Skip to main content
Log in

Blue-Red LED wavelength shifting strategy for enhancing beta-carotene production from halotolerant microalga, Dunaliella salina

Journal of Microbiology Aims and scope Submit manuscript

Abstract

In the present study, to improve the photosynthetic betacarotene productivity of Dunaliella salina, a blue-red LED wavelength-shifting system (B-R system) was investigated. Dunaliella salina under the B-R system showed enhanced density and beta-carotene productivity compared to D. salina cultivated under single light-emitting diode light wavelengths (blue, white, and red light-emitting diode). Additionally, we developed blue light-adapted D. salina (ALE-D. salina) using an adaptive laboratory evolution (ALE) approach. In combination with the B-R system applied to ALE-D. salina (ALE B-R system), the beta-carotene concentration (33.94 ± 0.52 μM) was enhanced by 19.7% compared to that observed for the non-ALE-treated wild-type of D. salina (intact D. salina) under the B-R system (28.34 ± 0.24 μM).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

References

  • Ben-Amotz, A. 1996. Effect of low temperature on the stereoisomer composition of β-carotene in the halotolerant alga Dunaliella bardawil (Chlorophyta). J. Phycol. 32, 272–275.

    Article  CAS  Google Scholar 

  • Borowitzka, M.A., Borowitzka, L.J., and Kessly, D. 1990. Effects of salinity increase on carotenoid accumulation in the green alga Dunaliella salina. J. Appl. Phycol. 2, 111–119.

    Article  Google Scholar 

  • Chappelle, E.W., Kim, M.S., and McMurtrey, J.E. 1992. Ratio analysis of reflectance spectra (RARS): An algorithm for the remote estimation of the concentrations of chlorophyll A, chlorophyll B, and carotenoids in soybean leaves. Remote Sens. Environ. 39, 239–247.

    Article  Google Scholar 

  • Darvin, M.E., Fluhr, J.W., Meinke, M.C., Zastrow, L., Sterry, W., and Lademann, J. 2011. Topical beta-carotene protects against infrared-light–induced free radicals. Exp. Dermatol. 20, 125–129.

    Article  CAS  PubMed  Google Scholar 

  • Dragosits, M. and Mattanovich, D. 2013. Adaptive laboratory evolution–principles and applications for biotechnology. Microb. Cell Fact. 12, 64.

    Article  PubMed  PubMed Central  Google Scholar 

  • Eijckelhoff, C. and Dekker, J.P. 1997. A routine method to determine the chlorophyll a, pheophytin a and β-carotene contents of isolated photosystem II reaction center complexes. Photosyn. Res. 52, 69–73.

    Article  CAS  Google Scholar 

  • Fu, W., Gudmundsson, O., Feist, A.M., Herjolfsson, G., Brynjolfsson, S., and Palsson, B.Ø. 2012. Maximizing biomass productivity and cell density of Chlorella vulgaris by using light-emitting diodebased photobioreactor. J. Biotechnol. 161, 242–249.

    Article  CAS  PubMed  Google Scholar 

  • Fu, W., Guðmundsson, Ó., Paglia, G., Herjólfsson, G., Andrésson, Ó.S., Palsson, B.Ø., and Brynjólfsson, S. 2013. Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting diodes and adaptive laboratory evolution. Appl. Microbiol. Biotechnol. 97, 2395–2403.

    Article  CAS  PubMed  Google Scholar 

  • Guenther, J.E., Nemson, J.A., and Melis, A. 1988. Photosystem stoichiometry and chlorophyll antenna size in Dunaliella salina (green algae). Biochim. Biophys. Acta 934, 108–117.

    Article  CAS  Google Scholar 

  • Guillard, R.R. 1975. Culture of phytoplankton for feeding marine invertebrates, pp. 29–60. In Culture of marine invertebrate animals. Springer.

    Chapter  Google Scholar 

  • Guillard, R.R. and Ryther, J.H. 1962. Studies of marine planktonic diatoms: I. Cycletella nana Hustedt, and Detonula confervacea (cleve) Gran. Can. J. Microbiol. 8, 229–239.

    Article  CAS  PubMed  Google Scholar 

  • Helena, S., Zainuri, M., and Suprijanto, J. 2016. Microalgae Dunaliella salina (Teodoresco, 1905) growth using the LED light (light limiting dioda) and different media. Aquatic Procedia 7, 226–230.

    Article  Google Scholar 

  • Koc, C., Anderson, G.A., and Kommareddy, A. 2013. Use of red and blue light-emitting diodes (LED) and fluorescent lamps to grow microalgae in a photobioreactor. Isr. J. Aquac. 65, 1–8.

    Google Scholar 

  • Kró, M., Maxwell, D.P., and Huner, N.P. 1997. Exposure of Dunaliella salina to low temperature mimics the high light-induced accumulation of carotenoids and the carotenoid binding protein (Cbr). Plant Cell Physiol. 38, 213–216.

    Article  Google Scholar 

  • Lamers, P.P., Janssen, M., De Vos, R.C., Bino, R.J., and Wijffels, R.H. 2012. Carotenoid and fatty acid metabolism in nitrogen-starved Dunaliella salina, a unicellular green microalga. J. Biotechnol. 162, 21–27.

    Article  CAS  PubMed  Google Scholar 

  • Lamers, P.P., van de Laak, C.C., Kaasenbrood, P.S., Lorier, J., Janssen, M., De Vos, R.C., Bino, R.J., and Wijffels, R.H. 2010. Carotenoid and fatty acid metabolism in light-stressed Dunaliella salina. Biotechnol. Bioeng. 106, 638–648.

    Article  CAS  PubMed  Google Scholar 

  • Mata, T.M., Martins, A.A., and Caetano, N.S. 2010. Microalgae for biodiesel production and other applications: a review. Renew. Sust. Energ. Rev. 14, 217–232.

    Article  CAS  Google Scholar 

  • Priyadarshani, I. and Rath, B. 2012. Commercial and industrial applications of micro algae–A review. J. Algal Biomass Utin. 3, 89–100.

    Google Scholar 

  • Reyes, L.H., Gomez, J.M., and Kao, K.C. 2014. Improving carotenoids production in yeast via adaptive laboratory evolution. Metab. Eng. 21, 26–33.

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro, B.D., Barreto, D.W., and Coelho, M.A.Z. 2011. Technological aspects of β-carotene production. Food Bioprocess Tech. 4, 693–701.

    Article  CAS  Google Scholar 

  • Sayre, R. 2010. Microalgae: the potential for carbon capture. Bioscience 60, 722–727.

    Article  Google Scholar 

  • Shaish, A., Avron, M., Pick, U., and Ben-Amotz, A. 1993. Are active oxygen species involved in induction of β-carotene in Dunaliella bardawil? Planta 190, 363–368.

    Article  CAS  Google Scholar 

  • Takaichi, S. 2011. Carotenoids in algae: distributions, biosyntheses and functions. Mar. Drugs 9, 1101–1118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tang, H., Abunasser, N., Garcia, M., Chen, M., Ng, K.S., and Salley, S.O. 2011. Potential of microalgae oil from Dunaliella tertiolecta as a feedstock for biodiesel. Appl. Energy 88, 3324–3330.

    Article  CAS  Google Scholar 

  • Vílchez, C., Forján, E., Cuaresma, M., Bédmar, F., Garbayo, I., and Vega, J.M. 2011. Marine carotenoids: biological functions and commercial applications. Mar. Drugs 9, 319–333.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Von Lintig, J., Hessel, S., Isken, A., Kiefer, C., Lampert, J.M., Voolstra, O., and Vogt, K. 2005. Towards a better understanding of carotenoid metabolism in animals. Biochim. Biophys. Acta 1740, 122–131.

    Article  CAS  Google Scholar 

  • Xi, T., Kim, D.G., Roh, S.W., Choi, J.S., and Choi, Y.E. 2016. Enhancement of astaxanthin production using Haematococcus pluvialis with novel LED wavelength shift strategy. Appl. Microbiol. Biotechnol. 100, 6231–6238.

    Article  CAS  PubMed  Google Scholar 

  • Zhao, Y.J., Hui, Z., Chao, X., Nie, E., Li, H.J., He, J., and Zheng, Z. 2011. Efficiency of two-stage combinations of subsurface vertical down-flow and up-flow constructed wetland systems for treating variation in influent C/N ratios of domestic wastewater. Ecol. Eng. 37, 1546–1554.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoon-E Choi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, SI., Kim, S., Lee, C. et al. Blue-Red LED wavelength shifting strategy for enhancing beta-carotene production from halotolerant microalga, Dunaliella salina. J Microbiol. 57, 101–106 (2019). https://doi.org/10.1007/s12275-019-8420-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-019-8420-4

Keywords

Navigation