Abstract
For a long time, antibiotics have been ‘magical weapons’ to combat pathogenic microbes. The success of antibiotics is now greatly threatened by resistance to antibiotics and many scientists have already talked about the coming of the postantibiotic era. This special issue is prepared to understand recent research findings and new concepts about antibiotic resistance. Above all, this special issue explores mechanisms for the generation, selection, and spread of antibiotic resistance, and gives insight into what to target to prevent the development of antibiotic resistance. Just as antibiotics came from the concept of “magic bullet”, a breakthrough will come from a new concept based on a profound understanding of antibiotic resistance.
References
Abraham, E.P. and Chain, E. 1988. An enzyme from bacteria able to destroy penicillin (Reprinted from Nature, Vol 146, P. 837, 1940). Rev. Infect. Dis. 10, 677–678.
Adedeji, W.A. 2016. The treasure called antibiotics. Ann. Ib. Postgrad. Med. 14, 56–57.
Bayles, K.W. 2007. The biological role of death and lysis in biofilm development. Nat. Rev. Microbiol. 5, 721–726.
Blair, J.M., Webber, M.A., Baylay, A.J., Ogbolu, D.O., and Piddock, L.J. 2015. Molecular mechanisms of antibiotic resistance. Nat. Rev. Microbiol. 13, 42–51.
Boles, B.R., Thoendel, M., and Singh, P.K. 2004. Self-generated diversity produces “insurance effects” in biofilm communities. Proc. Natl. Acad. Sci. USA 101, 16630–16635.
Brauner, A., Fridman, O., Gefen, O., and Balaban, N.Q. 2016. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat. Rev. Microbiol. 14, 320–330.
Davies, J. and Davies, D. 2010. Origins and evolution of antibiotic resistance. Microbiol. Mol. Biol. Rev. 74, 417–433.
Fernandez, L., Breidenstein, E.B., and Hancock, R.E. 2011. Creeping baselines and adaptive resistance to antibiotics. Drug Resist. Updat. 14, 1–21.
Funke, B.R., Tortora, G.J., and Case, C.L. 2016. Microbiology (5MB/6MB): Adapted from microbiology: an introduction. Pearson Education south Asia Pte Limited.
Griffith, F. 1928. The significance of pneumococcal types. J. Hyg. 27, 113–159.
Jo, I., Kim, J.S., Xu, Y., Hyun, J., Lee, K., and Ha, N.C. 2019. Recent paradigm shift in the assembly of bacterial tripartite efflux pumps and the type I secretion system. J. Microbiol. 57, 185–194.
Jung, Y.G., Choi, J., Kim, S.K., Lee, J.H., and Kwon, S. 2015. Embedded biofilm, a new biofilm model based on the embedded growth of bacteria. Appl. Environ. Microbiol. 81, 211–219.
Keren, I., Wu, Y.X., Inocencio, J., Mulcahy, L.R., and Lewis, K. 2013. Killing by bactericidal antibiotics does not depend on reactive oxygen species. Science 339, 1213–1216.
Kim, S.K. and Lee, J.H. 2016. Biofilm dispersion in Pseudomonas aeruginosa. J. Microbiol. 54, 71–85.
Kim, S.K., Li, X.H., Hwang, H.J., and Lee, J.H. 2018a. Antibiofilm effect of biofilm-dispersing agents on clinical isolates of Pseudomonas aeruginosa with various biofilm structures. J. Microbiol. 56, 902–909.
Kim, S.K., Park, S.J., Li, X.H., Choi, Y.S., Im, D.S., and Lee, J.H. 2018b. Bacterial ornithine lipid, a surrogate membrane lipid under phosphate-limiting conditions, plays important roles in bacterial persistence and interaction with host. Environ. Microbiol. 20, 3992–4008.
Kim, S.Y., Park, C., Jang, H.J., Kim, B., Bae, H.W., Chung, I.Y., Kim, E.S., and Cho, Y.H. 2019. Antibacterial strategies inspired by the oxidative stress and response networks. J. Microbiol. 57, 203–212.
Ko, K.S. 2019. Antibiotic-resistant clones in Gram-negative pathogens: presence of global clones in Korea. J. Microbiol. 57, 195–202.
Kohanski, M.A., Dwyer, D.J., Hayete, B., Lawrence, C.A., and Collins, J.J. 2007. A common mechanism of cellular death induced by bactericidal antibiotics. Cell 130, 797–810.
Krishnamurthy, P., Parlow, M., Zitzer, J.B., Vakil, N.B., Mobley, H.L.T., Levy, M., Phadnis, S.H., and Dunn, B.E. 1998. Helicobacter pylori containing only cytoplasmic urease is susceptible to acid. Infect. Immun. 66, 5060–5066.
Lee, H.H., Molla, M.N., Cantor, C.R., and Collins, J.J. 2010. Bacterial charity work leads to population-wide resistance. Nature 467, 82–85.
Lewis, K. 2001. Riddle of biofilm resistance. Antimicrob. Agents Chemother. 45, 999–1007.
Li, X.H. and Lee, J.H. 2017. Antibiofilm agents: A new perspective for antimicrobial strategy. J. Microbiol. 55, 753–766.
Lobanovska, M. and Pilla, G. 2017. Penicillin’s discovery and antibiotic resistance: lessons for the future? Yale J. Biol. Med. 90, 135–145.
Marrakchi, M., Liu, X.B., and Andreescu, S. 2014. Oxidative stress and antibiotic resistance in bacterial pathogens: state of the art, methodologies, and future trends, pp. 483–498. In Woods, A.G. and Darie, C.C. (eds.), Advancements of mass spectrometry in biomedical research, Springer, Cham, Switzerland.
Spellberg, B. and Gilbert, D.N. 2014. The future of antibiotics and resistance: a tribute to a career of leadership by John Bartlett. Clin. Infect. Dis. 59 Suppl 2, S71–75.
Thomas, V.C., Thurlow, L.R., Boyle, D., and Hancock, L.E. 2008. Regulation of autolysis-dependent extracellular DNA release by Enterococcus faecalis extracellular proteases influences biofilm development. J. Bacteriol. 190, 5690–5698.
Wood, T.K., Knabel, S.J., and Kwan, B.W. 2013. Bacterial persister cell formation and dormancy. Appl. Environ. Microbiol. 79, 7116–7121.
Wood, T.K., Song, S., and Yamasaki, R. 2019. Ribosome dependence of persister cell formation and resuscitation. J. Microbiol. 57, 213–219.
Wright, G.D. 2007. The antibiotic resistome: the nexus of chemical and genetic diversity. Nat. Rev. Microbiol. 5, 175–186.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Lee, JH. Perspectives towards antibiotic resistance: from molecules to population. J Microbiol. 57, 181–184 (2019). https://doi.org/10.1007/s12275-019-0718-8
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12275-019-0718-8
Keywords
- antibiotic resistance
- tripartite efflux pump
- adaptive resistance
- herd resistance
- persister