Progress of analytical tools and techniques for human gut microbiome research

Abstract

Massive DNA sequencing studies have expanded our insights and understanding of the ecological and functional characteristics of the gut microbiome. Advanced sequencing technologies allow us to understand the close association of the gut microbiome with human health and critical illnesses. In the future, analyses of the gut microbiome will provide key information associating with human individual health, which will help provide personalized health care for diseases. Numerous molecular biological analysis tools have been rapidly developed and employed for the gut microbiome researches; however, methodological differences among researchers lead to inconsistent data, limiting extensive share of data. It is therefore very essential to standardize the current methodologies and establish appropriate pipelines for human gut microbiome research. Herein, we review the methods and procedures currently available for studying the human gut microbiome, including fecal sample collection, metagenomic DNA extraction, massive DNA sequencing, and data analyses with bioinformatics. We believe that this review will contribute to the progress of gut microbiome research in the clinical and practical aspects of human health.

This is a preview of subscription content, log in to check access.

References

  1. Abrahamson, M., Hooker, E., Ajami, N.J., Petrosino, J.F., and Orwoll, E.S. 2017. Successful collection of stool samples for microbiome analyses from a large community-based population of elderly men. Contemp. Clin. Trials Commun. 7, 158–162.

    PubMed  PubMed Central  Article  Google Scholar 

  2. Abu-Ali, G.S., Mehta, R.S., Lloyd-Price, J., Mallick, H., Branck, T., Ivey, K.L., Drew, D.A., DuLong, C., Rimm, E., Izard, J., et al. 2018. Metatranscriptome of human faecal microbial communities in a cohort of adult men. Nat. Microbiol. 3, 356–366.

    PubMed  Article  CAS  Google Scholar 

  3. Abubucker, S., Segata, N., Goll, J., Schubert, A.M., Izard, J., Cantarel, B.L., Rodriguez-Mueller, B., Zucker, J., Thiagarajan, M., Henrissat, B., et al. 2012. Metabolic reconstruction for metagenomic data and its application to the human microbiome. PLoS Comput. Biol. 8, e1002358.

    Article  CAS  Google Scholar 

  4. Ambardar, S., Gupta, R., Trakroo, D., Lal, R., and Vakhlu, J. 2016. High throughput sequencing: An overview of sequencing chemistry. Indian J. Microbiol. 56, 394–404.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  5. Anderson, E.L., Li, W., Klitgord, N., Highlander, S.K., Dayrit, M., Seguritan, V., Yooseph, S., Biggs, W., Venter, J.C., Nelson, K.E., et al. 2016. A robust ambient temperature collection and stabilization strategy: Enabling worldwide functional studies of the human microbiome. Sci. Rep. 6, 31731.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  6. Anhe, F.F., Varin, T.V., Le Barz, M., Desjardins, Y., Levy, E., Roy, D., and Marette, A. 2015. Gut microbiota dysbiosis in obesitylinked metabolic diseases and prebiotic potential of polyphenolrich extracts. Curr. Obes. Rep. 4, 389–400.

    PubMed  Article  Google Scholar 

  7. Armanhi, J.S.L., de Souza, R.S.C., de Araújo, L.M., Okura, V.K., Mieczkowski, P., Imperial, J., and Arruda, P. 2016. Multiplex amplicon sequencing for microbe identification in community-based culture collections. Sci. Rep. 6, 29543.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  8. Bag, S., Saha, B., Mehta, O., Anbumani, D., Kumar, N., Dayal, M., Pant, A., Kumar, P., Saxena, S., Allin, K.H., et al. 2016. An improved method for high quality metagenomics DNA extraction from human and environmental samples. Sci. Rep. 6, 26775.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  9. Bahl, M.I., Bergstrom, A., and Licht, T.R. 2012. Freezing fecal samples prior to DNA extraction affects the firmicutes to bacteroidetes ratio determined by downstream quantitative PCR analysis. FEMS Microbiol. Lett. 329, 193–197.

    PubMed  Article  CAS  Google Scholar 

  10. Ballester, L.Y., Luthra, R., Kanagal-Shamanna, R., and Singh, R.R. 2016. Advances in clinical next-generation sequencing: target enrichment and sequencing technologies. Expert Rev. Mol. Diagn. 16, 357–372.

    PubMed  Article  CAS  Google Scholar 

  11. Bashiardes, S., Zilberman-Schapira, G., and Elinav, E. 2016. Use of metatranscriptomics in microbiome research. Bioinform. Biol. Insights 10, 19–25.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  12. Bassis, C.M., Moore, N.M., Lolans, K., Seekatz, A.M., Weinstein, R.A., Young, V.B., and Hayden, M.K. 2017. Comparison of stool versus rectal swab samples and storage conditions on bacterial community profiles. BMC Microbiol. 17, 78.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  13. Bedarf, J.R., Hildebrand, F., Coelho, L.P., Sunagawa, S., Bahram, M., Goeser, F., Bork, P., and Wüllner, U. 2017. Functional implications of microbial and viral gut metagenome changes in early stage L-DOPA-naïve Parkinson’s disease patients. Genome Med. 9, 39.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  14. Benson, D.A., Cavanaugh, M., Clark, K., Karsch-Mizrachi, I., Lipman, D.J., Ostell, J., and Sayers, E.W. 2013. GenBank. Nucleic Acids Res. 41, D36–42.

    PubMed  Article  CAS  Google Scholar 

  15. Bentley, D.R., Balasubramanian, S., Swerdlow, H.P., Smith, G.P., Milton, J., Brown, C.G., Hall, K.P., Evers, D.J., Barnes, C.L., Bignell, H.R., et al. 2008. Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456, 53–59.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  16. Bikel, S., Valdez-Lara, A., Cornejo-Granados, F., Rico, K., Canizales-Quinteros, S., Soberon, X., Del Pozo-Yauner, L., and Ochoa-Leyva, A. 2015. Combining metagenomics, metatranscriptomics and viromics to explore novel microbial interactions: towards a systemslevel understanding of human microbiome. Comput. Struct. Biotechnol. J. 13, 390–401.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  17. Boisvert, S., Raymond, F., Godzaridis, E., Laviolette, F., and Corbeil, J. 2012. Ray Meta: scalable de novo metagenome assembly and profiling. Genome Biol. 13, R122.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  18. Bray, J.R. and Curtis, J.T. 1957. An ordination of the upland forest communities of southern Wisconsin. Ecol. Monogr. 27, 326–349.

    Article  Google Scholar 

  19. Budding, A.E., Grasman, M.E., Eck, A., Bogaards, J.A., Vandenbroucke-Grauls, C.M.J.E., van Bodegraven, A.A., and Savelkoul, P.H.M. 2014. Rectal swabs for analysis of the intestinal microbiota. PLoS One 9, e101344.

    Article  CAS  Google Scholar 

  20. Byrne, A., Beaudin, A.E., Olsen, H.E., Jain, M., Cole, C., Palmer, T., DuBois, R.M., Forsberg, E.C., Akeson, M., and Vollmers, C. 2017. Nanopore long-read RNAseq reveals widespread transcriptional variation among the surface receptors of individual B cells. Nat. Commun. 8, 16027.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  21. Cao, Y., Fanning, S., Proos, S., Jordan, K., and Srikumar, S. 2017. A review on the applications of next generation sequencing technologies as applied to food-related microbiome studies. Front. Microbiol. 8, 1829.

    PubMed  PubMed Central  Article  Google Scholar 

  22. Caporaso, J.G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F.D., Costello, E.K., Fierer, N., Pena, A.G., Goodrich, J.K., Gordon, J.I., et al. 2010. QIIME allows analysis of high-throughput community sequencing data. Nat. Methods 7, 335–336.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  23. Carding, S., Verbeke, K., Vipond, D.T., Corfe, B.M., and Owen, L.J. 2015. Dysbiosis of the gut microbiota in disease. Microb. Ecol. Health Dis. 26, 26191.

    PubMed  Google Scholar 

  24. Cardona, S., Eck, A., Cassellas, M., Gallart, M., Alastrue, C., Dore, J., Azpiroz, F., Roca, J., Guarner, F., and Manichanh, C. 2012. Storage conditions of intestinal microbiota matter in metagenomic analysis. BMC Microbiol. 12, 158.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  25. Carozzi, F.M. and Sani, C. 2013. Fecal collection and stabilization methods for improved fecal DNA test for colorectal cancer in a screening setting. J. Cancer Res. 2013, 8.

    Article  CAS  Google Scholar 

  26. Carroll, I.M., Ringel-Kulka, T., Siddle, J.P., Klaenhammer, T.R., and Ringel, Y. 2012. Characterization of the fecal microbiota using high-throughput sequencing reveals a stable microbial community during storage. PLoS One 7, e46953.

    Article  CAS  Google Scholar 

  27. Chandler, J.A., Liu, R.M., and Bennett, S.N. 2015. RNA shotgun metagenomic sequencing of northern California (USA) mosquitoes uncovers viruses, bacteria, and fungi. Front. Microbiol. 6, 185.

    PubMed  PubMed Central  Article  Google Scholar 

  28. Chen, J., Domingue, J.C., and Sears, C.L. 2017a. Microbiota dysbiosis in select human cancers: Evidence of association and causality. Semin. Immunol. 32, 25–34.

    PubMed  CAS  Google Scholar 

  29. Chen, S.Y., Deng, F., Jia, X., Li, C., and Lai, S.J. 2017b. A transcriptome atlas of rabbit revealed by PacBio single-molecule longread sequencing. Sci. Rep. 7, 7648.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  30. Choo, J.M., Leong, L.E., and Rogers, G.B. 2015. Sample storage conditions significantly influence faecal microbiome profiles. Sci. Rep. 5, 16350.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  31. Claesson, M.J., Wang, Q., O’Sullivan, O., Greene-Diniz, R., Cole, J.R., Ross, R.P., and O’Toole, P.W. 2010. Comparison of two next-generation sequencing technologies for resolving highly complex microbiota composition using tandem variable 16S rRNA gene regions. Nucleic Acids Res. 38, e200.

    Article  CAS  Google Scholar 

  32. Cole, J.R., Wang, Q., Fish, J.A., Chai, B., McGarrell, D.M., Sun, Y., Brown, C.T., Porras-Alfaro, A., Kuske, C.R., and Tiedje, J.M. 2014. Ribosomal database project: data and tools for high throughput rRNA analysis. Nucleic Acids Res. 42, D633–642.

    PubMed  Article  CAS  Google Scholar 

  33. D’Argenio, V., Casaburi, G., Precone, V., and Salvatore, F. 2014. Comparative metagenomic analysis of human gut microbiome composition using two different bioinformatic pipelines. Biomed. Res. Int. 2014, 325340.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  34. de la Cuesta-Zuluaga, J. and Escobar, J.S. 2016. Considerations for optimizing microbiome analysis using a marker gene. Front. Nutr. 3, 26.

    PubMed  PubMed Central  Google Scholar 

  35. DeSantis, T.Z., Hugenholtz, P., Larsen, N., Rojas, M., Brodie, E.L., Keller, K., Huber, T., Dalevi, D., Hu, P., and Andersen, G.L. 2006. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl. Environ. Microbiol. 72, 5069–5072.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  36. Dominianni, C., Wu, J., Hayes, R.B., and Ahn, J. 2014. Comparison of methods for fecal microbiome biospecimen collection. BMC Microbiol. 14, 103.

    PubMed  PubMed Central  Article  Google Scholar 

  37. Edgar, R.C. 2010. Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26, 2460–2461.

    PubMed  Article  CAS  Google Scholar 

  38. Ehrlich, D. 2012. Vol.2018. http://www.mgps.eu (Accessed date: Aug. 20, 2018).

    Google Scholar 

  39. Eid, J., Fehr, A., Gray, J., Luong, K., Lyle, J., Otto, G., Peluso, P., Rank, D., Baybayan, P., Bettman, B., et al. 2009. Real-time DNA sequencing from single polymerase molecules. Science 323, 133–138.

    PubMed  Article  CAS  Google Scholar 

  40. Ercolini, D. 2013. High-throughput sequencing and metagenomics: moving forward in the culture-independent analysis of food microbial ecology. Appl. Environ. Microbiol. 79, 3148–3155.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  41. Flemer, B., Lynch, D.B., Brown, J.M.R., Jeffery, I.B., Ryan, F.J., Claesson, M.J., O’Riordain, M., Shanahan, F., and O’Toole, P.W. 2017. Tumour-associated and non-tumour-associated microbiota in colorectal cancer. Gut 66, 633–643.

    PubMed  Article  CAS  Google Scholar 

  42. Fouhy, F., Clooney, A.G., Stanton, C., Claesson, M.J., and Cotter, P.D. 2016. 16S rRNA gene sequencing of mock microbial populations-impact of DNA extraction method, primer choice and sequencing platform. BMC Microbiol. 16, 123.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  43. Fouhy, F., Deane, J., Rea, M.C., O’Sullivan, O., Ross, R.P., O’Callaghan, G., Plant, B.J., and Stanton, C. 2015. The effects of freezing on faecal microbiota as determined using MiSeq sequencing and culture-based investigations. PLoS One 10, e0119355.

    Article  CAS  Google Scholar 

  44. Frankel, A.E., Froehlich, T.W., Kim, J., Coughlin, L.A., Xie, Y., Frenkel, E.P., and Koh, A.Y. 2017. Metagenomic shotgun sequencing to identify specific human gut microbes associated with immune checkpoint therapy efficacy in melanoma patients. J. Clin. Oncol. 35, 9516–9516.

    Article  Google Scholar 

  45. Franzosa, E.A., Morgan, X.C., Segata, N., Waldron, L., Reyes, J., Earl, A.M., Giannoukos, G., Boylan, M.R., Ciulla, D., Gevers, D., et al. 2014. Relating the metatranscriptome and metagenome of the human gut. Proc. Natl. Acad. Sci. USA 111, e2329–E2338.

    Article  CAS  Google Scholar 

  46. Gerasimidis, K., Bertz, M., Quince, C., Brunner, K., Bruce, A., Combet, E., Calus, S., Loman, N., and Ijaz, U.Z. 2016. The effect of DNA extraction methodology on gut microbiota research applications. BMC Res. Notes 9, 365.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  47. Gigliucci, F., von Meijenfeldt, F.A.B., Knijn, A., Michelacci, V., Scavia, G., Minelli, F., Dutilh, B.E., Ahmad, H.M., Raangs, G.C., Friedrich, A.W., et al. 2018. Metagenomic characterization of the human intestinal microbiota in fecal samples from STEC-infected patients. Front. Cell. Infect. Microbiol. 8, 25.

    PubMed  PubMed Central  Article  Google Scholar 

  48. Gocayne, J., Robinson, D.A., FitzGerald, M.G., Chung, F.Z., Kerlavage, A.R., Lentes, K.U., Lai, J., Wang, C.D., Fraser, C.M., and Venter, J.C. 1987. Primary structure of rat cardiac beta-adrenergic and muscarinic cholinergic receptors obtained by automated DNA sequence analysis: further evidence for a multigene family. Proc. Natl. Acad. Sci. USA 84, 8296–8300.

    PubMed  Article  CAS  Google Scholar 

  49. Goff, S.A., Ricke, D., Lan, T.H., Presting, G., Wang, R., Dunn, M., Glazebrook, J., Sessions, A., Oeller, P., Varma, H., et al. 2002. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica). Science 296, 92–100.

    PubMed  Article  CAS  Google Scholar 

  50. Gower, J.C. 1966. Some distance properties of latent root and vector methods used in multivariate analysis. Biometrika 53, 325–338.

    Article  Google Scholar 

  51. Guo, F. and Zhang, T. 2013. Biases during DNA extraction of activated sludge samples revealed by high throughput sequencing. Appl. Microbiol. Biotechnol. 97, 4607–4616.

    PubMed  Article  CAS  Google Scholar 

  52. Hale, V.L., Tan, C.L., Knight, R., and Amato, K.R. 2015. Effect of preservation method on spider monkey (Ateles geoffroyi) fecal microbiota over 8 weeks. J. Microbiol. Methods 113, 16–26.

    PubMed  Article  Google Scholar 

  53. Hamad, I., Ranque, S., Azhar, E.I., Yasir, M., Jiman-Fatani, A.A., Tissot-Dupont, H., Raoult, D., and Bittar, F. 2017. Culturomics and amplicon-based metagenomic approaches for the study of fungal population in human gut microbiota. Sci. Rep. 7, 16788.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  54. Hodkinson, B.P. and Grice, E.A. 2015. Next-generation sequencing: A review of technologies and tools for wound microbiome research. Adv. Wound Care 4, 50–58.

    Article  Google Scholar 

  55. Hooda, S., Boler, B.M.V., Serao, M.C.R., Brulc, J.M., Staeger, M.A., Boileau, T.W., Dowd, S.E., Fahey, J.G.C., and Swanson, K.S. 2012. 454 pyrosequencing reveals a shift in fecal microbiota of healthy adult men consuming polydextrose or soluble corn fiber. J. Nutr. 142, 1259–1265.

    PubMed  CAS  Google Scholar 

  56. Huang, K., Brady, A., Mahurkar, A., White, O., Gevers, D., Huttenhower, C., and Segata, N. 2014. MetaRef: a pan-genomic database for comparative and community microbial genomics. Nucleic Acids Res. 42, D617–624.

    Google Scholar 

  57. International Human Genome Sequencing Consortium. 2001. Initial sequencing and analysis of the human genome. Nature 409, 860.

    Article  Google Scholar 

  58. Jain, M., Olsen, H.E., Paten, B., and Akeson, M. 2016. The Oxford nanopore MinION: delivery of nanopore sequencing to the genomics community. Genome Biol. 17, 239.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  59. Jain, M., Tyson, J.R., Loose, M., Ip, C.L.C., Eccles, D.A., O’Grady, J., Malla, S., Leggett, R.M., Wallerman, O., Jansen, H.J., et al. 2017. MinION analysis and reference consortium: Phase 2 data release and analysis of R9.0 chemistry [version 1; referees: 1 approved, 2 approved with reservations]. F1000Res. 6, 760.

    PubMed  PubMed Central  Article  Google Scholar 

  60. Jha, A.R., Davenport, E.R., Gautam, Y., Bhandari, D., Tandukar, S., Ng, K., Holmes, S., Gautam, G.P., Sherchand, J.B., Bustamante, C., et al. 2018. Gut microbiome transition across a lifestyle gradient in Himalaya. bioRxiv 253450.

    Google Scholar 

  61. Kanehisa, M., Goto, S., Sato, Y., Furumichi, M., and Tanabe, M. 2012. KEGG for integration and interpretation of large-scale molecular data sets. Nucleic Acids Res. 40, D109–114.

    PubMed  Article  CAS  Google Scholar 

  62. Kchouk, M., Gibrat, J.F., and Elloumi, M. 2017. Generations of sequencing technologies: From first to next generation. Biol. Med. 9, 3.

    Article  Google Scholar 

  63. Kelley, D.R., Liu, B., Delcher, A.L., Pop, M., and Salzberg, S.L. 2012. Gene prediction with glimmer for metagenomic sequences augmented by classification and clustering. Nucleic Acids Res. 40, e9.

    Article  CAS  Google Scholar 

  64. Kennedy, N.A., Walker, A.W., Berry, S.H., Duncan, S.H., Farquarson, F.M., Louis, P., Thomson, J.M., Satsangi, J., Flint, H.J., Parkhill, J., et al. 2014. The impact of different DNA extraction kits and laboratories upon the assessment of human gut microbiota composition by 16S rRNA gene sequencing. PLoS One 9, e88982.

    Article  CAS  Google Scholar 

  65. Kent, W.J. 2002. BLAT–the BLAST-like alignment tool. Genome Res. 12, 656–664.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  66. Kerkhof, L.J., Dillon, K.P., Häggblom, M.M., and McGuinness, L.R. 2017. Profiling bacterial communities by MinION sequencing of ribosomal operons. Microbiome 5, 116.

    PubMed  PubMed Central  Article  Google Scholar 

  67. Kim, Y., Han, M.S., Kim, J., Kwon, A., and Lee, K.A. 2014. Evaluation of three automated nucleic acid extraction systems for identification of respiratory viruses in clinical specimens by multiplex real-time PCR. Biomed. Res. Int. 2014, 430650.

    PubMed  PubMed Central  Google Scholar 

  68. Koren, S., Treangen, T.J., and Pop, M. 2011. Bambus 2: scaffolding metagenomes. Bioinformatics 27, 2964–2971.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  69. Langille, M.G., Zaneveld, J., Caporaso, J.G., McDonald, D., Knights, D., Reyes, J.A., Clemente, J.C., Burkepile, D.E., Vega Thurber, R.L., Knight, R., et al. 2013. Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat. Biotechnol. 31, 814–821.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  70. Laserson, J., Jojic, V., and Koller, D. 2011. Genovo: de novo assembly for metagenomes. J. Comput. Biol. 18, 429–443.

    PubMed  Article  CAS  Google Scholar 

  71. Lauber, C.L., Zhou, N., Gordon, J.I., Knight, R., and Fierer, N. 2010. Effect of storage conditions on the assessment of bacterial community structure in soil and human-associated samples. FEMS Microbiol. Lett. 307, 80–86.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  72. Laver, T., Harrison, J., O’Neill, P.A., Moore, K., Farbos, A., Paszkiewicz, K., and Studholme, D.J. 2015. Assessing the performance of the Oxford nanopore technologies MinION. Biomol. Detect. Quantif. 3, 1–8.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  73. Lazarevic, V., Whiteson, K., Huse, S., Hernandez, D., Farinelli, L., Osteras, M., Schrenzel, J., and Francois, P. 2009. Metagenomic study of the oral microbiota by Illumina high-throughput sequencing. J. Microbiol. Methods 79, 266–271.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  74. Lee, H., Gurtowski, J., Yoo, S., Nattestad, M., Marcus, S., Goodwin, S., McCombie, W.R., and Schatz, M. 2016. Third-generation sequencing and the future of genomics. bioRxiv 048603.

    Google Scholar 

  75. Lee, J.H., Park, Y., Choi, J.R., Lee, E.K., and Kim, H.S. 2010. Comparisons of three automated systems for genomic DNA extraction in a clinical diagnostic laboratory. Yonsei Med. J. 51, 104–110.

    PubMed  Article  CAS  Google Scholar 

  76. Leggett, R.M., Alcon-Giner, C., Heavens, D., Caim, S., Brook, T.C., Kujawska, M., Hoyles, L., Clarke, P., Hall, L., and Clark, M.D. 2017. Rapid MinION metagenomic profiling of the preterm infant gut microbiota to aid in pathogen diagnostics. bioRxiv 180406.

    Google Scholar 

  77. Li, R., Tun, H.M., Jahan, M., Zhang, Z., Kumar, A., Fernando, D., Farenhorst, A., and Khafipour, E. 2017. Comparison of DNA-, PMA-, and RNA-based 16S rRNA Illumina sequencing for detection of live bacteria in water. Sci. Rep. 7, 5752.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  78. Li, R., Zhu, H., Ruan, J., Qian, W., Fang, X., Shi, Z., Li, Y., Li, S., Shan, G., Kristiansen, K., et al. 2010. De novo assembly of human genomes with massively parallel short read sequencing. Genome Res. 20, 265–272.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  79. Li, W. and Godzik, A. 2006. Cd-hit: a fast program for clustering and comparing large sets of protein or nucleotide sequences. Bioinformatics 22, 1658–1659.

    PubMed  Article  CAS  Google Scholar 

  80. Liang, D., Leung, R.K.K., Guan, W., and Au, W.W. 2018. Involvement of gut microbiome in human health and disease: brief overview, knowledge gaps and research opportunities. Gut. Pathogens. 10, 3.

    PubMed  PubMed Central  Article  Google Scholar 

  81. Lim, M.Y., Song, E.J., Kim, S.H., Lee, J., and Nam, Y.D. 2018. Comparison of DNA extraction methods for human gut microbial community profiling. Syst. Appl. Microbiol. 41, 151–157.

    PubMed  Article  CAS  Google Scholar 

  82. Ling, Z., Liu, X., Luo, Y., Yuan, L., Nelson, K.E., Wang, Y., Xiang, C., and Li, L. 2013. Pyrosequencing analysis of the human microbiota of healthy Chinese undergraduates. BMC Genomics 14, 390.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  83. Liu, L., Li, Y., Li, S., Hu, N., He, Y., Pong, R., Lin, D., Lu, L., and Law, M. 2012. Comparison of next-generation sequencing systems. J. Biomed. Biotechnol. 2012, 251364.

    PubMed  PubMed Central  Google Scholar 

  84. Loman, N.J., Misra, R.V., Dallman, T.J., Constantinidou, C., Gharbia, S.E., Wain, J., and Pallen, M.J. 2012. Performance comparison of benchtop high-throughput sequencing platforms. Nat. Biotechnol. 30, 434–439.

    PubMed  Article  CAS  Google Scholar 

  85. Lozupone, C., Hamady, M., and Knight, R. 2006. UniFrac–an online tool for comparing microbial community diversity in a phylogenetic context. BMC Bioinformatics 7, 371.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  86. Lu, S., Park, M., Ro, H.S., Lee, D.S., Park, W., and Jeon, C.O. 2006. Analysis of microbial communities using culture-dependent and culture-independent approaches in an anaerobic/aerobic SBR reactor. J. Microbiol. 44, 155–161.

    PubMed  CAS  Google Scholar 

  87. Mardis, E.R. 2013. Next-generation sequencing platforms. Annu. Rev. Anal. Chem. 6, 287–303.

    Article  CAS  Google Scholar 

  88. Margulies, M., Egholm, M., Altman, W.E., Attiya, S., Bader, J.S., Bemben, L.A., Berka, J., Braverman, M.S., Chen, Y.J., Chen, Z., et al. 2005. Genome sequencing in microfabricated high-density picolitre reactors. Nature 437, 376–380.

    PubMed  PubMed Central  Article  Google Scholar 

  89. Markowitz, V.M., Chen, I.M., Chu, K., Szeto, E., Palaniappan, K., Pillay, M., Ratner, A., Huang, J., Pagani, I., Tringe, S., et al. 2014. IMG/M 4 version of the integrated metagenome comparative analysis system. Nucleic Acids Res. 42, D568–573.

    Google Scholar 

  90. Markowitz, V.M., Chen, I.M., Palaniappan, K., Chu, K., Szeto, E., Grechkin, Y., Ratner, A., Jacob, B., Huang, J., Williams, P., et al. 2012. IMG: the integrated microbial genomes database and comparative analysis system. Nucleic Acids Res. 40, D115–122.

    Google Scholar 

  91. Maukonen, J., Simoes, C., and Saarela, M. 2012. The currently used commercial DNA-extraction methods give different results of clostridial and actinobacterial populations derived from human fecal samples. FEMS Microbiol. Ecol. 79, 697–708.

    PubMed  Article  CAS  Google Scholar 

  92. Maxam, A.M. and Gilbert, W. 1977. A new method for sequencing DNA. Proc. Natl. Acad. Sci. USA 74, 560–564.

    PubMed  Article  CAS  Google Scholar 

  93. McCarthy, A. 2010. Third generation DNA sequencing: pacific biosciences’ single molecule real time technology. Chem. Biol. 17, 675–676.

    PubMed  Article  CAS  Google Scholar 

  94. Meyer, F., Paarmann, D., D’Souza, M., Olson, R., Glass, E.M., Kubal, M., Paczian, T., Rodriguez, A., Stevens, R., Wilke, A., et al. 2008. The metagenomics RAST server-a public resource for the automatic phylogenetic and functional analysis of metagenomes. BMC Bioinformatics 9, 386.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  95. Myer, P.R., Kim, M., Freetly, H.C., and Smith, T.P.L. 2016. Metagenomic and near full-length 16S rRNA sequence data in support of the phylogenetic analysis of the rumen bacterial community in steers. Data Brief 8, 1048–1053.

    PubMed  PubMed Central  Article  Google Scholar 

  96. Namiki, T., Hachiya, T., Tanaka, H., and Sakakibara, Y. 2012. Meta-Velvet: an extension of velvet assembler to de novo metagenome assembly from short sequence reads. Nucleic Acids Res. 40, e155.

    Article  CAS  Google Scholar 

  97. Neefs, J.M., Van de Peer, Y., De Rijk, P., Chapelle, S., and De Wachter, R. 1993. Compilation of small ribosomal subunit RNA structures. Nucleic Acids Res. 21, 3025–3049.

    PubMed  CAS  Google Scholar 

  98. Nguyen, L.D.N., Deschaght, P., Merlin, S., Loywick, A., Audebert, C., Van Daele, S., Viscogliosi, E., Vaneechoutte, M., and Delhaes, L. 2016. Effects of propidium monoazide (PMA) treatment on mycobiome and bacteriome analysis of cystic fibrosis airways during exacerbation. PLoS One 11, e0168860.

    Google Scholar 

  99. Nilakanta, H., Drews, K.L., Firrell, S., Foulkes, M.A., and Jablonski, K.A. 2014. A review of software for analyzing molecular sequences. BMC Res. Notes 7, 830.

    PubMed  PubMed Central  Article  Google Scholar 

  100. Nocker, A., Cheung, C.Y., and Camper, A.K. 2006. Comparison of propidium monoazide with ethidium monoazide for differentiation of live vs. dead bacteria by selective removal of DNA from dead cells. J. Microbiol. Methods 67, 310–320.

    PubMed  Article  CAS  Google Scholar 

  101. Overbeek, R., Olson, R., Pusch, G.D., Olsen, G.J., Davis, J.J., Disz, T., Edwards, R.A., Gerdes, S., Parrello, B., Shukla, M., et al. 2014. The SEED and the rapid annotation of microbial genomes using subsystems technology (RAST). Nucleic Acids Res. 42, D206–D214.

    Google Scholar 

  102. Parks, D.H., Tyson, G.W., Hugenholtz, P., and Beiko, R.G. 2014. STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30, 3123–3124.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  103. Peng, Y., Leung, H.C., Yiu, S.M., and Chin, F.Y. 2011. Meta-IDBA: a de novo assembler for metagenomic data. Bioinformatics 27, i94–101.

    Google Scholar 

  104. Pillai, S., Gopalan, V., and Lam, A.K. 2017. Review of sequencing platforms and their applications in phaeochromocytoma and paragangliomas. Crit. Rev. Oncol. Hematol. 116, 58–67.

    PubMed  Article  Google Scholar 

  105. Pinchi, V., Focardi, M., Martinelli, D., Norelli, G.A., Carboni, I., Gozzini, A., Romolini, C., Torricelli, F., and Ricci, U. 2013. DNA extraction method from teeth using QIAcube. Forensic Sci. Int. Genet. Suppl. Ser. 4, e276–e277.

    Article  Google Scholar 

  106. Plummer, E. Twin, J., Bulach, D.M., Garland, S.M., and Tabtizi, S.N. 2015. A comparison of three bioinformatics pipelines for the analysis of preterm gut microbiota using 16S rRNA gene sequencing data. J. Proteomics Bioinform. 8, 283–291.

    Article  Google Scholar 

  107. Powell, S., Forslund, K., Szklarczyk, D., Trachana, K., Roth, A., Huerta-Cepas, J., Gabaldon, T., Rattei, T., Creevey, C., Kuhn, M., et al. 2014. eggNOG v4.0: nested orthology inference across 3686 organisms. Nucleic Acids Res. 42, D231–239.

    Google Scholar 

  108. Qin, J., Li, R., Raes, J., Arumugam, M., Burgdorf, K.S., Manichanh, C., Nielsen, T., Pons, N., Levenez, F., Yamada, T., et al. 2010. A human gut microbial gene catalogue established by metagenomic sequencing. Nature 464, 59–65.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  109. Quince, C., Walker, A.W., Simpson, J.T., Loman, N.J., and Segata, N. 2017. Shotgun metagenomics, from sampling to analysis. Nat. Biotechnol. 35, 833.

    PubMed  Article  CAS  Google Scholar 

  110. Reuter, J.A., Spacek, D.V., and Snyder, M.P. 2015. High-throughput sequencing technologies. Mol. Cell. 58, 586–597.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  111. Rho, M., Tang, H., and Ye, Y. 2010. FragGeneScan: predicting genes in short and error-prone reads. Nucleic Acids Res. 38, e191.

    Article  CAS  Google Scholar 

  112. Rhoads, A. and Au, K.F. 2015. PacBio sequencing and its applications. Genomics Proteomics Bioinformatics 13, 278–289.

    PubMed  PubMed Central  Article  Google Scholar 

  113. Rintala, A., Pietilä, S., Munukka, E., Eerola, E., Pursiheimo, J.P., Laiho, A., Pekkala, S., and Huovinen, P. 2017. Gut microbiota analysis results are highly dependent on the 16S rRNA gene target region, whereas the impact of DNA extraction is minor. J. Biomol. Tech. 28, 19–30.

    PubMed  PubMed Central  Google Scholar 

  114. Rizzo, J.M. and Buck, M.J. 2012. Key principles and clinical applications of “next-generation” DNA sequencing. Cancer Prev. Res. (Phila) 5, 887–900.

    Article  CAS  Google Scholar 

  115. Rochelle, P.A., Cragg, B.A., Fry, J.C., John Parkes, R., and Weightman, A.J. 1994. Effect of sample handling on estimation of bacterial diversity in marine sediments by 16S rRNA gene sequence analysis. FEMS Microbiol. Ecol. 15, 215–225.

    Article  CAS  Google Scholar 

  116. Rodrigues Hoffmann, A., Proctor, L.M., Surette, M.G., and Suchodolski, J.S. 2016. The microbiome: The trillions of microorganisms that maintain health and cause disease in humans and companion animals. Vet. Pathol. 53, 10–21.

    PubMed  Article  CAS  Google Scholar 

  117. Ronaghi, M., Karamohamed, S., Pettersson, B., Uhlen, M., and Nyren, P. 1996. Real-time DNA sequencing using detection of pyrophosphate release. Anal. Biochem. 242, 84–89.

    PubMed  Article  CAS  Google Scholar 

  118. Rothberg, J.M., Hinz, W., Rearick, T.M., Schultz, J., Mileski, W., Davey, M., Leamon, J.H., Johnson, K., Milgrew, M.J., Edwards, M., et al. 2011. An integrated semiconductor device enabling nonoptical genome sequencing. Nature 475, 348–352.

    PubMed  Article  CAS  Google Scholar 

  119. Rothberg, J.M. and Leamon, J.H. 2008. The development and impact of 454 sequencing. Nat. Biotechnol. 26, 1117.

    PubMed  Article  CAS  Google Scholar 

  120. Salonen, A., Nikkila, J., Jalanka-Tuovinen, J., Immonen, O., Rajilic-Stojanovic, M., Kekkonen, R.A., Palva, A., and de Vos, W.M. 2010. Comparative analysis of fecal DNA extraction methods with phylogenetic microarray: effective recovery of bacterial and archaeal DNA using mechanical cell lysis. J. Microbiol. Methods 81, 127–134.

    PubMed  Article  CAS  Google Scholar 

  121. Sanger, F., Air, G.M., Barrell, B.G., Brown, N.L., Coulson, A.R., Fiddes, J.C., Hutchison Iii, C.A., Slocombe, P.M., and Smith, M. 1977a. Nucleotide sequence of bacteriophage φX174 DNA. Nature 265, 687.

    PubMed  Article  CAS  Google Scholar 

  122. Sanger, F., Coulson, A.R., Hong, G.F., Hill, D.F., and Petersen, G.B. 1982. Nucleotide sequence of bacteriophage λ DNA. J. Mol. Biol. 162, 729–773.

    PubMed  Article  CAS  Google Scholar 

  123. Sanger, F., Nicklen, S., and Coulson, A.R. 1977b. DNA sequencing with chain-terminating inhibitors. Proc. Nat. Acad. Sci. USA 74, 5463–5467.

    PubMed  Article  CAS  Google Scholar 

  124. Schloss, P.D., Jenior, M.L., Koumpouras, C.C., Westcott, S.L., and Highlander, S.K. 2016. Sequencing 16S rRNA gene fragments using the PacBio SMRT DNA sequencing system. PeerJ 4, e1869.

    Article  CAS  Google Scholar 

  125. Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., Lesniewski, R.A., Oakley, B.B., Parks, D.H., Robinson, C.J., et al. 2009. Introducing mothur: open-source, platform-independent, community-supported software for describing and comparing microbial communities. Appl. Environ. Microbiol. 75, 7537–7541.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  126. Schmutz, J., Cannon, S.B., Schlueter, J., Ma, J., Mitros, T., Nelson, W., Hyten, D.L., Song, Q., Thelen, J.J., Cheng, J., et al. 2010. Genome sequence of the palaeopolyploid soybean. Nature 463, 178–183.

    PubMed  Article  CAS  Google Scholar 

  127. Segata, N., Izard, J., Waldron, L., Gevers, D., Miropolsky, L., Garrett, W.S., and Huttenhower, C. 2011. Metagenomic biomarker discovery and explanation. Genome Biol. 12, R60.

    Google Scholar 

  128. Sharon, D., Tilgner, H., Grubert, F., and Snyder, M. 2013. A singlemolecule long-read survey of the human transcriptome. Nat. Biotechnol. 31, 1009.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  129. Shendure, J., Balasubramanian, S., Church, G.M., Gilbert, W., Rogers, J., Schloss, J.A., and Waterston, R.H. 2017. DNA sequencing at 40: past, present and future. Nature 550, 345–353.

    PubMed  Article  CAS  Google Scholar 

  130. Shendure, J. and Ji, H. 2008. Next-generation DNA sequencing. Nat. Biotechnol. 26, 1135.

    PubMed  Article  CAS  Google Scholar 

  131. Shepard, R.N. 1966. Metric structures in ordinal data. J. Math. Psychol. 3, 287–315.

    Article  Google Scholar 

  132. Sheridan, G.E.C., Masters, C.I., Shallcross, J.A., and Mackey, B.M. 1998. Detection of mRNA by reverse transcription-PCR as an indicator of viability in Escherichia coli cells. Appl. Environ. Microbiol. 64, 1313–1318.

    PubMed  PubMed Central  CAS  Google Scholar 

  133. Siegwald, L., Audebert, C., Even, G., Viscogliosi, E., Caboche, S., and Chabé, M. 2017. Targeted metagenomic sequencing data of human gut microbiota associated with Blastocystis colonization. Sci. Data 4, 170081.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  134. Sinha, R., Chen, J., Amir, A., Vogtmann, E., Shi, J., Inman, K.S., Flores, R., Sampson, J., Knight, R., and Chia, N. 2016. Collecting fecal samples for microbiome analyses in epidemiology studies. Cancer Epidemiol. Biomarkers Prev. 25, 407–416.

    PubMed  Article  Google Scholar 

  135. Smith, B., Li, N., Andersen, A.S., Slotved, H.C., and Krogfelt, K.A. 2011. Optimising bacterial DNA extraction from faecal samples: comparison of three methods. Open Microbiol. J. 5, 14–17.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  136. Stadlbauer, V., Leber, B., Lemesch, S., Trajanoski, S., Bashir, M., Horvath, A., Tawdrous, M., Stojakovic, T., Fauler, G., Fickert, P., et al. 2015. Lactobacillus casei shirota supplementation does not restore gut microbiota composition and gut barrier in metabolic syndrome: A randomized pilot study. PLoS One 10, e0141399.

    Google Scholar 

  137. Stinson, L.F., Keelan, J.A., and Payne, M.S. 2018. Comparison of meconium DNA extraction methods for use in microbiome studies. Front. Microbiol. 9, 270.

    PubMed  PubMed Central  Article  Google Scholar 

  138. Tantikachornkiat, M., Sakakibara, S., Neuner, M., and Durall, D.M. 2016. The use of propidium monoazide in conjunction with qPCR and Illumina sequencing to identify and quantify live yeasts and bacteria. Int. J. Food Microbiol. 234, 53–59.

    PubMed  Article  CAS  Google Scholar 

  139. The Arabidopsis Genome Initiative. 2000. Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408, 796.

    Article  Google Scholar 

  140. The HMP consortium. 2012. A framework for human microbiome research. Nature 486, 215–221.

    Article  CAS  Google Scholar 

  141. The Integrative HMP (iHMP) Research Network Consortium. 2014. The integrative human microbiome project: Dynamic analysis of microbiome-host omics profiles during periods of human health and disease. Cell Host Microbe 16, 276–289.

    PubMed Central  Article  CAS  Google Scholar 

  142. The UniProt Consortium. 2017. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 45, D158–D169.

    Article  CAS  Google Scholar 

  143. Thompson, L.R., Sanders, J.G., McDonald, D., Amir, A., Ladau, J., Locey, K.J., Prill, R.J., Tripathi, A., Gibbons, S.M., Ackermann, G., et al. 2017. A communal catalogue reveals Earth’s multiscale microbial diversity. Nature 551, 457–463.

    PubMed  Article  CAS  PubMed Central  Google Scholar 

  144. Tremblay, J., Singh, K., Fern, A., Kirton, E.S., He, S., Woyke, T., Lee, J., Chen, F., Dangl, J.L., and Tringe, S.G. 2015. Primer and platform effects on 16S rRNA tag sequencing. Front. Microbiol. 6, 771.

    PubMed  PubMed Central  Google Scholar 

  145. Tsai, Y.C., Conlan, S., Deming, C., Segre, J.A., Kong, H.H., Korlach, J., and Oh, J. 2016. Resolving the complexity of human skin metagenomes using single-molecule sequencing. MBio 7, e01948-01915.

    Article  CAS  Google Scholar 

  146. Tyakht, A.V., Kostryukova, E.S., Popenko, A.S., Belenikin, M.S., Pavlenko, A.V., Larin, A.K., Karpova, I.Y., Selezneva, O.V., Semashko, T.A., Ospanova, E.A., et al. 2013. Human gut microbiota community structures in urban and rural populations in Russia. Nat. Commun. 4, 2469.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  147. Vaishampayan, P., Probst, A.J., La Duc, M.T., Bargoma, E., Benardini, J.N., Andersen, G.L., and Venkateswaran, K. 2013. New perspectives on viable microbial communities in low-biomass cleanroom environments. ISME J. 7, 312–324.

    PubMed  Article  CAS  Google Scholar 

  148. Veiga, P., Pons, N., Agrawal, A., Oozeer, R., Guyonnet, D., Brazeilles, R., Faurie, J.M., van Hylckama Vlieg, J.E.T., Houghton, L.A., Whorwell, P.J., et al. 2014. Changes of the human gut microbiome induced by a fermented milk product. Sci. Rep. 4, 6328.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  149. Wagner Mackenzie, B., Waite, D.W., and Taylor, M.W. 2015. Evaluating variation in human gut microbiota profiles due to DNA extraction method and inter-subject differences. Front. Microbiol. 6, 130.

    PubMed  PubMed Central  Article  Google Scholar 

  150. Warner, B.B., Deych, E., Zhou, Y., Hall-Moore, C., Weinstock, G.M., Sodergren, E., Shaikh, N., Hoffmann, J.A., Linneman, L.A., Hamvas, A., et al. 2016. Gut bacteria dysbiosis and necrotising enterocolitis in very low birthweight infants: a prospective casecontrol study. Lancet (London, England) 387, 1928–1936.

    Article  Google Scholar 

  151. Weinstock, G.M. 2012. Genomic approaches to studying the human microbiota. Nature 489, 250–256.

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  152. Wesolowska-Andersen, A., Bahl, M.I., Carvalho, V., Kristiansen, K., Sicheritz-Ponten, T., Gupta, R., and Licht, T.R. 2014. Choice of bacterial DNA extraction method from fecal material influences community structure as evaluated by metagenomic analysis. Microbiome 2, 19.

    PubMed  PubMed Central  Article  Google Scholar 

  153. Wu, W.K., Chen, C.C., Panyod, S., Chen, R.A., Wu, M.S., Sheen, L.Y., and Chang, S.C. 2018. Optimization of fecal sample processing for microbiome study–The journey from bathroom to bench. J. Formos. Med. Assoc. In-press.

    Google Scholar 

  154. Yanagi, H., Tsuda, A., Matsushima, M., Takahashi, S., Ozawa, G., Koga, Y., and Takagi, A. 2017. Changes in the gut microbiota composition and the plasma ghrelin level in patients with Helicobacter pylori-infected patients with eradication therapy. BMJ Open Gastroenterol. 4, e000182.

    Article  Google Scholar 

  155. Yilmaz, P., Parfrey, L.W., Yarza, P., Gerken, J., Pruesse, E., Quast, C., Schweer, T., Peplies, J., Ludwig, W., and Glockner, F.O. 2014. The SILVA and “All-species Living Tree Project (LTP)” taxonomic frameworks. Nucleic Acids Res. 42, D643–648.

    Google Scholar 

  156. Yin, Y., Mao, X., Yang, J., Chen, X., Mao, F., and Xu, Y. 2012. dbCAN: a web resource for automated carbohydrate-active enzyme annotation. Nucleic Acids Res. 40, W445–451.

    Google Scholar 

  157. Yuan, S., Cohen, D.B., Ravel, J., Abdo, Z., and Forney, L.J. 2012. Evaluation of methods for the extraction and purification of DNA from the human microbiome. PLoS One 7, e33865.

    Article  CAS  Google Scholar 

  158. Zheng, Z., Zhong, W., Liu, L., Wu, C., Zhang, L., Cai, S., Xu, Q., Wu, L., Bi, Y., Cui, Y., and Qin, N. 2016. Bioinformatics approaches for human gut microbiome research. Infect. Dis. Transl. Med. 2, 69–79.

    Google Scholar 

  159. Zhu, W., Lomsadze, A., and Borodovsky, M. 2010. Ab initio gene identification in metagenomic sequences. Nucleic Acids Res. 38, e132.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Young-Do Nam.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Song, E., Lee, E. & Nam, Y. Progress of analytical tools and techniques for human gut microbiome research. J Microbiol. 56, 693–705 (2018). https://doi.org/10.1007/s12275-018-8238-5

Download citation

Keywords

  • gut microbiota
  • microbiome
  • NGS
  • bioinformatics
  • analytical process