Abstract
Outer membrane vesicles (OMVs) are nanostructures of 20–200 nm diameter deriving from the surface of several Gram-negative bacteria. OMVs are emerging as shuttles involved in several mechanisms of communication and environmental adaptation. In this work, OMVs were isolated and characterized from Novosphingobium sp. PP1Y, a Gram-negative non-pathogenic microorganism lacking LPS on the outer membrane surface and whose genome was sequenced and annotated. Scanning electron microscopy performed on samples obtained from a culture in minimal medium highlighted the presence of PP1Y cells embedded in an extracellular matrix rich in vesicular structures. OMVs were collected from the exhausted growth medium during the mid-exponential phase, and purified by ultracentrifugation on a sucrose gradient. Atomic force microscopy, dynamic light scattering and nanoparticle tracking analysis showed that purified PP1Y OMVs had a spherical morphology with a diameter of ca. 150 nm and were homogenous in size and shape. Moreover, proteomic and fatty acid analysis of purified OMVs revealed a specific biochemical “fingerprint”, suggesting interesting details concerning their biogenesis and physiological role. Moreover, these extracellular nanostructures do not appear to be cytotoxic on HaCaT cell line, thus paving the way to their future use as novel drug delivery systems.
This is a preview of subscription content, access via your institution.
References
Allison, D.P., Mortensen, N.P., Sullivan, C.J., and Doktycz, M.J. 2010. Atomic force microscopy of biological samples. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2, 618–634.
Altenburger, R. and Kissel, T. 1999. The human keratinocytes cell line HaCaT: An in vitro cell culture model for keratinocyte testosterone metabolism. Pharm. Res. 16, 766.
Bacia, K., Schwille, P., and Kurzchalia, T. 2005. Sterol structure determines the separation of phases and the curvature of the liquid-ordered phase in model membranes. Proc. Natl. Acad. Sci. USA 102, 3272–3277.
Bauman, S.J. and Kuehn, M.J. 2006. Purification of outer membrane vesicles from Pseudomonas aeruginosa and their activation of an IL-8 response. Microbes Infect. 8, 2400–2408.
Beate, V., Llorente, A., Neurauter, A., Phuyal, S., Kierulf, B., Kierulf, P., Skotland, T., Sandvig, K., Haug, K.B.F., and Øvstebø, R. 2017. Size and concentration analyses of extracellular vesicles by nano-particle tracking analysis: a variation study. J. Extracell. Vesicles 6, 1344087.
Biller, S.J., Schubotz, F., Roggensack, S.E., Thompson, A.W., Summons, R.E., and Chisholm, S.W. 2014. Bacterial vesicles in marine ecosystems. Science 343, 183–186.
Choi, C.W., Park, E.C., Yun, S.H., Lee, S.Y., Lee, Y.G., Hong, Y., Park, K.R., Kim, S.H., Kim, G.H., and Kim, S.I. 2014. Proteomic characterization of the outer membrane vesicle of Pseudomonas putida KT2440. J. Proteome Res. 13, 4298–4309.
Coppotelli, B.M., Ibarrolaza, A., Dias, R.L., Del Panno, M.T., Berthe-Corti, L., and Morelli, I.S. 2010. Study of the degradation activity and the strategies to promote the bioavailability of phenanthrene by Sphingomonas paucimobilis strain 20006FA. Microb. Ecol. 59, 266–276.
D’Argenio, V., Notomista, E., Petrillo, M., Cantiello, P., Cafaro, V., Izzo, V., Naso, B., Cozzuto, L., Durante, L., Troncone, L., et al. 2014. Complete sequencing of Novosphingobium sp. PP1Y reveals a biotechnologically meaningful metabolic pattern. BMC Genomics 15, 384–397.
De Castro, C., Parrilli, M., Holst, O., and Molinaro, A. 2010. Microbe-associated molecular patterns in innate immunity: Extraction and chemical analysis of Gram-negative bacterial lipopolysaccharides. Methods Enzymol. 480, 89–115.
De Lise, F., Mensitieri, F., Tarallo, V., Ventimiglia, N., Vinciguerra, R., Tramice, A., Marchetti, R., Pizzo, E., Notomista, E., Cafaro, V., et al. 2016. RHA-P: isolation, expression and characterization of a novel α-L-rhamnosidase from Novosphingobium sp. PP1Y. J. Mol. Cat. B Enzym. 134, 136–147.
DellaGreca, M., Zarrelli, A., Fergola, P., Cerasuolo, M., Pollio, A., and Pinto, G. 2010. Fatty acids released by Chlorella vulgaris and their role in interference with Pseudokirchneriella subcapitata: Experiments and modelling. J. Chem. Ecol. 36, 339–349.
Denich, T.J., Beaudette, L.A., Lee, H., and Trevors, J.T. 2003. Effect of selected environmental and physicochemical factors on bacterial cytoplasmic membranes. J. Microbiol. Methods 52, 149–182.
Eddy, J.L., Gielda, L.M., Caufield, A.J., Rangel, S.M., and Lathem, W.W. 2014. Production of outer membrane vesicles by the plague pathogen Yersinia pestis. PLoS One 9, e107002.
Frias, A., Manresa, A., de Oliveira, E., López-Iglesias, C., and Mercade, E. 2010. Membrane vesicles: a common feature in the extracellular matter of cold-adapted antarctic bacteria. Microb. Ecol. 59, 476–486.
Gilewicz, M., Ni’matuzahroh, Nadalig, T., Budzinski, H., Doumenq, P., Michotey, V., and Bertrand, J.C. 1997. Isolation and characterization of a marine bacterium capable of utilizing 2-methylphenanthrene. Appl. Microbiol. Biotechnol. 48, 528–533.
Grande, R., Celia, C., Mincione, G., Stringaro, A., Marzio, L.D., Colone, M., Di Marcantonio, M.C., Savino, L., Puca, V., Santoliquido, R., et al. 2017. Detection and physicochemical characterization of membrane vesicles (MVs) of Lactobacillus reuteri DSM 17938. Front. Microbiol. 8, 1040.
Gujrati, V., Kim, S., Kim, S.H., Min, J.J., Choy, H.E., Kim, S.C., and Jon, S. 2014. Bioengineered bacterial outer membrane vesicles as cell-specific drug-delivery vehicles for cancer therapy. ACS Nano 8, 1525–1537.
Hbb, R.I., Fields, J.A., Burns, C.M., and Thompson, S.A. 2009. Evaluation of procedures for outer membrane isolation from Campylobacter jejuni. Microbiology 155, 979–988.
Hellman, J., Loiselle, P.M., Zanzot, E.M., Allaire, J.E., Tehan, M.M., Boyle, L.A., Kurnick, J.T., and Warren, H.S. 2000. Release of Gram-negative outer-membrane proteins into human serum and septic rat blood and their interactions with immunoglobulin in antiserum to Escherichia coli J5. J. Infect. Dis. 181, 1034–1043.
Heramb, M.K. and Medicharla, V.J. 2014. Biogenesis and multifaceted roles of outer membrane vesicles from Gram-negative bacteria. Microbiology 160, 2109–2121.
Izzo, V., Tedesco, P., Notomista, E., Pagnotta, E., Di Donato, A., Trincone, A., and Tramice, A. 2014. a-Rhamnosidase activity in the marine isolate Novosphingobium sp. PP1Y and its use in the bioconversion of flavonoids. J. Mol. Catal. B: Enzym. 105, 95–103.
Johnsen, A.R. and Karlson, U. 2004. Evaluation of bacterial strategies to promote the bioavailability of polycyclic aromatic hydrocarbons. Appl. Microbiol. Biotechnol. 63, 452–459.
Kim, G.H., Choi, C.W., Park, E.C., Lee, S.Y., and Kim, S.I. 2014. Isolation and proteomic characterization of bacterial extracellular membrane vesicles. Curr. Protein Pept. Sci. 15, 719–731.
Klimentova, J. and Stulik, J. 2015. Methods of isolation and purification of outer membrane vesicles from Gram-negative bacteria. Microbiol. Res. 170, 1–9.
Kulp, A. and Kuehn, M.J. 2010. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu. Rev. Microbiol. 64, 163–184.
Lee, E.Y., Bang, J.Y., Park, G.W., Choi, D.S., Kang, J.S., Kim, H.J., Park, K.S., Lee, J.O., Kim, Y.K., Kwon, K.H., et al. 2007. Global proteomic profiling of native outer membrane vesicles derived from Escherichia coli. Proteomics 7, 3143–3153.
Li, Z., Clarke, J., and Beveridge, T.J. 1998. Gram-negative bacteria produce membrane vesicles which are capable of killing other bacteria. J. Bacteriol. 20, 5478–5483.
Maneerat, S. 2005. Biosurfactants from marine microorganisms. Songklanakarin J. Sci. Technol. 27, 1263–1272.
Manning, S.J. and Kuehn, M.J. 2011. Contribution of bacterial outer membrane vesicles to innate bacterial defense. BMC Microbiol. 11, 258.
Mansilla, M.C., Cybulski, L.E., Albanesi, D., and Mendoza, D. 2004. Control of membrane lipid fluidity by molecular thermosensors. J. Bacteriol. 186, 6681–6688.
Mashburn-Warren, L., Howe, J., Garidel, P., Richter, W., Steiniger, F., Roessle, M., Brandenburg, K., and Whiteley, M. 2008a. Interaction of quorum signals with outer membrane lipids: insights into prokaryotic membrane vesicle formation. Mol. Microbiol. 69, 491–502.
Mashburn-Warren, L., McLean, R.J., and Whiteley, M. 2008b. Gram-negative outer membrane vesicles: beyond the cell surface. Geobiology 6, 214–219.
Mashburn-Warren, L.M. and Whiteley, M. 2006. Special delivery: vesicle trafficking in prokaryotes. Mol. Microbiol. 61, 839–846.
McBroom, A.J. and Kuehn, M.J. 2007. Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response. Mol. Microbiol. 63, 545–558.
Mensitieri, F., De Lise, F., Strazzulli, A., Moracci, M., Notomista, E., Cafaro, V., Bedini, E., Sazinsky, M.H., Trifuoggi, M., Di Donato, A., et al. 2018. Structural and functional insights into RHA-P, a bacterial GH106 α-L-rhamnosidase from Novosphingobium sp. PP1Y. Arch. Biochem. Biophys. 648, 1–L–11.
Monti, M.C., Margarucci, L., Riccio, R., Bonfili, L., Mozzicafreddo, M., Eleuteri, A.M., and Casapullo, A. 2014. Mechanistic insights on petrosaspongiolide M inhibitory effects on immunoproteasome and autophagy. Biochim. Biophys. Acta 1844, 713–721.
Notomista, E., Pennacchio, F., Cafaro, V., Smaldone, G., Izzo, V., Troncone, L., Varcamonti, M., and Di Donato, A. 2011. The marine isolate Novosphingobium sp. PP1Y shows specific adaptation to use the aromatic fraction of fuels as the sole carbon and energy source. Microb. Ecol. 61, 582–594.
Pérez-Cruz, C., Carrión, O., Delgado, L., Martinez, G., López-Iglesias, C., and Mercade, E. 2013. New type of outer membrane vesicle produced by the Gram-negative bacterium Shewanella vesiculosa M7T: Implications for DNA content. Appl. Environ. Microbiol. 79, 1874–1881.
Pollock, T.J. and Armentrout, R.W. 1999. Planktonic/sessile dimorphism of polysaccharide-encapsulated sphingomonads. J. Ind. Microbiol. Biotechnol. 23, 436–441.
Roier, S., Zingl, F.G., Cakar, F., Durakovic, S., Kohl, P., Eichmann, T.O., Klug, L., Gadermaier, B., Weinzerl, K., Prassl, R., et al. 2016. A novel mechanism for the biogenesis of outer membrane vesicles in Gram-negative bacteria. Nat. Commun. 7, 10515.
Schooling, S.R., Hubley, A., and Beveridge, T.J. 2009. Interactions of DNA with biofilm-derived membrane vesicles. J. Bacteriol. 13, 4097–4102.
Schwechheimer, C. and Kuehn, M.J. 2015. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat. Rev. Microbiol. 13, 605–619.
Schwechheimer, C., Sullivan, C.J., and Kuehn, M.J. 2013. Envelope control of outer membrane vesicle production in Gram-negative bacteria. Biochem. 52, 3031–3040.
Yonezawa, H., Osaki, T., Kurata, S., Fukuda, M., Kawakami, H., Ochiai, K., Hanawa, T., and Kamiya, S. 2009. Outer membrane vesicles of Helicobacter pylori TK1402 are involved in biofilm formation. BMC Microbiol. 9, 197.
Yun, S.H., Lee, S.Y., Choi, C.W., Lee, H., Ro, H.J., Jun, S., Kwon, Y.M., Kwon, K.K., Kim, S.J., Kim, G.H., et al. 2016. Proteomic characterization of the outer membrane vesicle of the halophilic marine bacterium Novosphingobium pentaromativorans US6-1. J. Microbiol. 55, 56–62.
Zhou, L., Srisatjaluk, R., Justus, D.E., and Doyle, R.J. 1998. On the origin of membrane vesicles in Gram-negative bacteria. FEMS Microbiol. Lett. 163, 223–228.
Author information
Affiliations
Corresponding author
Additional information
Supplemental material for this article may be found at http://www.springerlink.com/content/120956.
Electronic supplementary material
Rights and permissions
About this article
Cite this article
De Lise, F., Mensitieri, F., Rusciano, G. et al. Novosphingobium sp. PP1Y as a novel source of outer membrane vesicles. J Microbiol. 57, 498–508 (2019). https://doi.org/10.1007/s12275-019-8483-2
Received:
Revised:
Accepted:
Published:
Issue Date:
Keywords
- outer membrane vesicles
- exocytosis
- bacterial secretion
- sphingomonadales
- Novosphingobium
- outer cell membrane