Biosynthesis of 2-amino-3-hydroxycyclopent-2-enone moiety of bafilomycin in Kitasatospora cheerisanensis KCTC2395

Abstract

Bafilomycins produced by Kitasatospora cheerisanensis KCTC- 2395 belong to the 16-membered macrolactone family plecomacrolide antibiotics. Bafilomycin B1 contains 2-amino- 3-hydroxycyclopent-2-enone (C5N), a five membered ring, which gets condensed via an amide linkage to bafilomycin polyketide. To study the biosynthetic pathway of C5N during bafilomycin biosynthesis in K. cheerisanensis KCTC2395, we attempted the functional analysis of two putative genes, encoding 5-aminolevulinic acid synthase (ALAS) and acyl- CoA ligase (ACL). The amplified putative genes for ALAS and ACL were cloned into the E. coli expression vector pET- 32a(+) plasmid, following which the soluble recombinant ALAS and ACL proteins were purified through nickel-affinity column chromatography. Through HPLC analysis of the enzyme reaction mixture, we confirmed the products of putative ALAS and ACL reaction as 5-aminolevulinic acid (5-ALA) and 5-ALA-CoA, respectively. The optimal pH for the putative ALAS reaction was 7.5, and for putative ACL reaction was 7.0, as confirmed by the colorimetric assay. Furthermore, pyridoxal 5'-phosphate (PLP) was found to be an essential cofactor in the putative ALAS reaction, and ATP was a cofactor for the putative ACL catalysis. Finally, we also confirmed that the simultaneous treatment of putative ACL and putative ALAS enzymes resulted in the production of C5N compound from 5-ALA.

This is a preview of subscription content, access via your institution.

References

  1. Bowman, E.J., Siebers, A., and Altendorf, K. 1988. Bafilomycins: a class of inhibitors of membrane ATPases from microorganisms, animal cells, and plant. Proc. Natl. Acad. Sci. USA 85, 7972–7976.

    Article  PubMed  CAS  Google Scholar 

  2. Bradford, M.M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding, Anal. Biochem. 72, 248–254.

    CAS  Google Scholar 

  3. Burnham, B.F. 1970. Delta-aminolevulinic acid synthase (R. spheroides). pp. 195–200. In Tubor, H. and Tubor, C.W. (eds.), Methods in enzymology, vol. 17A, Academic press, NY. USA.

    Article  Google Scholar 

  4. Carr, G., Williams, D.E., Díaz-Marrero, A.R., Patrick, B.O., Bottriell, H., Balgi, A.D., Donohue, E., Roberge, M., and Andersen, R.J. 2010. Bafilomycins produced in culture by Streptomyces spp. isolated from marine habitats are potent inhibitors of autophagy. J. Nat. Prod. 73, 422–427.

    Article  PubMed  CAS  Google Scholar 

  5. Charbonnier, F., Köhler, T., Pechère, J.C., and Ducruix, A. 2001. Overexpression, refolding, and purification of the histidine-tagged outer membrane efflux protein OprM of Pseudomonas aeruginosa. Protein Expr. Purif. 23, 121–127.

    Article  PubMed  CAS  Google Scholar 

  6. Choi, H.P., Hong, J.W., Rhee, K.H., and Sung, S.H. 2004. Cloning, expression, and characterization of 5-aminolevulinic acid synthase from Rhodopseudomonas palustris KUGB306. FEMS Microbiol. Lett. 236, 175–181.

    Article  PubMed  CAS  Google Scholar 

  7. Chung, Y.R., Kim, C.S., Mo, H.K., Son, D.Y., Nam, J.S., Chun, J., and Bae, K.S. 1999. Kitasatospora cheerisanensis sp. nov., a new species of the genus Kitasatospora that produces an antifungal agent. Int. J. Syst. Bacteriol. 49, 753–758.

    Article  PubMed  Google Scholar 

  8. Frändberg, E., Petersson, C., Lundgren, L.N., and Schnüre, J. 2000. Streptomyces halstedii K122 produces the antifungal compounds bafilomycin B1 and C1. Can. J. Microbiol. 46, 753–757.

    Article  PubMed  Google Scholar 

  9. Goetz, M.A., McCormick, P.A., Monaghan, R.L., and Ostlind, D.A. 1985. L-155,175: a new antiparasitic macrolide. Fermentation, isolation and structure. J. Antibiot. 38, 161–168.

    PubMed  CAS  Google Scholar 

  10. Gong, J., Kay, C.J., Barber, M.J., and Ferreira, G.C. 1996. Mutations at a glycine loop in aminolevulinate synthase affect pyridoxal phosphate cofactor binding and catalysis. Biochemistry 35, 14109–14117.

    Article  PubMed  CAS  Google Scholar 

  11. Hatfield, G.M., Woodard, R.W., and Son, J.K. 1992. Isolation and structure determination of new macrolide antibiotics. J. Nat. Prod. 55, 753–759.

    Article  PubMed  CAS  Google Scholar 

  12. Hunter, G.A. and Ferreira, G.C. 2011. Molecular enzymology of 5-aminolevulinate synthase, the gatekeeper of heme biosynthesis. Biochim. Biophys. Acta 1814, 1467–1473.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Hwang, J.Y., Kim, H.S., Kim, S.H., Oh, H.R., and Nam, D.H. 2013. Organization and characterization of a biosynthetic gene cluster for bafilomycin from Streptomyces griseus DSM 2608. AMB Express 3, 24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Hwang, J.Y., Kim, S.H., Oh, H.R., Cho, Y.J., Chun, J., Chung, Y.R., and Nam, D.H. 2014. Draft genome sequence of Kitasatospora cheerisanensis KCTC 2395 producing plecomacrolide against phytopathogenic fungi. Genome Announc. 2, e00604–14.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hwang, J.Y., Kim, S.H., Oh, H.R., Kwon, E.J., and Nam, D.H. 2015. Analysis of a draft genome sequence of Kitasatospora cheerisanensis KCTC 2395 producing bafilomycin antibiotics. J. Microbiol. 53, 84–89.

    Article  PubMed  CAS  Google Scholar 

  16. Ichikawa, N., Oguchi, A., Ikeda, H., Ishikawa, J., Kitani, S., Eatanabe, Y., Nakmura, S., Katano., Y., Kishi, E., Sasagawa, M., et al. 2010. Genome sequence of Kitasatospora setae NBRC 14216T: An evolutionary snapshot of the family Streptomycetaceae. DNA Res. 17, 393–406.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Kieser, T., Bibb, M.J., Buttner, M.J., Chater, K.F., and Hopwood, D.A. 2000. Practical Streptomyces genetics. The John Innes Foundation, Norwich, UK.

    Google Scholar 

  18. Knops, J., Suomensaari, S., Leen, M., McConlogue, L., Seubert, P., and Sinha, S. 1995. Cell-type and amyloid precursor protein-type specific inhibition of Aβ release by bafilomycin A1, a selective inhibitor of vacuolar ATPases. J. Biol. Chem. 270, 2419–2422.

    Article  PubMed  CAS  Google Scholar 

  19. Kretschmer, A., Dorgerloh, M., Deeg, M., and Hagenmaier, H. 1985. The structures of novel insecticidal macrolides: bafilomycins D and E, and oxohygrolidin. Agric. Biol. Chem. 49, 2509–2511.

    CAS  Google Scholar 

  20. Li, Z., Du, L., Zhang, W., Zhang, X., Jiang, Y., Liu, K., Men, P., Xu, H., Fortman, J.L., Sherman, D.H., et al. 2017. Complete elucidation of the late steps of bafilomycin biosynthesis in Streptomyces lohii. J. Biol. Chem. 292, 7095–7104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Lou, J., Wu, M., Yang, L., Lin, J., and Cen, P. 2014. High-level soluble expression of the hemA gene from Rhodobacter capsulatus and comparative study of its enzymatic properties. J. Zhejiang Univ. Sci. B 15, 491–499.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Moon, S., Hwang, W., Chung, Y.R., and Shin, J. 2003. New cytotoxic bafilomycin C1-amide produced by Kitasatospora cheerisanensis. J. Antibiot. 56, 856–861.

    Article  PubMed  CAS  Google Scholar 

  23. Morineau, G., Azoulay, M., and Frappier, F. 1989. Reaction of Ophthalaldehyde with amino acids and glutathione. J. Chromatogr. 467, 209–216.

    Article  PubMed  CAS  Google Scholar 

  24. Ndejouong, B.L.S.T., Sattler, I., Maier, A., Kelter, G., Menzel, K.D., Fiebig, H.H., and Hertweck, C. 2010. Hygrobafilomycin, a cytotoxic and antifungal macrolide bearing a unique monoalkylmaleic anhydride moiety, from Streptomyces varsoviensis. J. Antibiot. 63, 359–363.

    Article  CAS  Google Scholar 

  25. Ohta, E., Ohta, S., Kubota, N.K., Suzuli, M., Ogawa, T., Yamasaki, A., and Ikegami, S. 2001. Micromonospolide A, a new macrolide from Micromonospora sp. Tetrahedron Lett. 42, 4179–4181.

    Article  CAS  Google Scholar 

  26. Otoguro, K., Nakagawa, A., and Omura, S. 1988. Setamycin, a 16- membered macrolide antibiotic. Identification and nematoidal activity. J. Antibiot. 41, 250–252.

    Article  PubMed  CAS  Google Scholar 

  27. Petrícková, K., Chronáková, A., Zelenka, T., Chrudimský, T., Pospíšil, S., Petrícek, M., and Krištufek, V. 2015. Evolution of cyclizing 5-aminolevulinate synthases in the biosynthesis of actinomycete secondary metabolites: outcomes for genetic screening techniques. Front. Microbiol. 6, 814.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Petrícková, M., Petrícková, K., Havlicek, L., and Felsberg, J. 2006. Occurrence of two 5-aminolevulinate biosynthetic pathways in Streptomyces nodosus subsp. asukaensis is linked with the production of asukamycin. J. Bacteriol. 188, 5113–5123.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Sambrook, J. and Russell, D.W. 2001. Molecular cloning: A laboratory manual, 3rd ed. Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y., USA.

    Google Scholar 

  30. Saurin, A.J., Hamllet, J., Clague, M.J., and Penington, R. 1996. Inhibition of mitogen-induced DNA synthesis by bafilomycin A1 in Swiss 3T3 fibrobasts. Biotechnol. J. 313, 65–69.

    CAS  Google Scholar 

  31. Tan, D. and Ferreira, G.C. 1996. Active site of 5-aminolevulinate synthase resides at a subunit interface. Evidence from in vivo heterodimer formation. Biochemistry 35, 8934–8941.

    PubMed  CAS  Google Scholar 

  32. Vanek, Z., Mateju, J., and Curdova, E. 1991. Immunomodulators isolated from microorganisms. Folia Microbiol. 36, 99–111.

    Article  CAS  Google Scholar 

  33. Wilton, J.H., Hokanson, G.C., and French, J.C. 1985. PD 118,576: a new antitumor macrolide antibiotic. J. Antibiot. 38, 1449–1452.

    Article  PubMed  CAS  Google Scholar 

  34. Werner, G., Hagenmaier, H., Albert, K., Kohlshorn, H., and Drautz, H. 1983. The structure of the bafilomycins, a new group of macrolide antibiotics. Tetrahedron Lett. 24, 5193–5196.

    Article  CAS  Google Scholar 

  35. Werner, G., Hagenmaier, H., Drautz, H., Baumgartner, A., and Zähner, H. 1984. Metabolic products of microorganisms. 224. Bafilomycins, a new group of macrolide antibiotics production, isolation, chemical structure and biological activity. J. Antibiot. 37, 110–117.

    PubMed  CAS  Google Scholar 

  36. Zhang, W., Bolla, M.L., Kahne, D., and Walsh, C.T. 2010. A three enzyme pathway for 2-amino-3-hydroxycyclopent-2-enone formation and incorporation in natural product biosynthesis. J. Am. Chem. Soc. 132, 6402–6411.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  37. Zhang, W., Fortman, J.L., Carlson, J.C., Yan, J., Liu, Y., Bai, F., Guan, W., Jia, J., Matainaho, T., Sherman, D.H., et al. 2013. Characterization of the bafilomycin gene cluster from Streptomyces lohii. Chembiochem 14, 301–306.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Doo Hyun Nam.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hanh, N.P.K., Hwang, J.Y., Oh, H.R. et al. Biosynthesis of 2-amino-3-hydroxycyclopent-2-enone moiety of bafilomycin in Kitasatospora cheerisanensis KCTC2395. J Microbiol. 56, 571–578 (2018). https://doi.org/10.1007/s12275-018-8267-0

Download citation

Keywords

  • 5-aminolevulinic acid synthase
  • acyl-CoA ligase
  • 2-amino-3-hydroxycyclopent-2-enone
  • C5N
  • bafilomycin
  • Kitasatospora cheerisanensis