Skip to main content
Log in

Characterization of a Salmonella Enteritidis bacteriophage showing broad lytic activity against Gram-negative enteric bacteria

  • Published:
Journal of Microbiology Aims and scope Submit manuscript

Abstract

In this study, we sought to isolate Salmonella Enteritidis-specific lytic bacteriophages (phages), and we found a lytic phage that could lyse not only S. Enteritidis but also other Gramnegative foodborne pathogens. This lytic phage, SS3e, could lyse almost all tested Salmonella enterica serovars as well as other enteric pathogenic bacteria including Escherichia coli, Shigella sonnei, Enterobacter cloacae, and Serratia marcescens. This SS3e phage has an icosahedral head and a long tail, indicating belong to the Siphoviridae. The genome was 40,793 base pairs, containing 58 theoretically determined open reading frames (ORFs). Among the 58 ORFs, ORF49, and ORF25 showed high sequence similarity with tail spike protein and lysozyme-like protein of Salmonella phage SE2, respectively, which are critical proteins recognizing and lysing host bacteria. Unlike SE2 phage whose host restricted to Salmonella enterica serovars Enteritidis and Gallinarum, SS3e showed broader host specificity against Gram-negative enteric bacteria; thus, it could be a promising candidate for the phage utilization against various Gram-negative bacterial infection including foodborne pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andres, D., Hanke, C., Baxa, U., Seul, A., Barbirz, S., and Seckler, R. 2010. Tailspike interactions with lipopolysaccharide effect DNA ejection from phage P22 particles in vitro. J. Biol. Chem. 285, 36768–36775.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Baxa, U., Cooper, A., Weintraub, A., Pfeil, W., and Seckler, R. 2001. Enthalpic barriers to the hydrophobic binding of oligosaccharides to phage P22 tailspike protein. Biochemistry 40, 5144–5150.

    Article  PubMed  CAS  Google Scholar 

  • Capra, M.L., Quiberoni, A.L., Ackermann, H.W., Moineau, S., and Reinheimer, J.A. 2006. Characterization of a new virulent phage (MLC-A) of Lactobacillus paracasei. J. Dairy Sci. 89, 2414–2423.

    Article  PubMed  CAS  Google Scholar 

  • Carbonell, X. and Villaverde, A. 1998. Insertional mutagenesis in the tailspike protein of bacteriophage P22. Biochem. Biophys. Res. Commun. 244, 428–433.

    Article  PubMed  CAS  Google Scholar 

  • Choi, I.Y., Lee, J.H., Kim, H.J., and Park, M.K. 2017. Isolation and characterization of a novel broad-host-range bacteriophage infecting Salmonella enterica subsp. enterica for biocontrol and rapid detection. J. Microbiol. Biotechnol. 27, 2151–2155.

    Article  PubMed  CAS  Google Scholar 

  • Cisek, A.A., Dabrowska, I., Gregorczyk, K.P., and Wyzewski, Z. 2017. Phage therapy in bacterial infections treatment: One hundred years after the discovery of bacteriophages. Curr. Microbiol. 74, 277–283.

    Article  PubMed  CAS  Google Scholar 

  • Crowlesmith, I., Schindler, M., and Osborn, M.J. 1978. Bacteriophage P22 is not a likely probe for zones of adhesion between the inner and outer membranes of Salmonella Typhimurium. J. Bacteriol. 135, 259–269.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Darling, A.C., Mau, B., Blattner, F.R., and Perna, N.T. 2004. Mauve: Multiple alignment of conserved genomic sequence with rearrangements. Genome Res. 14, 1394–1403.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Lappe, N., Doran, G., O’Connor, J., O’Hare, C., and Cormican, M. 2009. Characterization of bacteriophages used in the Salmonella enterica serovar Enteritidis phage-typing scheme. J. Med. Microbiol. 58, 86–93.

    Article  PubMed  CAS  Google Scholar 

  • Dobbins, A.T., George, M.Jr., Basham, D.A., Ford, M.E., Houtz, J.M., Pedulla, M.L., Lawrence, J.G., Hatfull, G.F., and Hendrix, R.W. 2004. Complete genomic sequence of the virulent Salmonella bacteriophage SP6. J. Bacteriol. 186, 1933–1944.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Eriksson, U., Svenson, S.B., Lonngren, J., and Lindberg, A.A. 1979. Salmonella phage glycanases: Substrate specificity of the phage P22 endo-rhamnosidase. J. Gen. Virol. 43, 503–511.

    Article  PubMed  CAS  Google Scholar 

  • Gorski, A., Miedzybrodzki, R., Borysowski, J., Weber-Dabrowska, B., Lobocka, M., Fortuna, W., Letkiewicz, S., Zimecki, M., and Filby, G. 2009. Bacteriophage therapy for the treatment of infections. Curr. Opin. Investig. Drugs 10, 766–774.

    PubMed  CAS  Google Scholar 

  • Hauser, A.R., Mecsas, J., and Moir, D.T. 2016. Beyond antibiotics: New therapeutic approaches for bacterial infections. Clin. Infect. Dis. 63, 89–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jamalludeen, N., She, Y.M., Lingohr, E.J., and Griffiths, M. 2009. Isolation and characterization of virulent bacteriophages against Escherichia coli serogroups O1, O2, and O78. Poult. Sci. 88, 1694–1702.

    Article  PubMed  CAS  Google Scholar 

  • Khalifa, L., Gelman, D., Shlezinger, M., Dessal, A.L., Coppenhagen-Glazer, S., Beyth, N., and Hazan, R. 2018. Defeating antibioticand phage-resistant Enterococcus faecalis using a phage cocktail in vitro and in a clot model. Front. Microbiol. 9, 326.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim, S. 2010. Salmonella serovars from foodborne and waterborne diseases in Korea, 1998–2007: total isolates decreasing versus rare serovars emerging. J. Korean Med. Sci. 25, 1693–1699.

    Article  PubMed  PubMed Central  Google Scholar 

  • Kim, S.H., Kim, S., Chun, S.G., Park, M.S., Park, J.H., and Lee, B.K. 2008. Phage types and pulsed-field gel electrophoresis patterns of Salmonella enterica serovar Enteritidis isolated from humans and chickens. J. Microbiol. 46, 209–213.

    Article  PubMed  CAS  Google Scholar 

  • Kim, S.H., Park, J.H., Lee, B.K., Kwon, H.J., Shin, J.H., Kim, J., and Kim, S. 2012b. Complete genome sequence of Salmonella bacteriophage SS3e. J. Virol. 86, 10253–10254.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kim, S., Rahman, M., Seol, S.Y., Yoon, S.S., and Kim, J. 2012a. Pseudomonas aeruginosa bacteriophage PA1O requires type IV pili for infection and shows broad bactericidal and biofilm removal activities. Appl. Environ. Microbiol. 78, 6380–6385.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kumar, S., Rizvi, M., and Berry, N. 2008. Rising prevalence of enteric fever due to multidrug-resistant Salmonella: An epidemiological study. J. Med. Microbiol. 57, 1247–1250.

    Article  PubMed  Google Scholar 

  • Kwiatkowski, B., Boschek, B., Thiele, H., and Stirm, S. 1982. Endo- N-acetylneuraminidase associated with bacteriophage particles. J. Virol. 43, 697–704.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Ledet Muller, L., Hjertqvist, M., Payne, L., Pettersson, H., Olsson, A., Plym Forshell, L., and Andersson, Y. 2007. Cluster of Salmonella Enteritidis in Sweden 2005–2006 - suspected source: Almonds. Euro Surveill. 12, E9–10.

    Article  PubMed  CAS  Google Scholar 

  • Lu, T.K. and Koeris, M.S. 2011. The next generation of bacteriophage therapy. Curr. Opin. Microbiol. 14, 524–531.

    Article  PubMed  Google Scholar 

  • Marcus, R., Varma, J.K., Medus, C., Boothe, E.J., Anderson, B.J., Crume, T., Fullerton, K.E., Moore, M.R., White, P.L., Lyszkowicz, E., et al. 2007. Re-assessment of risk factors for sporadic Salmonella serotype Enteritidis infections: a case-control study in five FoodNet Sites, 2002–2003. Epidemiol. Infect. 135, 84–92.

    Article  PubMed  CAS  Google Scholar 

  • Matsuzaki, S., Rashel, M., Uchiyama, J., Sakurai, S., Ujihara, T., Kuroda, M., Ikeuchi, M., Tani, T., Fujieda, M., Wakiguchi, H., et al. 2005. Bacteriophage therapy: A revitalized therapy against bacterial infectious diseases. J. Infect. Chemother. 11, 211–219.

    Article  PubMed  Google Scholar 

  • McNerney, R., Wilson, S.M., Sidhu, A.M., Harley, V.S., al Suwaidi, Z., Nye, P.M., Parish, T., and Stoker, N.G. 1998. Inactivation of mycobacteriophage D29 using ferrous ammonium sulphate as a tool for the detection of viable Mycobacterium smegmatis and M. tuberculosis. Res. Microbiol. 149, 487–495.

    Article  PubMed  CAS  Google Scholar 

  • Mmolawa, P.T., Schmieger, H., Tucker, C.P., and Heuzenroeder, M.W. 2003. Genomic structure of the Salmonella enterica serovar Typhimurium DT 64 bacteriophage ST64T: Evidence for modular genetic architecture. J. Bacteriol. 185, 3473–3475.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Nhung, N.T., Van, N.T.B., Cuong, N.V., Duong, T.T.Q., Nhat, T.T., Hang, T.T.T., Nhi, N.T.H., Kiet, B.T., Hien, V.B., Ngoc, P.T., et al. 2018. Antimicrobial residues and resistance against critically important antimicrobials in non-typhoidal Salmonella from meat sold at wet markets and supermarkets in Vietnam. Int. J. Food Microbiol. 266, 301–309.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Peters, T.M., Berghold, C., Brown, D., Coia, J., Dionisi, A.M., Echeita, A., Fisher, I.S., Gatto, A.J., Gill, N., Green, J., et al. 2007. Relationship of pulsed-field profiles with key phage types of Salmonella enterica serotype Enteritidis in Europe: results of an international multi-centre study. Epidemiol. Infect. 135, 1274–1281.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pires, D.P., Melo, L., Vilas Boas, D., Sillankorva, S., and Azeredo, J. 2017. Phage therapy as an alternative or complementary strategy to prevent and control biofilm-related infections. Curr. Opin. Microbiol. 39, 48–56.

    Article  PubMed  CAS  Google Scholar 

  • Rahman, M., Kim, S., Kim, S.M., Seol, S.Y., and Kim, J. 2011. Characterization of induced Staphylococcus aureus bacteriophage SAP- 26 and its anti-biofilm activity with rifampicin. Biofouling 27, 1087–1093.

    Article  PubMed  CAS  Google Scholar 

  • Scholl, D., Rogers, S., Adhya, S., and Merril, C.R. 2001. Bacteriophage K1-5 encodes two different tail fiber proteins, allowing it to infect and replicate on both K1 and K5 strains of Escherichia coli. J. Virol. 75, 2509–2515.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sillankorva, S., Oliveira, D., Moura, A., Henriques, M., Faustino, A., Nicolau, A., and Azeredo, J. 2011. Efficacy of a broad host range lytic bacteriophage against E. coli adhered to urothelium. Curr. Microbiol. 62, 1128–1132.

    Article  PubMed  CAS  Google Scholar 

  • Steinbacher, S., Seckler, R., Miller, S., Steipe, B., Huber, R., and Reinemer, P. 1994. Crystal structure of P22 tailspike protein: Interdigitated subunits in a thermostable trimer. Science 265, 383–386.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka, K., Nishimori, K., Makino, S., Nishimori, T., Kanno, T., Ishihara, R., Sameshima, T., Akiba, M., Nakazawa, M., Yokomizo, Y., et al. 2004. Molecular characterization of a prophage of Salmonella enterica serotype Typhimurium DT104. J. Clin. Microbiol. 42, 1807–1812.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tiwari, B.R., Kim, S., and Kim, J. 2012. Complete genomic sequence of Salmonella enterica serovar Enteritidis phage SE2. J. Virol. 86, 7712.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tiwari, B.R., Kim, S., and Kim, J. 2013. A virulent Salmonella enterica serovar Enteritidis phage SE2 with a strong bacteriolytic activity of planktonic and biofilmed cells. J. Bacteriol. Virol. 43, 186–194.

    Article  CAS  Google Scholar 

  • Vander Byl, C. and Kropinski, A.M. 2000. Sequence of the genome of Salmonella bacteriophage P22. J. Bacteriol. 182, 6472–6481.

    Article  PubMed Central  Google Scholar 

  • Waseh, S., Hanifi-Moghaddam, P., Coleman, R., Masotti, M., Ryan, S., Foss, M., MacKenzie, R., Henry, M., Szymanski, C.M., and Tanha, J. 2010. Orally administered P22 phage tailspike protein reduces Salmonella colonization in chickens: prospects of a novel therapy against bacterial infections. PLoS One 5, e13904.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ye, J., Kostrzynska, M., Dunfield, K., and Warriner, K. 2009. Evaluation of a biocontrol preparation consisting of Enterobacter asburiae JX1 and a lytic bacteriophage cocktail to suppress the growth of Salmonella Javiana associated with tomatoes. J. Food Prot. 72, 2284–2292.

    Article  PubMed  Google Scholar 

  • Yu, L., Wang, S., Guo, Z.M., Liu, H.T., Sun, D.G., Yan, G.M., Hu, D.L., Du, C.T., Feng, X., Han, W.Y., et al. 2018. A guard-killer phage cocktail effectively lyses the host and inhibits the development of phage-resistant strains of Escherichia coli. Appl. Microbiol. Biotechnol. 102, 971–983.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jungmin Kim.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Kim, SH., Rahman, M. et al. Characterization of a Salmonella Enteritidis bacteriophage showing broad lytic activity against Gram-negative enteric bacteria. J Microbiol. 56, 917–925 (2018). https://doi.org/10.1007/s12275-018-8310-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-018-8310-1

Keywords

Navigation