Abstract
In the present study, to improve the photosynthetic betacarotene productivity of Dunaliella salina, a blue-red LED wavelength-shifting system (B-R system) was investigated. Dunaliella salina under the B-R system showed enhanced density and beta-carotene productivity compared to D. salina cultivated under single light-emitting diode light wavelengths (blue, white, and red light-emitting diode). Additionally, we developed blue light-adapted D. salina (ALE-D. salina) using an adaptive laboratory evolution (ALE) approach. In combination with the B-R system applied to ALE-D. salina (ALE B-R system), the beta-carotene concentration (33.94 ± 0.52 μM) was enhanced by 19.7% compared to that observed for the non-ALE-treated wild-type of D. salina (intact D. salina) under the B-R system (28.34 ± 0.24 μM).
References
Ben-Amotz, A. 1996. Effect of low temperature on the stereoisomer composition of β-carotene in the halotolerant alga Dunaliella bardawil (Chlorophyta). J. Phycol. 32, 272–275.
Borowitzka, M.A., Borowitzka, L.J., and Kessly, D. 1990. Effects of salinity increase on carotenoid accumulation in the green alga Dunaliella salina. J. Appl. Phycol. 2, 111–119.
Chappelle, E.W., Kim, M.S., and McMurtrey, J.E. 1992. Ratio analysis of reflectance spectra (RARS): An algorithm for the remote estimation of the concentrations of chlorophyll A, chlorophyll B, and carotenoids in soybean leaves. Remote Sens. Environ. 39, 239–247.
Darvin, M.E., Fluhr, J.W., Meinke, M.C., Zastrow, L., Sterry, W., and Lademann, J. 2011. Topical beta-carotene protects against infrared-light–induced free radicals. Exp. Dermatol. 20, 125–129.
Dragosits, M. and Mattanovich, D. 2013. Adaptive laboratory evolution–principles and applications for biotechnology. Microb. Cell Fact. 12, 64.
Eijckelhoff, C. and Dekker, J.P. 1997. A routine method to determine the chlorophyll a, pheophytin a and β-carotene contents of isolated photosystem II reaction center complexes. Photosyn. Res. 52, 69–73.
Fu, W., Gudmundsson, O., Feist, A.M., Herjolfsson, G., Brynjolfsson, S., and Palsson, B.Ø. 2012. Maximizing biomass productivity and cell density of Chlorella vulgaris by using light-emitting diodebased photobioreactor. J. Biotechnol. 161, 242–249.
Fu, W., Guðmundsson, Ó., Paglia, G., Herjólfsson, G., Andrésson, Ó.S., Palsson, B.Ø., and Brynjólfsson, S. 2013. Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting diodes and adaptive laboratory evolution. Appl. Microbiol. Biotechnol. 97, 2395–2403.
Guenther, J.E., Nemson, J.A., and Melis, A. 1988. Photosystem stoichiometry and chlorophyll antenna size in Dunaliella salina (green algae). Biochim. Biophys. Acta 934, 108–117.
Guillard, R.R. 1975. Culture of phytoplankton for feeding marine invertebrates, pp. 29–60. In Culture of marine invertebrate animals. Springer.
Guillard, R.R. and Ryther, J.H. 1962. Studies of marine planktonic diatoms: I. Cycletella nana Hustedt, and Detonula confervacea (cleve) Gran. Can. J. Microbiol. 8, 229–239.
Helena, S., Zainuri, M., and Suprijanto, J. 2016. Microalgae Dunaliella salina (Teodoresco, 1905) growth using the LED light (light limiting dioda) and different media. Aquatic Procedia 7, 226–230.
Koc, C., Anderson, G.A., and Kommareddy, A. 2013. Use of red and blue light-emitting diodes (LED) and fluorescent lamps to grow microalgae in a photobioreactor. Isr. J. Aquac. 65, 1–8.
Kró, M., Maxwell, D.P., and Huner, N.P. 1997. Exposure of Dunaliella salina to low temperature mimics the high light-induced accumulation of carotenoids and the carotenoid binding protein (Cbr). Plant Cell Physiol. 38, 213–216.
Lamers, P.P., Janssen, M., De Vos, R.C., Bino, R.J., and Wijffels, R.H. 2012. Carotenoid and fatty acid metabolism in nitrogen-starved Dunaliella salina, a unicellular green microalga. J. Biotechnol. 162, 21–27.
Lamers, P.P., van de Laak, C.C., Kaasenbrood, P.S., Lorier, J., Janssen, M., De Vos, R.C., Bino, R.J., and Wijffels, R.H. 2010. Carotenoid and fatty acid metabolism in light-stressed Dunaliella salina. Biotechnol. Bioeng. 106, 638–648.
Mata, T.M., Martins, A.A., and Caetano, N.S. 2010. Microalgae for biodiesel production and other applications: a review. Renew. Sust. Energ. Rev. 14, 217–232.
Priyadarshani, I. and Rath, B. 2012. Commercial and industrial applications of micro algae–A review. J. Algal Biomass Utin. 3, 89–100.
Reyes, L.H., Gomez, J.M., and Kao, K.C. 2014. Improving carotenoids production in yeast via adaptive laboratory evolution. Metab. Eng. 21, 26–33.
Ribeiro, B.D., Barreto, D.W., and Coelho, M.A.Z. 2011. Technological aspects of β-carotene production. Food Bioprocess Tech. 4, 693–701.
Sayre, R. 2010. Microalgae: the potential for carbon capture. Bioscience 60, 722–727.
Shaish, A., Avron, M., Pick, U., and Ben-Amotz, A. 1993. Are active oxygen species involved in induction of β-carotene in Dunaliella bardawil? Planta 190, 363–368.
Takaichi, S. 2011. Carotenoids in algae: distributions, biosyntheses and functions. Mar. Drugs 9, 1101–1118.
Tang, H., Abunasser, N., Garcia, M., Chen, M., Ng, K.S., and Salley, S.O. 2011. Potential of microalgae oil from Dunaliella tertiolecta as a feedstock for biodiesel. Appl. Energy 88, 3324–3330.
Vílchez, C., Forján, E., Cuaresma, M., Bédmar, F., Garbayo, I., and Vega, J.M. 2011. Marine carotenoids: biological functions and commercial applications. Mar. Drugs 9, 319–333.
Von Lintig, J., Hessel, S., Isken, A., Kiefer, C., Lampert, J.M., Voolstra, O., and Vogt, K. 2005. Towards a better understanding of carotenoid metabolism in animals. Biochim. Biophys. Acta 1740, 122–131.
Xi, T., Kim, D.G., Roh, S.W., Choi, J.S., and Choi, Y.E. 2016. Enhancement of astaxanthin production using Haematococcus pluvialis with novel LED wavelength shift strategy. Appl. Microbiol. Biotechnol. 100, 6231–6238.
Zhao, Y.J., Hui, Z., Chao, X., Nie, E., Li, H.J., He, J., and Zheng, Z. 2011. Efficiency of two-stage combinations of subsurface vertical down-flow and up-flow constructed wetland systems for treating variation in influent C/N ratios of domestic wastewater. Ecol. Eng. 37, 1546–1554.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Han, SI., Kim, S., Lee, C. et al. Blue-Red LED wavelength shifting strategy for enhancing beta-carotene production from halotolerant microalga, Dunaliella salina. J Microbiol. 57, 101–106 (2019). https://doi.org/10.1007/s12275-019-8420-4
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12275-019-8420-4