Journal of Microbiology

, Volume 57, Issue 6, pp 461–469 | Cite as

Assembly mechanisms of soil bacterial communities in subalpine coniferous forests on the Loess Plateau, China

  • Pengyu Zhao
  • Jinxian Liu
  • Tong Jia
  • Zhengming Luo
  • Cui Li
  • Baofeng ChaiEmail author
Microbial Ecology and Environmental Microbiology


Microbial community assembly is affected by trade-offs between deterministic and stochastic processes. However, the mechanisms underlying the relative influences of the two processes remain elusive. This knowledge gap limits our ability to understand the effects of community assembly processes on microbial community structures and functions. To better understand community assembly mechanisms, the community dynamics of bacterial ecological groups were investigated based on niche breadths in 23 soil plots from subalpine coniferous forests on the Loess Plateau in Shanxi, China. Here, the overall community was divided into the ecological groups that corresponded to habitat generalists, ‘other taxa’ and specialists. Redundancy analysis based on Bray-Curtis distances (db-RDA) and multiple regression tree (MRT) analysis indicated that soil organic carbon (SOC) was a general descriptor that encompassed the environmental gradients by which the communities responded to, because it can explain more significant variations in community diversity patterns. The three ecological groups exhibited different niche optima and degrees of specialization (i.e., niche breadths) along the SOC gradient, suggesting the presence of a gradient in tolerance for environmental heterogeneity. The inferred community assembly processes varied along the SOC gradient, wherein a transition was observed from homogenizing dispersal to variable selection that reflects increasing deterministic processes. Moreover, the ecological groups were inferred to perform different community functions that varied with community composition, structure. In conclusion, these results contribute to our understanding of the trade-offs between community assembly mechanisms and the responses of community structure and function to environmental gradients.


bacterial community assembly mechanisms ecological groups niche breadth 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2019_8373_MOESM1_ESM.pdf (649 kb)
Supplementary material, approximately 649 KB.


  1. Barberán, A., Bates, S.T., Casamayor, E.O., and Fierer, N. 2012. Using network analysis to explore co-occurrence patterns in soil microbial communities. ISME J. 6, 343–351.CrossRefGoogle Scholar
  2. Bastida, F., Torres, I.F., Hernández, T., Bombach, P., Richnow, H.H., and García, C. 2013. Can the labile carbon contribute to carbon immobilization in semiarid soils? Priming effects and microbial community dynamics. Soil Biol. Biochem. 57, 892–902.CrossRefGoogle Scholar
  3. Bulgarelli, D., Garrido-Oter, R., Münch, P.C., Weiman, A., Dröge, J., Pan, Y., McHardy, A.C., and Schulze-Lefert, P. 2015. Structure and function of the bacterial root microbiota in wild and domesticated barley. Cell Host Microbe 17, 392–403.CrossRefGoogle Scholar
  4. Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Peña, A.G., Goodrich, J.K., Gordon, J.I., et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336.CrossRefGoogle Scholar
  5. Chase, J.M. and Myers, J.A. 2011. Disentangling the importance of ecological niches from stochastic processes across scales. Philos T. R. Soc. B 366, 2351–2363.CrossRefGoogle Scholar
  6. Chisholm, R.A. and Pacala, S.W. 2011. Theory predicts a rapid transition from niche-structured to neutral biodiversity patterns across a speciation-rate gradient. Theor. Ecol. 4, 195–200.CrossRefGoogle Scholar
  7. Condit, R., Pitman, N., Leigh, E.G., Chave, J., Terborgh, J., Foster, R.B., Núñez, P., Aguilar, S., Valencia, R., and Villa, G. 2002. Beta-diversity in tropical forest trees. Science 295, 666–669.CrossRefGoogle Scholar
  8. Dias, P.C. 1996. Sources and sinks in population biology. Trends Ecol. Evol. 11, 326–330.CrossRefGoogle Scholar
  9. Dini-Andreote, F., Stegen, J.C., van Elsas, J.D., and Salles, J.F. 2015. Disentangling mechanisms that mediate the balance between stochastic and deterministic processes in microbial succession. Proc. Natl. Acad. Sci. USA 112, 1326–1332.CrossRefGoogle Scholar
  10. Dumbrell, A.J., Nelson, M., Helgason, T., Dytham, C., and Fitter, A.H. 2010. Relative roles of niche and neutral processes in structuring a soil microbial community. ISME J. 4, 337–345.CrossRefGoogle Scholar
  11. Edgar, R.C., Haas, B.J., Clemente, J.C., Quince, C., and Knight, R. 2011. Uchime improves sensitivity and speed of chimera detection. Bioinformatics 27, 2194.CrossRefGoogle Scholar
  12. Fine, P.V.A. and Kembel, S.W. 2011. Phylogenetic community structure and phylogenetic turnover across space and edaphic gradients in western Amazonian tree communities. Ecography 34, 552–565.CrossRefGoogle Scholar
  13. Fodelianakis, S., Moustakas, A., Papageorgiou, N., Manoli, O., Tsikopoulou, I., Michoud, G., Daffonchio, D., Karakassis, I., and Ladoukakis, E.D. 2016. Modified niche optima and breadths explain the historical contingency of bacterial community responses to eutrophication in coastal sediments. Mol. Ecol. 26, 2006–2018.CrossRefGoogle Scholar
  14. Futuyma, D.J. and Moreno, G. 1988. The evolution of ecological specialization. Annu. Rev. Ecol. Syst. 19, 207–233.CrossRefGoogle Scholar
  15. Gilbert, B. and Levin, S.A. 2004. Neutrality, niches, and dispersal in a temperate forest understory. Proc. Natl. Acad. Sci. USA 101, 7651–7656.CrossRefGoogle Scholar
  16. Gravel, D., Canham, C.D., Beaudet, M., and Messier, C. 2006. Reconciling niche and neutrality: The continuum hypothesis. Ecol. Lett. 9, 399–409.CrossRefGoogle Scholar
  17. Hubbell, S.P. and BordadeAgua, L. 2004. Unified neutral theory of biodiversity and biography: Reply. Ecology 85, 3172–3174.CrossRefGoogle Scholar
  18. Kolasa, J. and Li, B.L. 2003. Removing the confounding effect of habitat specialization reveals the stabilizing contribution of diversity to species variability. Proc. R. Soc. Lond. B-Biol. Sci. 270 Suppl 2, S198–201.Google Scholar
  19. Konstantinidis, K.T. and Tiedje, J.M. 2007. Prokaryotic taxonomy and phylogeny in the genomic era: Advancements and challenges ahead. Curr. Opin. Microbiol. 10, 504–509.CrossRefGoogle Scholar
  20. Kraft, N.J., Cornwell, W.K., Webb, C.O., and Ackerly, D.D. 2007. Trait evolution, community assembly, and the phylogenetic structure of ecological communities. Am. Nat. 170, 271–283.CrossRefGoogle Scholar
  21. Leibold, M.A., Holyoak, M., Mouquet, N., Amarasekare, P., Chase, J.M., Hoopes, M.F., Holt, R.D., Shurin, J.B., Law, R., and Tilman, D. 2010. The metacommunity concept: A framework for multi-scale community ecology. Ecol. Lett. 7, 601–613.CrossRefGoogle Scholar
  22. Levins, R. 1968. Evolution in changing environments: Some theoretical explorations. No. 2. Princeton University Press, Princeton, USA.Google Scholar
  23. Liao, J., Cao, X., Wang, J., Zhao, L., Sun, J., Jiang, D., and Huang, Y. 2017. Similar community assembly mechanisms underlie similar biogeography of rare and abundant bacteria in lakes on Yungui Plateau, China. Limnol. Oceanogr. 62, 723–735.CrossRefGoogle Scholar
  24. Liao, J., Cao, X., Zhao, L., Wang, J., Gao, Z., Caiwang, M.C., and Huang, Y. 2016. The importance of neutral and niche processes for bacterial community assembly differs between habitat generalists and specialists. FEMS Microbiol. Ecol. 92, fiw174.CrossRefGoogle Scholar
  25. Logares, R., Lindstrom, E.S., Langenheder, S., Logue, J.B., Paterson, H., Laybourn-Parry, J., Rengefors, K., Tranvik, L., and Bertilsson, S. 2013. Biogeography of bacterial communities exposed to progressive long-term environmental change. ISME J. 7, 937–948.CrossRefGoogle Scholar
  26. Louca, S., Jacques, S.M.S., Pires, A.P.F., Leal, J.S., Srivastava, D.S., Parfrey, L.W., Farjalla, V.F., and Doebeli, M. 2017. High taxonomic variability despite stable functional structure across microbial communities. Nat. Ecol. Evol. 1, 0015.CrossRefGoogle Scholar
  27. Louca, S., Parfrey, L.W., and Doebeli, M. 2016. Decoupling function and taxonomy in the global ocean microbiome. Science 353, 1272–1277.CrossRefGoogle Scholar
  28. Ma, B., Wang, H., Dsouza, M., Lou, J., He, Y., Dai, Z., Brookes, P.C., Xu, J., and Gilbert, J.A. 2016. Geographic patterns of co-occurrence network topological features for soil microbiota at continental scale in Eastern China. ISME J. 10, 1891–1901.CrossRefGoogle Scholar
  29. Massana, R. and Logares, R. 2013. Eukaryotic versus prokaryotic marine picoplankton ecology. Environ. Microbiol. 15, 1254–1261.CrossRefGoogle Scholar
  30. Monard, C., Gantner, S., Bertilsson, S., Hallin, S., and Stenlid, J. 2016. Habitat generalists and specialists in microbial communities across a terrestrial-freshwater gradient. Sci. Rep. 6, 37719.CrossRefGoogle Scholar
  31. Ofiţeru, I.D., Lunn, M., Curtis, T.P., Wells, G.F., Criddle, C.S., Francis, C.A., and Sloan, W.T. 2010. Combined niche and neutral effects in a microbial waste water treatment community. Proc. Natl. Acad. Sci. USA 107, 15345–15350.CrossRefGoogle Scholar
  32. Olivierj, H. 2008. Testing the spatial phylogenetic structure of local communities: Statistical performances of different null models and test statistics on a locally neutral community. J. Ecol. 96, 914–926.CrossRefGoogle Scholar
  33. Pandit, S.N., Kolasa, J., and Cottenie, K. 2009. Contrasts between habitat generalists and specialists: An empirical extension to the basic metacommunity framework. Ecology 90, 2253–2262.CrossRefGoogle Scholar
  34. Pruesse, E., Quast, C., Knittel, K., Fuchs, B.M., Ludwig, W., Peplies, J., and Glöckner, F.O. 2007. SILVA: A comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Res. 35, 7188–7196.CrossRefGoogle Scholar
  35. Reeder, J. and Knight, R. 2010. Rapidly denoising pyrosequencing amplicon reads by exploiting rank-abundance distributions. Nat. Methods 7, 668–669.CrossRefGoogle Scholar
  36. Ren, C., Zhang, W., Zhong, Z., Han, X., Yang, G., Feng, Y., and Ren, G. 2017. Differential responses of soil microbial biomass, diversity, and compositions to altitudinal gradients depend on plant and soil characteristics. Sci. Total Environ. 610–611, 750–758.Google Scholar
  37. Siles, J.A. and Margesin, R. 2016. Abundance and diversity of bacterial, archaeal, and fungal communities along an altitudinal gradient in alpine forest soils: What are the driving factors? Microb. Ecol. 72, 207–220.CrossRefGoogle Scholar
  38. Siles, J.A. and Margesin, R. 2017. Seasonal soil microbial responses are limited to changes in functionality at two Alpine forest sites differing in altitude and vegetation. Sci. Rep. 7, 2204.CrossRefGoogle Scholar
  39. Stegen, J.C., Lin, X., Fredrickson, J.K., Chen, X., Kennedy, D.W., Murray, C.J., Rockhold, M.L., and Konopka, A. 2013. Quantifying community assembly processes and identifying features that impose them. ISME J. 7, 2069–2079.CrossRefGoogle Scholar
  40. Stegen, J.C., Lin, X., Fredrickson, J.K., and Konopka, A.E. 2015. Estimating and mapping ecological processes influencing microbial community assembly. Front. Microbiol. 6, 370.CrossRefGoogle Scholar
  41. Stegen, J.C., Lin, X., Konopka, A.E., and Fredrickson, J.K. 2012. Stochastic and deterministic assembly processes in subsurface microbial communities. ISME J. 6, 1653–1664.CrossRefGoogle Scholar
  42. Sunagawa, S., Coelho, L.P., Chaffron, S., Kultima, J.R., Labadie, K. Salazar, G., Djahanschiri, B., Zeller, G., Mende, D.R., and Alberti, A. 2015. Ocean plankton. Structure and function of the global ocean microbiome. Science 348, 1261359.CrossRefGoogle Scholar
  43. Tian, J., Qiao, Y., Wu, B., Chen, H., Li, W., Jiang, N., Zhang, X., and Liu, X. 2017. Ecological succession pattern of fungal community in soil along a retreating glacier. Front. Microbiol. 8, 1028.CrossRefGoogle Scholar
  44. Tripathi, B.M., Stegen, J.C., Kim, M., Dong, K., Adams, J.M., and Lee, Y.K. 2018. Soil pH mediates the balance between stochastic and deterministic assembly of bacteria. ISME J. 12, 1072–1083.CrossRefGoogle Scholar
  45. Tucker, C.M., Shoemaker, L.G., Davies, K.F., Nemergut, D.R., and Melbourne, B.A. 2016. Differentiating between niche and neutral assembly in metacommunities using null models of β-diversity. Oikos 125, 778–789.CrossRefGoogle Scholar
  46. Tuomisto, H., Ruokolainen, K., and Yli-Halla, M. 2003. Dispersal, environment, and floristic variation of western Amazonian forests. Science 299, 241–244.CrossRefGoogle Scholar
  47. Van Tienderen, P.H. 1991. Evolution of generalists and specialists in spatially heterogeneous environments. Evolution 45, 1317–1331.CrossRefGoogle Scholar
  48. Woodcock, S., Van, D.G., Christopher, J., Bell, T., Lunn, M., Curtis, T.P., Head, I.M., and Sloan, W.T. 2007. Neutral assembly of bacterial communities. FEMS Microbiol. Ecol. 62, 171–180.CrossRefGoogle Scholar
  49. Xu, Z., Yu, G., Zhang, X., Ge, J., He, N., Wang, Q., and Wang, D. 2015. The variations in soil microbial communities, enzyme activities and their relationships with soil organic matter decomposition along the northern slope of Changbai mountain. Appl. Soil Ecol. 86, 19–29.CrossRefGoogle Scholar
  50. Zhou, J. and Ning, D. 2017. Stochastic community assembly: Does it matter in microbial ecology? Microbiol. Mol. Biol. Rev. 81, e00002–17.CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea 2019

Authors and Affiliations

  • Pengyu Zhao
    • 1
  • Jinxian Liu
    • 1
  • Tong Jia
    • 1
  • Zhengming Luo
    • 1
  • Cui Li
    • 2
  • Baofeng Chai
    • 1
    Email author
  1. 1.Institute of Loess PlateauShanxi UniversityTaiyuanP. R. China
  2. 2.Faculty of Environment EconomicsShanxi University of Finance and EconomicsTaiyuanP. R. China

Personalised recommendations