidative stress and response networks. J Microbiol. 57, 203–212 (2019). https://doi.org/10.1007/s12275-019-8711-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-019-8711-9

Keywords

Navigation