Abstract
A yellow pigmented bacterium designated strain MBLN094T within the family Flavobacteriaceae was isolated from a halophyte Salicornia europaea on the coast of the Yellow Sea. This strain was a Gram-stain negative, aerobic, non-spore forming, rod-shaped bacterium. Phylogenetic analysis of the 16S rRNA gene sequence of strain MBLN094T was found to be related to the genus Zunongwangia, exhibiting 16S rRNA gene sequence similarity values of 97.0, 96.8, 96.4, and 96.3% to Zunongwangia mangrovi P2E16T, Z. profunda SM-A87T, Z. atlantica 22II14-10F7T, and Z. endophytica CPA58T, respectively. Strain MBLN094T grew at 20‒37°C (optimum, 25‒30°C), at pH 6.0‒10.0 (optimum, 7.0‒8.0), and with 0.5‒15.0% (w/v) NaCl (optimum, 2.0‒5.0%). Menaquinone MK-6 was the sole respiratory quinone. The polar lipids were phosphatidylethanolamine, two unidentified aminolipids, and four unidentified lipids. Major fatty acids were iso-C17:0 3-OH, summed feature 3 (C16:1ω6c and/or C16:1 ω7c), and iso-C15:0. The genomic DNA G + C content was 37.4 mol%. Based on these polyphasic taxonomic data, strain MBLN094T is considered to represent a novel species of the genus Zunongwangia, for which the name Zunongwangia flava sp. nov. is proposed. The type strain is MBLN094T (= KCTC 62279T = JCM 32262T).
This is a preview of subscription content,
to check access.Similar content being viewed by others
References
Agarwal, S., Hunnicutt, D.W., and McBride, M.J. 1997. Cloning and characterization of the Flavobacterium johnsoniae (Cytophaga johnsonae) gliding motility gene, gldA. Proc. Natl. Acad. Sci. USA 94, 12139–12144.
Bauer, A.W., Kirby, M.M., Sherris, J.C., and Truck, M. 1966. Antibiotic susceptibility testing by a standardized single disk method. Am. J. Clin. Pathol. 45, 493–496.
Benson, H.J. 2002. Microbiological applications: a laboratory manual in general microbiology. McGraw-Hill, New York. USA.
Cho, E.S., Cha, I.T., Park, J.M., Choi, H.J., Lee, J.H., Roh, S.W., Cho, E.A., Kweon, M.H., Nam, Y.D., and Seo, M.J. 2017. Flavimarina flava sp. nov., isolated from Salicornia herbacea. Int. J. Syst. Evol. Microbiol. 67, 4240–4245.
Collins, M.D. and Jones, D. 1981. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol. Rev. 45, 316–354.
Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376.
Feng, J., Wang, J., Fan, P., Jia, W., Nie, L., Jiang, P., Chen, X., Lv, S., Wan, L., Chang, S., et al. 2015. High-throughput deep sequencing reveals that microRNAs play important roles in salt tolerance of euhalophyte Salicornia europaea. BMC Plant Biol. 15, 63.
Fidalgo, C., Martins, R., Proença, D.N., Morais, P.V., Alves, A., and Henriques, I. 2017. Zunongwangia endophytica sp. nov., an endophyte isolated from the salt marsh plant, Halimione portulacoides, and emended description of the genus Zunongwangia. Int. J. Syst. Evol. Microbiol. 67, 3004–3009.
Gerhardt, P., Murray, R.G.E., Wood, W.A., and Krieg, N.R. 1994. Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, USA.
González, C., Gutiérrez, C., and Ramirez, C. 1978. Halobacterium vallismortis sp. nov. an amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. Can. J. Microbiol. 24, 710–715.
Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120.
Kluge, A.G. and Farris, J.S. 1969. Quantitative phyletics and the evolution of anurans. Syst. Biol. 18, 1–32.
Komagata, K. and Suzuki, K.I. 1987. Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol. 19, 161–207.
Kumar, S., Stecher, G., and Tamura, K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874.
Lane, D.J. 1991. 16S/23S rRNA Sequencing, pp. 115–175. In Stackebrandt, E. and Goodfellow, M. (eds.), Nucleic acid techniques in bacterial systematics, John Wiley and Sons, New York, USA.
Manousaki, E. and Kalogerakis, N. 2011. Halophytes present new opportunities in phytoremediation of heavy metals and saline soils. Ind. Eng. Chem. Res. 50, 656–660.
Mapelli, F., Marasco, R., Rolli, E., Barbato, M., Cherif, H., Guesmi, A., Ouzari, I., Daffonshio, D., and Borin, S. 2013. Potential for plant growth promotion of rhizobacteria associated with Salicornia growing in Tunisian hypersaline soils. Biomed. Res. Int. 2013, 248078.
Marasco, R., Mapelli, F., Rolli, E., Mosqueira, M.J., Fusi, M., Bariselli, P., Reddy, M., Cherif, A., Tsiamis, G., Borin, S., et al. 2016. Salicornia strobilacea (synonym of Halocnemum strobilaceum) grown under different tidal regimes selects rhizosphere bacteria capable of promoting plant growth. Front. Microbiol. 7, 1286.
Mesbah, M., Premachandran, U., and Whitman, W.B. 1989. Precise measurement of the G + C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39, 159–167.
Miller, L.T. 1982. Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J. Clin. Microbiol. 16, 584–586.
Minnikin, D.E., O'Donnell, A.G., and Goodfellow, M. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2, 233–241.
Nedashkovskaya, O.I., Balabanova, L.A., Zhukova, N.V., Kim, S.J., Bakunina, I.Y., and Rhee, S.K. 2014. Flavobacterium ahnfeltiae sp. nov., a new marine polysaccharide-degrading bacterium isolated from a Pacific red alga. Arch. Microbiol. 196, 745–752.
Pruesse, E., Peplies, J., and Glockner, F.O. 2012. SINA: accurate high-throughput multiple sequence alignment of ribosomal RNA genes. Bioinformatics 28, 1823–1829.
Qin, Q.L., Zhao, D.L., Wang, J., Chen, X.L., Dang, H.Y., Li, T.G., Zhang, Y.Z., and Gao, P.J. 2007. Wangia profunda gen. nov., sp. nov., a novel marine bacterium of the family Flavobacteriaceae isolated from southern Okinawa trough deep-sea sediment. FEMS Microbiol. Lett. 271, 53–58.
Rameshkumar, N., Krishnan, R., Lang, E., Matsumura, Y., and Sawabe, T. 2014. Zunongwangia mangrovi sp. nov., isolated from mangrove (Avicennia marina) rhizosphere, and emended description of the genus Zunongwangia. Int. J. Syst. Evol. Microbiol. 64, 545–550.
Reichenbach, H., Kohl, W., Böttger, A., and Achenbach, H. 1980. Flexirubin-type pigments in Flavobacterium. Arch. Microbiol. 126, 291–293.
Roh, S.W., Sung, Y., Nam, Y.D., Chang, H.W., Kim, K.H., Yoon, J.H., Jeon, C.O., Oh, H.M., and Bae, J.W. 2008. Arthrobacter soli sp. nov., a novel bacterium isolated from wastewater reservoir sediment. J. Microbiol. 46, 40–44.
Saitou, N. and Nei, M. 1987. The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.
Sasser, M. 1990. Identification of bacteria by gas chromatography of cellular fatty acids. MIDI Technical Note 101. MIDI Inc, Newark, DE, USA.
Shao, R., Lai, Q., Liu, X., Sun, F., Du, Y., Li, G., and Shao, Z. 2014. Zunongwangia atlantica sp. nov., isolated from deep-sea water. Int. J. Syst. Evol. Microbiol. 64, 16–20.
Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J. 2017. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613–1617.
Author information
Authors and Affiliations
Corresponding authors
Additional information
Supplemental material for this article may be found at http://www.springerlink.com/content/120956.
Electronic supplementary material
Rights and permissions
About this article
Cite this article
Cho, ES., Cha, IT., Choi, HJ. et al. Zunongwangia flava sp. nov., belonging to the family Flavobacteriaceae, isolated from Salicornia europaea. J Microbiol. 56, 868–873 (2018). https://doi.org/10.1007/s12275-018-8231-z
Received:
Revised:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s12275-018-8231-z