Skip to main content
Log in

Zunongwangia flava sp. nov., belonging to the family Flavobacteriaceae, isolated from Salicornia europaea

Journal of Microbiology Aims and scope Submit manuscript

Cite this article

Abstract

A yellow pigmented bacterium designated strain MBLN094T within the family Flavobacteriaceae was isolated from a halophyte Salicornia europaea on the coast of the Yellow Sea. This strain was a Gram-stain negative, aerobic, non-spore forming, rod-shaped bacterium. Phylogenetic analysis of the 16S rRNA gene sequence of strain MBLN094T was found to be related to the genus Zunongwangia, exhibiting 16S rRNA gene sequence similarity values of 97.0, 96.8, 96.4, and 96.3% to Zunongwangia mangrovi P2E16T, Z. profunda SM-A87T, Z. atlantica 22II14-10F7T, and Z. endophytica CPA58T, respectively. Strain MBLN094T grew at 20‒37°C (optimum, 25‒30°C), at pH 6.0‒10.0 (optimum, 7.0‒8.0), and with 0.5‒15.0% (w/v) NaCl (optimum, 2.0‒5.0%). Menaquinone MK-6 was the sole respiratory quinone. The polar lipids were phosphatidylethanolamine, two unidentified aminolipids, and four unidentified lipids. Major fatty acids were iso-C17:0 3-OH, summed feature 3 (C16:1ω6c and/or C16:1 ω7c), and iso-C15:0. The genomic DNA G + C content was 37.4 mol%. Based on these polyphasic taxonomic data, strain MBLN094T is considered to represent a novel species of the genus Zunongwangia, for which the name Zunongwangia flava sp. nov. is proposed. The type strain is MBLN094T (= KCTC 62279T = JCM 32262T).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Agarwal, S., Hunnicutt, D.W., and McBride, M.J. 1997. Cloning and characterization of the Flavobacterium johnsoniae (Cytophaga johnsonae) gliding motility gene, gldA. Proc. Natl. Acad. Sci. USA 94, 12139–12144.

    Article  PubMed  CAS  Google Scholar 

  • Bauer, A.W., Kirby, M.M., Sherris, J.C., and Truck, M. 1966. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45, 493–496.

    Article  PubMed  CAS  Google Scholar 

  • Benson, H.J. 2002. Microbiological applications: a laboratory manual in general microbiology. McGraw-Hill, New York. USA.

    Google Scholar 

  • Cho, E.S., Cha, I.T., Park, J.M., Choi, H.J., Lee, J.H., Roh, S.W., Cho, E.A., Kweon, M.H., Nam, Y.D., and Seo, M.J. 2017. Flavimarina flava sp. nov., isolated from Salicornia herbacea. Int. J. Syst. Evol. Microbiol. 67, 4240–4245.

    Article  PubMed  CAS  Google Scholar 

  • Collins, M.D. and Jones, D. 1981. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol. Rev. 45, 316–354.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376.

    Article  PubMed  CAS  Google Scholar 

  • Feng, J., Wang, J., Fan, P., Jia, W., Nie, L., Jiang, P., Chen, X., Lv, S., Wan, L., Chang, S., et al. 2015. High-throughput deep sequencing reveals that microRNAs play important roles in salt tolerance of euhalophyte Salicornia europaea. BMC Plant Biol. 15, 63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fidalgo, C., Martins, R., Proença, D.N., Morais, P.V., Alves, A., and Henriques, I. 2017. Zunongwangia endophytica sp. nov., an endophyte isolated from the salt marsh plant, Halimione portulacoides, and emended description of the genus Zunongwangia. Int. J. Syst. Evol. Microbiol. 67, 3004–3009.

    Article  PubMed  CAS  Google Scholar 

  • Gerhardt, P., Murray, R.G.E., Wood, W.A., and Krieg, N.R. 1994. Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, USA.

    Google Scholar 

  • González, C., Gutiérrez, C., and Ramirez, C. 1978. Halobacterium vallismortis sp. nov. an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can. J. Microbiol. 24, 710–715.

    Article  PubMed  Google Scholar 

  • Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120.

    Article  PubMed  CAS  Google Scholar 

  • Kluge, A.G. and Farris, J.S. 1969. Quantitative phyletics and the evolution of anurans. Syst. Biol. 18, 1–32.

    Article  Google Scholar 

  • Komagata, K. and Suzuki, K.I. 1987. Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol. 19, 161–207.

    Article  CAS  Google Scholar 

  • Kumar, S., Stecher, G., and Tamura, K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874.

    Article  PubMed  CAS  Google Scholar 

  • Lane, D.J. 1991. 16S/23S rRNA Sequencing, pp. 115–175. In Stackebrandt, E. and Goodfellow, M. (eds.), Nucleic acid techniques in bacterial systematics, John Wiley and Sons, New York, USA.

    Google Scholar 

  • Manousaki, E. and Kalogerakis, N. 2011. Halophytes present new opportunities in phytoremediation of heavy metals and saline soils. Ind. Eng. Chem. Res. 50, 656–660.

    Article  CAS  Google Scholar 

  • Mapelli, F., Marasco, R., Rolli, E., Barbato, M., Cherif, H., Guesmi, A., Ouzari, I., Daffonshio, D., and Borin, S. 2013. Potential for plant growth promotion of rhizobacteria associated with Salicornia growing in Tunisian hypersaline soils. Biomed. Res. Int. 2013, 248078.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Marasco, R., Mapelli, F., Rolli, E., Mosqueira, M.J., Fusi, M., Bariselli, P., Reddy, M., Cherif, A., Tsiamis, G., Borin, S., et al. 2016. Salicornia strobilacea (synonym of Halocnemum strobilaceum) grown under different tidal regimes selects rhizosphere bacteria capable of promoting plant growth. Front. Microbiol. 7, 1286.

    Article  PubMed  PubMed Central  Google Scholar 

  • Mesbah, M., Premachandran, U., and Whitman, W.B. 1989. Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39, 159–167.

    Article  CAS  Google Scholar 

  • Miller, L.T. 1982. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J. Clin. Microbiol. 16, 584–586.

    PubMed  PubMed Central  CAS  Google Scholar 

  • Minnikin, D.E., O'Donnell, A.G., and Goodfellow, M. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2, 233–241.

    Article  CAS  Google Scholar 

  • Nedashkovskaya, O.I., Balabanova, L.A., Zhukova, N.V., Kim, S.J., Bakunina, I.Y., and Rhee, S.K. 2014. Flavobacterium ahnfeltiae sp. nov., a new marine polysaccharide-degrading bacterium isolated from a Pacific red alga. Arch. Microbiol. 196, 745–752.

    Article  PubMed  CAS  Google Scholar 

  • Pruesse, E., Peplies, J., and Glockner, F.O. 2012. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28, 1823–1829.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Qin, Q.L., Zhao, D.L., Wang, J., Chen, X.L., Dang, H.Y., Li, T.G., Zhang, Y.Z., and Gao, P.J. 2007. Wangia profunda gen. nov., sp. nov., a novel marine bacterium of the family Flavobacteriaceae isolated from southern Okinawa trough deep-sea sediment. FEMS Microbiol. Lett. 271, 53–58.

    Article  PubMed  CAS  Google Scholar 

  • Rameshkumar, N., Krishnan, R., Lang, E., Matsumura, Y., and Sawabe, T. 2014. Zunongwangia mangrovi sp. nov., isolated from mangrove (Avicennia marina) rhizosphere, and emended description of the genus Zunongwangia. Int. J. Syst. Evol. Microbiol. 64, 545–550.

    Article  PubMed  CAS  Google Scholar 

  • Reichenbach, H., Kohl, W., Böttger, A., and Achenbach, H. 1980. Flexirubin-type pigments in Flavobacterium. Arch. Microbiol. 126, 291–293.

    Article  CAS  Google Scholar 

  • Roh, S.W., Sung, Y., Nam, Y.D., Chang, H.W., Kim, K.H., Yoon, J.H., Jeon, C.O., Oh, H.M., and Bae, J.W. 2008. Arthrobacter soli sp. nov., a novel bacterium isolated from wastewater reservoir sediment. J. Microbiol. 46, 40–44.

    Article  PubMed  CAS  Google Scholar 

  • Saitou, N. and Nei, M. 1987. The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    PubMed  CAS  Google Scholar 

  • Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc, Newark, DE, USA.

    Google Scholar 

  • Shao, R., Lai, Q., Liu, X., Sun, F., Du, Y., Li, G., and Shao, Z. 2014. Zunongwangia atlantica sp. nov., isolated from deep-sea water. Int. J. Syst. Evol. Microbiol. 64, 16–20.

    Article  PubMed  CAS  Google Scholar 

  • Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J. 2017. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613–1617.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sung Man Seo or Myung-Ji Seo.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cho, ES., Cha, IT., Choi, HJ. et al. Zunongwangia flava sp. nov., belonging to the family Flavobacteriaceae, isolated from Salicornia europaea. J Microbiol. 56, 868–873 (2018). https://doi.org/10.1007/s12275-018-8231-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-018-8231-z

Keywords

Navigation