Skip to main content
Log in

Ribosome dependence of persister cell formation and resuscitation

  • Review
  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

Since most bacterial cells are starving, they must enter a resting stage. Persister is the term used for metabolically-dormant cells that are not spores, and these cells arise from stress such as that from antibiotics as well as that from starvation. Because of their lack of metabolism, persister cells survive exposure to multiple stresses without undergoing genetic change; i.e., they have no inherited phenotype and behave as wild-type cells once the stress is removed and nutrients are presented. In contrast, mutations allow resistant bacteria to grow in the presence of antibiotics and slow growth allows tolerant cells to withstand higher concentrations of antibiotics; hence, there are three closely-related phenotypes: persistent, resistant, and tolerant. In addition, since dormancy is so prevalent, persister cells must have a means for resuscitating (since so many cells should obtain this resting state). In this review, we focus on what is known about the formation and resuscitation of persister cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aizenman, E., Engelberg-Kulka, H., and Glaser, G. 1996. An Escherichia coli chromosomal “addiction module” regulated by guanosine 3,5-bispyrophosphate: a model for programmed bacterial cell death. Proc. Natl. Acad. Sci. USA 93, 6059–6063.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Amato, S.M. and Brynildsen, M.P. 2014. Nutrient transitions are a source of persisters in Escherichia coli biofilms. PLoS One 9, e93110.

    Article  CAS  Google Scholar 

  • Amato, S.M. and Brynildsen, M.P. 2015. Persister heterogeneity arising from a single metabolic stress. Curr. Biol. 25, 2090–2098.

    Article  PubMed  CAS  Google Scholar 

  • Amato, S.M., Orman, M.A., and Brynildsen, M.P. 2013. Metabolic control of persister formation in Escherichia coli. Mol. Cell 50, 475–487.

    Article  PubMed  CAS  Google Scholar 

  • Ayrapetyan, M., Williams, T.C., and Oliver, J.D. 2015. Bridging the gap between viable but non-culturable and antibiotic persistent bacteria. Trends Microbiol. 23, 7–13.

    Article  PubMed  CAS  Google Scholar 

  • Balaban, N.Q., Merrin, J., Chait, R., Kowalik, L., and Leibler, S. 2004. Bacterial persistence as a phenotypic switch. Science 305, 1622–1625.

    Article  PubMed  CAS  Google Scholar 

  • Bigger, J.W. 1944. Treatment of Staphylococcal infections with penicillin by intermittent sterilisation. Lancet 244, 497–500.

    Article  Google Scholar 

  • Blower, T.R., Pei, X.Y., Short, F.L., Fineran, P.C., Humphreys, D.P., Luisi, B.F., and Salmond, G.P.C. 2011. A processed noncoding RNA regulates an altruistic bacterial antiviral system. Nat. Struct. Mol. Biol. 18, 185–190.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brown, B.L., Grigoriu, S., Kim, Y., Arruda, J.M., Davenport, A., Wood, T.K., Peti, W., and Page, R. 2009. Three dimensional structure of the MqsR:MqsA complex: A novel TX pair comprised of a toxin homologous to RelE and an antitoxin with unique properties. PLoS Pathog. 5, e1000706.

    Article  CAS  Google Scholar 

  • Chowdhury, N., Kwan, B.W., and Wood, T.K. 2016. Persistence increases in the absence of the alarmone guanosine tetraphosphate by reducing cell growth. Sci. Rep. 6, 20519.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cui, P., Niu, H., Shi, W., Zhang, S., Zhang, W., and Zhang, Y. 2018. Identification of genes involved in bacteriostatic antibiotic-induced persister formation. Front. Microbiol. 9, 413.

    Article  PubMed  PubMed Central  Google Scholar 

  • Culviner, P.H. and Laub, M.T. 2018. Global analysis of the E. coli toxin MazF reveals widespread cleavage of mRNA and the inhibition of rRNA maturation and ribosome biogenesis. Mol. Cell 70, 868–880.e10.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dalebroux, Z.D. and Swanson, M.S. 2012. ppGpp: magic beyond RNA polymerase. Nat. Rev. Microbiol. 10, 203–212.

    PubMed  CAS  Google Scholar 

  • Defrain, V., Fauvart, M., and Michiels, J. 2018. Fighting bacterial persistence: Current and emerging anti-persister strategies and therapeutics. Drug Resist. Updat. 38, 12–26.

    Article  Google Scholar 

  • Dörr, T., Lewis, K., and Vulić, M. 2009. SOS response induces persistence to fluoroquinolones in Escherichia coli. PLoS Genet. 5, e1000760.

    Article  CAS  Google Scholar 

  • Dörr, T., Vulić, M., and Lewis, K. 2010. Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol. 8, e1000317.

    Article  CAS  Google Scholar 

  • Epstein, S.S. 2009. Microbial awakenings. Nature 457, 1083.

    Google Scholar 

  • Gerdes, K. 2000. Toxin-antitoxin modules may regulate synthesis of macromolecules during nutritional stress. J. Bacteriol. 182, 561–572.

    PubMed  CAS  Google Scholar 

  • Gerdes, K., Rasmussen, P.B., and Molin, S. 1986. Unique type of plasmid maintenance function: postsegregational killing of plasmidfree cells. Proc. Natl. Acad. Sci. USA 83, 3116–3120.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • González Barrios, A.F., Zuo, R., Hashimoto, Y., Yang, L., Bentley, W.E., and Wood, T.K. 2006. Autoinducer 2 controls biofilm formation in Escherichia coli through a novel motility quorum-sensing regulator (MqsR, B3022). J. Bacteriol. 188, 305–316.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Grassi, L., Di Luca, M., Maisetta, G., Rinaldi, A.C., Esin, S., Trampuz, A., and Batoni, G. 2017. Generation of persister cells of Pseudomonas aeruginosa and Staphylococcus aureus by chemical treatment and evaluation of their susceptibility to membrane-targeting agents. Front. Microbiol. 8, 1917.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ha, D.G. and O’Toole, G.A. 2015. c-di-GMP and its effects on biofilm formation and dispersion: a Pseudomonas aeruginosa review. Microbiol. Spectr. 3, MB-0003-2014.

    Google Scholar 

  • Hansen, S., Lewis, K., and Vulić, M. 2008. Role of global regulators and nucleotide metabolism in antibiotic tolerance in Escherichia coli. Antimicrob. Agents Chemother. 52, 2718–2726.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harms, A., Maisonneuve, E., and Gerdes, K. 2016. Mechanisms of bacterial persistence during stress and antibiotic exposure. Science 354, aaf4268.

    Book  Google Scholar 

  • Harrison, J.J., Wade, W.D., Akierman, S., Vacchi-Suzzi, C., Stremick, C.A., Turner, R.J., and Ceri, H. 2009. The chromosomal toxin gene yafQ is a determinant of multidrug tolerance for Escherichia coli growing in a biofilm. Antimicrob. Agents Chemother. 53, 2253–2258.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hobby, G.L., Meyer, K., and Chaffee, E. 1942. Observations on the mechanism of action of penicillin. Exp. Biol. Med. 50, 281–285.

    Article  CAS  Google Scholar 

  • Hong, S.H., Wang, X., O’Connor, H.F., Benedik, M.J., and Wood, T.K. 2012. Bacterial persistence increases as environmental fitness decreases. Microbial. Biotechnol. 5, 509–522.

    Article  CAS  Google Scholar 

  • Hu, Y., Kwan, B.W., Osbourne, D.O., Benedik, M.J., and Wood, T.K. 2015. Toxin YafQ increases persister cell formation by reducing indole signalling. Environ. Microbiol. 17, 1275–1285.

    Article  PubMed  CAS  Google Scholar 

  • Hu, Y.M. and Coates, A.R.M. 2005. Transposon mutagenesis identifies genes which control antimicrobial drug tolerance in stationary-phase Escherichia coli. FEMS Microbiol. Lett. 243, 117–124.

    Article  PubMed  CAS  Google Scholar 

  • Jõers, A., Kaldalu, N., and Tenson, T. 2010. The frequency of persisters in Escherichia coli reflects the kinetics of awakening from dormancy. J. Bacteriol. 192, 3379–3384.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Keren, I., Kaldalu, N., Spoering, A., Wang, Y., and Lewis, K. 2004. Persister cells and tolerance to antimicrobials. FEMS Microbiol. Lett. 230, 13–18.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J.S., Chowdhury, N., Yamasaki, R., and Wood, T.K. 2018a. Viable but non-culturable and persistence describe the same bacterial stress state. Environ. Microbiol. 20, 2038–2048.

    CAS  PubMed  Google Scholar 

  • Kim, Y. and Wood, T.K. 2010. Toxins Hha and CspD and small RNA regulator Hfq are involved in persister cell formation through MqsR in Escherichia coli. Biochem. Biophys. Res. Commun. 391, 209–213.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J.S. and Wood, T.K. 2016. Persistent persister misperceptions. Front. Microbiol. 7, 2134.

    PubMed  PubMed Central  Google Scholar 

  • Kim, Y., Wang, X., Ma, Q., Zhang, X.S., and Wood, T.K. 2009. Toxinantitoxin systems in Escherichia coli influence biofilm formation through YjgK (TabA) and fimbriae. J. Bacteriol. 191, 1258–1267.

    Article  PubMed  CAS  Google Scholar 

  • Kim, J.S., Yamasaki, R., Song, S., Zhang, W., and Wood, T.K. 2018b. Single cell observations show persister cells wake based on ribosome content. Environ. Microbiol. 20, 2085–2098.

    CAS  PubMed  Google Scholar 

  • Kolodkin-Gal, I., Hazan, R., Gaathon, A., Carmeli, S., and Engelberg-Kulka, H. 2007. A linear pentapeptide is a quorum-sensing factor required for mazEF-mediated cell death in Escherichia coli. Science 318, 652–655.

    Article  PubMed  CAS  Google Scholar 

  • Korch, S.B., Henderson, T.A., and Hill, T.M. 2003. Characterization of the hipA7 allele of Escherichia coli and evidence that high persistence is governed by (p)ppGpp synthesis. Mol. Microbiol. 50, 1199–1213.

    Article  PubMed  CAS  Google Scholar 

  • Kwan, B.W., Valenta, J.A., Benedik, M.J., and Wood, T.K. 2013. Arrested protein synthesis increases persister-like cell formation. Antimicrob. Agents Chemother. 57, 1468–1473.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lee, J.H., Kim, Y.G., Gwon, G., Wood, T.K., and Lee, J. 2016. Halogenated indoles eradicate bacterial persister cells and biofilms. AMB Express 6, 123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li, L., Mendis, N., Trigui, H., Oliver, J.D., and Faucher, S.P. 2014. The importance of the viable but non-culturable state in human bacterial pathogens. Front. Microbiol. 5, 258.

    PubMed  PubMed Central  Google Scholar 

  • Luidalepp, H., Jõers, A., Kaldalu, N., and Tenson, T. 2011. Age of inoculum strongly influences persister frequency and can mask effects of mutations implicated in altered persistence. J. Bacteriol. 193, 3598–3605.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Maisonneuve, E., Castro-Camargo, M., and Gerdes, K. 2013. (p)ppGpp controls bacterial persistence by stochastic induction of toxinantitoxin activity. Cell 154, 1140–1150.

    CAS  Google Scholar 

  • Maisonneuve, E., Castro-Camargo, M., and Gerdes, K. 2018. Retraction notice to: (p)ppGpp controls bacterial persistence by stochastic induction of toxin-antitoxin activity. Cell 172, 1135.

    Article  PubMed  CAS  Google Scholar 

  • Maisonneuve, E., Shakespeare, L.J., Jørgensen, M.G., and Gerdes, K. 2011. Bacterial persistence by RNA endonucleases. Proc. Natl. Acad. Sci. USA 108, 13206–13211.

    Article  PubMed  PubMed Central  Google Scholar 

  • Martins, P.M.M., Merfa, M.V., Takita, M.A., and De Souza, A.A. 2018. Persistence in phytopathogenic bacteria: Do we know enough? Front. Microbiol. 9, 1099.

    Article  PubMed  PubMed Central  Google Scholar 

  • Moyed, H.S. and Bertrand, K.P. 1983. hipA, a newly recognized gene of Escherichia coli K-12 that affects frequency of persistence after inhibition of murein synthesis. J. Bacteriol. 155, 768–775.

    PubMed  CAS  Google Scholar 

  • Mulcahy, L.R., Burns, J.L., Lory, S., and Lewis, K. 2010. Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis. J. Bacteriol. 192, 6191–6199.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Narayanaswamy, V.P., Keagy, L.L., Duris, K., Wiesmann, W., Loughran, A.J., Townsend, S.M., and Baker, S. 2018. Novel glycopolymer eradicates antibiotic-and CCCP-induced persister cells in Pseudomonas aeruginosa. Front. Microbiol. 9, 1724.

    Article  PubMed  PubMed Central  Google Scholar 

  • Nariya, H. and Inouye, M. 2008. MazF, an mRNA Interferase, mediates programmed cell death during multicellular Myxococcus development. Cell 132, 55–66.

    Article  PubMed  CAS  Google Scholar 

  • Nguyen, D., Joshi-Datar, A., Lepine, F., Bauerle, E., Olakanmi, O., Beer, K., McKay, G., Siehnel, R., Schafhauser, J., Wang, Y., et al. 2011. Active starvation responses mediate antibiotic tolerance in biofilms and nutrient-limited bacteria. Science 334, 982–986.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • O’Toole, G., Kaplan, H.B., and Kolter, R. 2000. Biofilm formation as microbial development. Annu. Rev. Microbiol. 54, 49–79.

    Article  PubMed  Google Scholar 

  • Ogura, T. and Hiraga, S. 1983. Mini-F plasmid genes that couple host cell division to plasmid proliferation. Proc. Natl. Acad. Sci. USA 80, 4784–4788.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Orman, M.A. and Brynildsen, M.P. 2015. Inhibition of stationary phase respiration impairs persister formation in E. coli. Nat. Commun. 6, 7983.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Osbourne, D.O., Soo, V.W.C., Konieczny, I., and Wood, T.K. 2014. Polyphosphate, cyclic AMP, guanosine tetraphosphate, and c-di-GMP reduce in vitro Lon activity. Bioengineered 5, 264–268.

    Article  PubMed  PubMed Central  Google Scholar 

  • Pecota, D.C. and Wood, T.K. 1996. Exclusion of T4 Phage by the hok/sok killer locus from plasmid R1. J. Bacteriol. 178, 2044–2050.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pu, Y., Li, Y., Jin, X., Tian, T., Ma, Q., Zhao, Z., Lin, S.Y., Chen, Z., Li, B., Yao, G., et al. 2019. ATP-dependent dynamic protein aggregation regulates bacterial dormancy depth critical for antibiotic tolerance. Mol. Cell 73, 143–156.

    Article  PubMed  CAS  Google Scholar 

  • Pu, Y., Zhao, Z., Li, Y., Zou, J., Ma, Q., Zhao, Y., Ke, Y., Zhu, Y., Chen, H., Baker, M.A.B., et al. 2016. Enhanced efflux activity facilitates drug tolerance in dormant bacterial cells. Mol. Cell 62, 284–294.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ramisetty, B.C.M., Ghosh, D., Roy Chowdhury, M., and Santhosh, R.S. 2016. What is the link between stringent response, endoribonuclease encoding type II toxin-antitoxin systems and persistence? Front. Microbiol. 7, 1882.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ren, D., Bedzyk, L.A., Thomas, S.M., Ye, R.W., and Wood, T.K. 2004. Gene expression in Escherichia coli biofilms. Appl. Microbiol. Biotechnol. 64, 515–524.

    Article  PubMed  CAS  Google Scholar 

  • Schmidt, T.M. 2012. Bacteria battling for survival, pp. 59–64. In Kolter, R. and Maloy, S. (eds.), Microbes and evolution: the world that Darwin never saw. American Society of Microbiology, Washington, D.C., USA.

    Google Scholar 

  • Schumacher, M.A., Balani, P., Min, J., Chinnam, N.B., Hansen, S., Vulić, M., Lewis, K., and Brennan, R.G. 2015. HipBA-promoter structures reveal the basis of heritable multidrug tolerance. Nature 524, 59–64.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Shah, D., Zhang, Z., Khodursky, A., Kaldalu, N., Kurg, K., and Lewis, K. 2006. Persisters: a distinct physiological state of E. coli. BMC Microbiol. 6, 53.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shan, Y., Lazinski, D., Rowe, S., Camilli, A., and Lewis, K. 2015. Genetic basis of persister tolerance to aminoglycosides in Escherichia coli. MBio 6, e00078-15.

    Article  CAS  Google Scholar 

  • Shimada, T., Yoshida, H., and Ishihama, A. 2013. Involvement of cyclic AMP receptor protein in regulation of the rmf gene encoding the ribosome modulation factor in Escherichia coli. J. Bacteriol. 195, 2212–2219.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Song, S. and Wood, T.K. 2018. Post-segregational killing and phage inhibition are not mediated by cell death through toxin/antitoxin systems. Front. Microbiol. 9, 814.

    Article  PubMed  PubMed Central  Google Scholar 

  • Spoering, A.L. and Lewis, K. 2001. Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J. Bacteriol. 183, 6746–6751.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Spoering, A.L., Vulić, M., and Lewis, K. 2006. GlpD and PlsB participate in persister cell formation in Escherichia coli. J. Bacteriol. 188, 5136–5144.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sulaiman, J.E., Hao, C., and Lam, H. 2018. Specific enrichment and proteomics analysis of Escherichia coli persisters from rifampin pretreatment. J. Proteome Res. 17, 3984–3996.

    Article  PubMed  CAS  Google Scholar 

  • Tkhilaishvili, T., Lombardi, L., Klatt, A.B., Trampuz, A., and Di Luca, M. 2018. Bacteriophage Sb-1 enhances antibiotic activity against biofilm, degrades exopolysaccharide matrix and targets persisters of Staphylococcus aureus. Int. J. Antimicrob. Agents 52, 842–853.

    Article  PubMed  CAS  Google Scholar 

  • Van den Bergh, B., Fauvart, M., and Michiels, J. 2017. Formation, physiology, ecology, evolution and clinical importance of bacterial persisters. FEMS Microbiol. Rev. 41, 219–251.

    Article  PubMed  CAS  Google Scholar 

  • Van Melderen, L. and Wood, T.K. 2017. Commentary: What is the link between stringent response, endoribonuclease encoding type II toxin-antitoxin systems and persistence? Front. Microbiol. 8, 191.

    PubMed  PubMed Central  Google Scholar 

  • Wang, X., Kim, Y., Hong, S.H., Ma, Q., Brown, B.L., Pu, M., Tarone, A.M., Benedik, M.J., Peti, W., Page, R., et al. 2011. Antitoxin MqsA helps mediate the bacterial general stress response. Nat. Chem. Biol. 7, 359–366.

    PubMed  CAS  Google Scholar 

  • Wang, X., Lord, D.M., Hong, S.H., Peti, W., Benedik, M.J., Page, R., and Wood, T.K. 2013. Type II toxin/antitoxin MqsR/MqsA controls type V toxin/antitoxin GhoT/GhoS. Environ. Microbiol. 15, 1734–1744.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu, H.S., Roberts, N., Singleton, F.L., Attwell, R.W., Grimes, D.J., and Colwell, R.R. 1982. Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microb. Ecol. 8, 313–323.

    Article  PubMed  CAS  Google Scholar 

  • Yamaguchi, Y., Park, J.H., and Inouye, M. 2009. MqsR, a crucial regulator for quorum sensing and biofilm formation, is a GCUspecific mRNA interferase in Escherichia coli. J. Biol. Chem. 284, 28746–28753.

    Article  PubMed  PubMed Central  Google Scholar 

  • Yamasaki, R., Song, S., Benedik, M., and Wood, T.K. 2018. Rousing persisters through ribosome resuscitation and rescue. bioRxiv Doi: 10.1101/486985.

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas K. Wood.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wood, T.K., Song, S. & Yamasaki, R. Ribosome dependence of persister cell formation and resuscitation. J Microbiol. 57, 213–219 (2019). https://doi.org/10.1007/s12275-019-8629-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-019-8629-2

Keywords

Navigation