Novosphingobium sp. PP1Y as a novel source of outer membrane vesicles

Abstract

Outer membrane vesicles (OMVs) are nanostructures of 20–200 nm diameter deriving from the surface of several Gram-negative bacteria. OMVs are emerging as shuttles involved in several mechanisms of communication and environmental adaptation. In this work, OMVs were isolated and characterized from Novosphingobium sp. PP1Y, a Gram-negative non-pathogenic microorganism lacking LPS on the outer membrane surface and whose genome was sequenced and annotated. Scanning electron microscopy performed on samples obtained from a culture in minimal medium highlighted the presence of PP1Y cells embedded in an extracellular matrix rich in vesicular structures. OMVs were collected from the exhausted growth medium during the mid-exponential phase, and purified by ultracentrifugation on a sucrose gradient. Atomic force microscopy, dynamic light scattering and nanoparticle tracking analysis showed that purified PP1Y OMVs had a spherical morphology with a diameter of ca. 150 nm and were homogenous in size and shape. Moreover, proteomic and fatty acid analysis of purified OMVs revealed a specific biochemical “fingerprint”, suggesting interesting details concerning their biogenesis and physiological role. Moreover, these extracellular nanostructures do not appear to be cytotoxic on HaCaT cell line, thus paving the way to their future use as novel drug delivery systems.

This is a preview of subscription content, access via your institution.

References

  1. Allison, D.P., Mortensen, N.P., Sullivan, C.J., and Doktycz, M.J. 2010. Atomic force microscopy of biological samples. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2, 618–634.

    Article  PubMed  Google Scholar 

  2. Altenburger, R. and Kissel, T. 1999. The human keratinocytes cell line HaCaT: An in vitro cell culture model for keratinocyte testosterone metabolism. Pharm. Res. 16, 766.

    Article  CAS  PubMed  Google Scholar 

  3. Bacia, K., Schwille, P., and Kurzchalia, T. 2005. Sterol structure determines the separation of phases and the curvature of the liquid-ordered phase in model membranes. Proc. Natl. Acad. Sci. USA 102, 3272–3277.

    Article  CAS  PubMed  Google Scholar 

  4. Bauman, S.J. and Kuehn, M.J. 2006. Purification of outer membrane vesicles from Pseudomonas aeruginosa and their activation of an IL-8 response. Microbes Infect. 8, 2400–2408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Beate, V., Llorente, A., Neurauter, A., Phuyal, S., Kierulf, B., Kierulf, P., Skotland, T., Sandvig, K., Haug, K.B.F., and Øvstebø, R. 2017. Size and concentration analyses of extracellular vesicles by nano-particle tracking analysis: a variation study. J. Extracell. Vesicles 6, 1344087.

    Article  CAS  Google Scholar 

  6. Biller, S.J., Schubotz, F., Roggensack, S.E., Thompson, A.W., Summons, R.E., and Chisholm, S.W. 2014. Bacterial vesicles in marine ecosystems. Science 343, 183–186.

    Article  CAS  Google Scholar 

  7. Choi, C.W., Park, E.C., Yun, S.H., Lee, S.Y., Lee, Y.G., Hong, Y., Park, K.R., Kim, S.H., Kim, G.H., and Kim, S.I. 2014. Proteomic characterization of the outer membrane vesicle of Pseudomonas putida KT2440. J. Proteome Res. 13, 4298–4309.

    Article  CAS  PubMed  Google Scholar 

  8. Coppotelli, B.M., Ibarrolaza, A., Dias, R.L., Del Panno, M.T., Berthe-Corti, L., and Morelli, I.S. 2010. Study of the degradation activity and the strategies to promote the bioavailability of phenanthrene by Sphingomonas paucimobilis strain 20006FA. Microb. Ecol. 59, 266–276.

    Article  CAS  PubMed  Google Scholar 

  9. D’Argenio, V., Notomista, E., Petrillo, M., Cantiello, P., Cafaro, V., Izzo, V., Naso, B., Cozzuto, L., Durante, L., Troncone, L., et al. 2014. Complete sequencing of Novosphingobium sp. PP1Y reveals a biotechnologically meaningful metabolic pattern. BMC Genomics 15, 384–397.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. De Castro, C., Parrilli, M., Holst, O., and Molinaro, A. 2010. Microbe-associated molecular patterns in innate immunity: Extraction and chemical analysis of Gram-negative bacterial lipopolysaccharides. Methods Enzymol. 480, 89–115.

    Article  CAS  PubMed  Google Scholar 

  11. De Lise, F., Mensitieri, F., Tarallo, V., Ventimiglia, N., Vinciguerra, R., Tramice, A., Marchetti, R., Pizzo, E., Notomista, E., Cafaro, V., et al. 2016. RHA-P: isolation, expression and characterization of a novel α-L-rhamnosidase from Novosphingobium sp. PP1Y. J. Mol. Cat. B Enzym. 134, 136–147.

    Article  CAS  Google Scholar 

  12. DellaGreca, M., Zarrelli, A., Fergola, P., Cerasuolo, M., Pollio, A., and Pinto, G. 2010. Fatty acids released by Chlorella vulgaris and their role in interference with Pseudokirchneriella subcapitata: Experiments and modelling. J. Chem. Ecol. 36, 339–349.

    Article  CAS  PubMed  Google Scholar 

  13. Denich, T.J., Beaudette, L.A., Lee, H., and Trevors, J.T. 2003. Effect of selected environmental and physicochemical factors on bacterial cytoplasmic membranes. J. Microbiol. Methods 52, 149–182.

    Article  CAS  PubMed  Google Scholar 

  14. Eddy, J.L., Gielda, L.M., Caufield, A.J., Rangel, S.M., and Lathem, W.W. 2014. Production of outer membrane vesicles by the plague pathogen Yersinia pestis. PLoS One 9, e107002.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Frias, A., Manresa, A., de Oliveira, E., López-Iglesias, C., and Mercade, E. 2010. Membrane vesicles: a common feature in the extracellular matter of cold-adapted antarctic bacteria. Microb. Ecol. 59, 476–486.

    Article  CAS  PubMed  Google Scholar 

  16. Gilewicz, M., Ni’matuzahroh, Nadalig, T., Budzinski, H., Doumenq, P., Michotey, V., and Bertrand, J.C. 1997. Isolation and characterization of a marine bacterium capable of utilizing 2-methylphenanthrene. Appl. Microbiol. Biotechnol. 48, 528–533.

    Article  CAS  PubMed  Google Scholar 

  17. Grande, R., Celia, C., Mincione, G., Stringaro, A., Marzio, L.D., Colone, M., Di Marcantonio, M.C., Savino, L., Puca, V., Santoliquido, R., et al. 2017. Detection and physicochemical characterization of membrane vesicles (MVs) of Lactobacillus reuteri DSM 17938. Front. Microbiol. 8, 1040.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Gujrati, V., Kim, S., Kim, S.H., Min, J.J., Choy, H.E., Kim, S.C., and Jon, S. 2014. Bioengineered bacterial outer membrane vesicles as cell-specific drug-delivery vehicles for cancer therapy. ACS Nano 8, 1525–1537.

    Article  CAS  PubMed  Google Scholar 

  19. Hbb, R.I., Fields, J.A., Burns, C.M., and Thompson, S.A. 2009. Evaluation of procedures for outer membrane isolation from Campylobacter jejuni. Microbiology 155, 979–988.

    Article  CAS  Google Scholar 

  20. Hellman, J., Loiselle, P.M., Zanzot, E.M., Allaire, J.E., Tehan, M.M., Boyle, L.A., Kurnick, J.T., and Warren, H.S. 2000. Release of Gram-negative outer-membrane proteins into human serum and septic rat blood and their interactions with immunoglobulin in antiserum to Escherichia coli J5. J. Infect. Dis. 181, 1034–1043.

    Article  CAS  PubMed  Google Scholar 

  21. Heramb, M.K. and Medicharla, V.J. 2014. Biogenesis and multifaceted roles of outer membrane vesicles from Gram-negative bacteria. Microbiology 160, 2109–2121.

    Article  CAS  Google Scholar 

  22. Izzo, V., Tedesco, P., Notomista, E., Pagnotta, E., Di Donato, A., Trincone, A., and Tramice, A. 2014. a-Rhamnosidase activity in the marine isolate Novosphingobium sp. PP1Y and its use in the bioconversion of flavonoids. J. Mol. Catal. B: Enzym. 105, 95–103.

    Article  CAS  Google Scholar 

  23. Johnsen, A.R. and Karlson, U. 2004. Evaluation of bacterial strategies to promote the bioavailability of polycyclic aromatic hydrocarbons. Appl. Microbiol. Biotechnol. 63, 452–459.

    Article  CAS  PubMed  Google Scholar 

  24. Kim, G.H., Choi, C.W., Park, E.C., Lee, S.Y., and Kim, S.I. 2014. Isolation and proteomic characterization of bacterial extracellular membrane vesicles. Curr. Protein Pept. Sci. 15, 719–731.

    Article  CAS  PubMed  Google Scholar 

  25. Klimentova, J. and Stulik, J. 2015. Methods of isolation and purification of outer membrane vesicles from Gram-negative bacteria. Microbiol. Res. 170, 1–9.

    Article  CAS  PubMed  Google Scholar 

  26. Kulp, A. and Kuehn, M.J. 2010. Biological functions and biogenesis of secreted bacterial outer membrane vesicles. Annu. Rev. Microbiol. 64, 163–184.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Lee, E.Y., Bang, J.Y., Park, G.W., Choi, D.S., Kang, J.S., Kim, H.J., Park, K.S., Lee, J.O., Kim, Y.K., Kwon, K.H., et al. 2007. Global proteomic profiling of native outer membrane vesicles derived from Escherichia coli. Proteomics 7, 3143–3153.

    Article  PubMed  Google Scholar 

  28. Li, Z., Clarke, J., and Beveridge, T.J. 1998. Gram-negative bacteria produce membrane vesicles which are capable of killing other bacteria. J. Bacteriol. 20, 5478–5483.

    Google Scholar 

  29. Maneerat, S. 2005. Biosurfactants from marine microorganisms. Songklanakarin J. Sci. Technol. 27, 1263–1272.

    Google Scholar 

  30. Manning, S.J. and Kuehn, M.J. 2011. Contribution of bacterial outer membrane vesicles to innate bacterial defense. BMC Microbiol. 11, 258.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mansilla, M.C., Cybulski, L.E., Albanesi, D., and Mendoza, D. 2004. Control of membrane lipid fluidity by molecular thermosensors. J. Bacteriol. 186, 6681–6688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Mashburn-Warren, L., Howe, J., Garidel, P., Richter, W., Steiniger, F., Roessle, M., Brandenburg, K., and Whiteley, M. 2008a. Interaction of quorum signals with outer membrane lipids: insights into prokaryotic membrane vesicle formation. Mol. Microbiol. 69, 491–502.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Mashburn-Warren, L., McLean, R.J., and Whiteley, M. 2008b. Gram-negative outer membrane vesicles: beyond the cell surface. Geobiology 6, 214–219.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mashburn-Warren, L.M. and Whiteley, M. 2006. Special delivery: vesicle trafficking in prokaryotes. Mol. Microbiol. 61, 839–846.

    Article  CAS  PubMed  Google Scholar 

  35. McBroom, A.J. and Kuehn, M.J. 2007. Release of outer membrane vesicles by Gram-negative bacteria is a novel envelope stress response. Mol. Microbiol. 63, 545–558.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Mensitieri, F., De Lise, F., Strazzulli, A., Moracci, M., Notomista, E., Cafaro, V., Bedini, E., Sazinsky, M.H., Trifuoggi, M., Di Donato, A., et al. 2018. Structural and functional insights into RHA-P, a bacterial GH106 α-L-rhamnosidase from Novosphingobium sp. PP1Y. Arch. Biochem. Biophys. 648, 1–L–11.

    Article  CAS  PubMed  Google Scholar 

  37. Monti, M.C., Margarucci, L., Riccio, R., Bonfili, L., Mozzicafreddo, M., Eleuteri, A.M., and Casapullo, A. 2014. Mechanistic insights on petrosaspongiolide M inhibitory effects on immunoproteasome and autophagy. Biochim. Biophys. Acta 1844, 713–721.

    Article  CAS  PubMed  Google Scholar 

  38. Notomista, E., Pennacchio, F., Cafaro, V., Smaldone, G., Izzo, V., Troncone, L., Varcamonti, M., and Di Donato, A. 2011. The marine isolate Novosphingobium sp. PP1Y shows specific adaptation to use the aromatic fraction of fuels as the sole carbon and energy source. Microb. Ecol. 61, 582–594.

    Article  CAS  PubMed  Google Scholar 

  39. Pérez-Cruz, C., Carrión, O., Delgado, L., Martinez, G., López-Iglesias, C., and Mercade, E. 2013. New type of outer membrane vesicle produced by the Gram-negative bacterium Shewanella vesiculosa M7T: Implications for DNA content. Appl. Environ. Microbiol. 79, 1874–1881.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Pollock, T.J. and Armentrout, R.W. 1999. Planktonic/sessile dimorphism of polysaccharide-encapsulated sphingomonads. J. Ind. Microbiol. Biotechnol. 23, 436–441.

    Article  CAS  PubMed  Google Scholar 

  41. Roier, S., Zingl, F.G., Cakar, F., Durakovic, S., Kohl, P., Eichmann, T.O., Klug, L., Gadermaier, B., Weinzerl, K., Prassl, R., et al. 2016. A novel mechanism for the biogenesis of outer membrane vesicles in Gram-negative bacteria. Nat. Commun. 7, 10515.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Schooling, S.R., Hubley, A., and Beveridge, T.J. 2009. Interactions of DNA with biofilm-derived membrane vesicles. J. Bacteriol. 13, 4097–4102.

    Article  CAS  Google Scholar 

  43. Schwechheimer, C. and Kuehn, M.J. 2015. Outer-membrane vesicles from Gram-negative bacteria: biogenesis and functions. Nat. Rev. Microbiol. 13, 605–619.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Schwechheimer, C., Sullivan, C.J., and Kuehn, M.J. 2013. Envelope control of outer membrane vesicle production in Gram-negative bacteria. Biochem. 52, 3031–3040.

    Article  CAS  Google Scholar 

  45. Yonezawa, H., Osaki, T., Kurata, S., Fukuda, M., Kawakami, H., Ochiai, K., Hanawa, T., and Kamiya, S. 2009. Outer membrane vesicles of Helicobacter pylori TK1402 are involved in biofilm formation. BMC Microbiol. 9, 197.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Yun, S.H., Lee, S.Y., Choi, C.W., Lee, H., Ro, H.J., Jun, S., Kwon, Y.M., Kwon, K.K., Kim, S.J., Kim, G.H., et al. 2016. Proteomic characterization of the outer membrane vesicle of the halophilic marine bacterium Novosphingobium pentaromativorans US6-1. J. Microbiol. 55, 56–62.

    Article  CAS  PubMed  Google Scholar 

  47. Zhou, L., Srisatjaluk, R., Justus, D.E., and Doyle, R.J. 1998. On the origin of membrane vesicles in Gram-negative bacteria. FEMS Microbiol. Lett. 163, 223–228.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Viviana Izzo.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

De Lise, F., Mensitieri, F., Rusciano, G. et al. Novosphingobium sp. PP1Y as a novel source of outer membrane vesicles. J Microbiol. 57, 498–508 (2019). https://doi.org/10.1007/s12275-019-8483-2

Download citation

Keywords

  • outer membrane vesicles
  • exocytosis
  • bacterial secretion
  • sphingomonadales
  • Novosphingobium
  • outer cell membrane