Bacteroides sedimenti sp. nov., isolated from a chloroethenes-dechlorinating consortium enriched from river sediment

Abstract

A Gram-negative, anaerobic, non-motile, non-spore-forming bacterial strain, designated YN3PY1T, was isolated from a chloroethene-dechlorinating consortium originally enriched from river sediment. The strain enhanced the dechlorination of cis-dichloroethene to ethene by Dehalococcoides, especially at the early stages of cultivation. Strain YN3PY1T was the first isolate of the genus Bacteroides, obtained from animal-independent environments, and its 16S rRNA gene had the highest sequence similarity (97.1%) with Bacteroides luti JCM 19020T in the ‘Coprosuis’ clade of the genus Bacteroides. Strain YN3PY1T formed a phylogenetic cluster with other phylotypes detected from sediments and paddy soil, and the cluster was affiliated with a linage of so-called free-living Bacteroides detected from animal-independent environments, suggesting specific adaptations to sediment-like environments. The strain showed typical phenotypes of Bacteroides, i.e., polysaccharolytic anaerobe having anteiso-C15:0 as the most abundant fatty acid and MK-11 as one of the major respiratory quinones. Additionally, the strain uniquely transforms glucose to lactate and malate, has MK-12 as another major respiratory quinone, and grows at comparatively low temperatures, i.e. 10–40°C, with an optimum at 28°C. Based on the presented data, strain YN3PY1T (= KCTC 15656T = NBRC 113168T) can be proposed as a novel species of the genus Bacteroides and named as Bacteroides sedimenti sp. nov.

This is a preview of subscription content, access via your institution.

References

  1. Ahmed, W., Hughes, B., and Harwood, J.V. 2016. Current status of marker genes of Bacteroides and related taxa for identifying sewage pollution in environmental waters. Water 8, 231.

    Article  CAS  Google Scholar 

  2. Akasaka, H., Izawa, T., Ueki, K., and Ueki, A. 2003. Phylogeny of numerically abundant culturable anaerobic bacteria associated with degradation of rice plant residue in Japanese paddy field soil. FEMS Microbiol. Ecol. 43, 149–161.

    Article  PubMed  CAS  Google Scholar 

  3. Bower, P.A., Scopel, C.O., Jensen, E.T., Depas, M.M., and McLellan, S.L. 2005. Detection of genetic markers of fecal indicator bacteria in Lake Michigan and determination of their relationship to Escherichia coli densities using standard microbiological methods. Appl. Environ. Microbiol. 71, 8305−8313.

    Article  PubMed Central  CAS  Google Scholar 

  4. Cassir, N., Croce, O., Pagnier, I., Benamar, S., Couderc, C., Robert, C., Raoult, D., and La Scola, B. 2014. Non-contiguous finished genome sequence and description of Bacteroides neonati sp. nov., a new species of anaerobic bacterium. Stand. Genomic Sci. 9, 794–806.

    Article  PubMed  PubMed Central  Google Scholar 

  5. Demangel, C., Stinear, T.P., and Cole, S.T. 2009. Buruli ulcer: reductive evolution enhances pathogenicity of Mycobacterium ulcerans. Nat. Rev. Microbiol. 7, 50–60.

    Article  PubMed  CAS  Google Scholar 

  6. Duhamel, M. and Edwards, E.A. 2006. Microbial composition of chlorinated ethene–degrading cultures dominated by Dehalococcoides. FEMS Microbiol. Ecol. 58, 538–549.

    Article  PubMed  CAS  Google Scholar 

  7. Faust, L., Szendy, M., Plugge, C.M., van den Brink, P.F.H., Temmink, H., and Rijnaarts, H.H.M. 2015. Characterization of the bacterial community involved in the bioflocculation process of wastewater organic matter in high-loaded MBRs. Appl. Microbiol. Biotechnol. 99, 5327–5337.

    Article  PubMed  CAS  Google Scholar 

  8. Goto, Y. and Yoshida, N. 2017. Microbially reduced graphene oxide shows efficient electricity recovery from artificial dialysis wastewater. J. Gen. Appl. Microbiol. 63, 165–171.

    Article  PubMed  CAS  Google Scholar 

  9. Hatamoto, M., Kaneshige, M., Nakamura, A., and Yamaguchi, T. 2014. Bacteroides luti sp. nov., an anaerobic, cellulolytic and xylanolytic bacterium isolated from methanogenic sludge. Int. J. Syst. Evol. Microbiol. 64, 1770–1774.

    Article  PubMed  CAS  Google Scholar 

  10. He, J., Holmes, V.F., Lee, P.K.H., and Alvarez-Cohen, L. 2007. Influence of vitamin B12 and cocultures on the growth of Dehalococcoides isolates in defined medium. Appl. Environ. Microbiol. 73, 2847–2853.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Ismaeil, M., Yoshida, N., and Katayama, A. 2017. Identification of multiple dehalogenase genes involved in tetrachloroethene-toethene dechlorination in a Dehalococcoides-dominated enrichment culture. BioMed Res. Int. 2017, 9191086.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Katayama-Fujimura, Y., Komatsu, Y., Kuraishi, H., and Kaneko, T. 1984. Estimation of DNA base composition by high performance liquid chromatography of its nuclease P1 hydrolysate. Agric. Biol. Chem. 48, 3169–3172.

    CAS  Google Scholar 

  13. Kim, M., Oh, H.S., Park, S.C., and Chun, J. 2014. Towards a taxonomic coherence between average nucleotide identity and 16S rRNA gene sequence similarity for species demarcation of prokaryotes. Int. J. Syst. Evol. Microbiol. 64, 346–351.

    Article  PubMed  Google Scholar 

  14. Kitahara, M., Sakamoto, M., Tsuchida, S., Kawasumi, K., Amao H., Benno, Y., and Ohkuma, M. 2012. Bacteroides stercorirosoris sp. nov. and Bacteroides faecichinchillae sp. nov., isolated from chinchilla (Chinchilla lanigera) faeces. Int. J. Syst. Evol. Microbiol. 62, 1145–1150.

    Article  PubMed  CAS  Google Scholar 

  15. Kitahara, M., Tsuchida, S., Kawasumi, K., Amao, H., Sakamoto, M., Benno, Y., and Ohkuma, M. 2011. Bacteroides chinchilla sp. nov. and Bacteroides rodentium sp. nov., isolated from chinchilla (Chinchilla lanigera) faeces. Int. J. Syst. Evol. Microbiol. 61, 877–881.

    Article  PubMed  CAS  Google Scholar 

  16. Koeppel, A.F., Wertheim, J.O., Barone, L., Gentile, N., Krizanc, D., and Cohan, F.M. 2013. Speedy speciation in a bacterial microcosm: new species can arise as frequently as adaptations within a species. ISME J. 7, 1080–1091.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Kumar, S., Stecher, G., and Tamura, K. 2016. MEGA7: Molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874.

    Article  PubMed  CAS  Google Scholar 

  18. Lan, P.T.N., Sakamoto, M., Sakata, S., and Benno, Y. 2006. Bacteroides barnesiae sp. nov., Bacteroides salanitronis sp. nov. and Bacteroides gallinarum sp. nov., isolated from chicken caecum. Int. J. Syst. Evol. Microbiol. 56, 2853–2859.

    Article  PubMed  CAS  Google Scholar 

  19. Liang, D. and Wang, S. 2017. Development and characterization of an anaerobic microcosm for reductive dechlorination of PCBs. Front. Environ. Sci. Eng. 11, 2.

    Article  CAS  Google Scholar 

  20. Liu N., Li, H., Li, M., Ding, L., Weng, C., and Dong, C. 2017. Oxygen exposure effects on the dechlorinating activities of a trichloroethene- dechlorination microbial consortium. Bioresour. Technol. 240, 98–105.

    Article  PubMed  CAS  Google Scholar 

  21. Macbeth, T.W., Cummings, D.E., Spring, S., Petzke, L.M., and Sorenson, K.S.Jr. 2004. Molecular characterization of a dechlorinating community resulting from in situ biostimulation in a trichloroethene-contaminated deep, fractured basalt aquifer and comparison to a derivative laboratory culture. Appl. Environ. Microbiol. 70, 7329–7341.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Meier-Kolthoff, J.P., Göker, M., Spröer, C., and Klenk, H.P. 2013. When should a DDH experiment be mandatory in microbial taxonomy? Arch. Microbiol. 195, 413–418.

    CAS  Google Scholar 

  23. Men, Y., Feil, H., VerBerkmoes, N.C., Shah, M.B., Johnson, D.R., Lee, P.K.H., West, K.A., Zinder, S.H., Andersen, G.L., and Alvarez- Cohen, L. 2012. Sustainable syntrophic growth of Dehalococcoides ethenogenes strain 195 with Desulfovibrio vulgaris hildenborough and Methanobacterium congolense: global transcriptomic and proteomic analyses. ISME J. 6, 410–421.

    Article  PubMed  CAS  Google Scholar 

  24. Merhej, V., Royer Carenzi, M., Pontarotti, P., and Raoult, D. 2009. Massive comparative genomic analysis reveals convergent evolution of specialized bacteria. Biol. Direct. 4, 13.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Miyagawa, E., Azuma, R., and Suto, T. 1979. Cellular fatty acid composition in Gram-negative obligately anaerobic rods. J. Gen. Appl. Microbiol. 25, 41–51.

    Article  CAS  Google Scholar 

  26. Moench, T.T. and Zeikus, J.G. 1983. An improved preparation method for a titanium (III) media reductant. J. Microbiol. Methods 1, 199–202.

    Article  CAS  Google Scholar 

  27. Moran, N.A. 2002. Microbial minimalism: genome reduction in bacterial pathogens. Cell 108, 583–586.

    Article  PubMed  CAS  Google Scholar 

  28. Nishiyama, T., Ueki, A., Kaku, N., Watanabe, K., and Ueki, K. 2009. Bacteroides graminisolvens sp. nov., a xylanolytic anaerobe isolated from a methanogenic reactor treating cattle waste. Int. J. Syst. Evol. Microbiol. 59, 1901–1907.

    Article  PubMed  CAS  Google Scholar 

  29. Petrovskis, E.A., Amber W.R., and Walker, C.B. 2013. Microbial monitoring during bioaugmentation with Dehalococcoides, pp. 171–197, In Stroo, H.F., Leeson, A., and Ward, C.H. (eds.), Bioaugmentation for groundwater remediation. ed. 2013. Springer, New York, NY,USA.

    Google Scholar 

  30. Sakamoto, M. and Ohkuma, M. 2011. Identification and classification of the genus Bacteroides by multilocus sequence analysis. Microbiology 157, 3388–3397.

    Article  PubMed  Google Scholar 

  31. Shah, H.N. 1992. The genus Bacteroides and related taxa, pp. 3593–3607. In Balows, A., Trüper, H.G., Dworkin, M., Harder, W., and Schleifer, K.H. (eds.), The Prokaryotes, 2nd ed. Springer, New York, USA.

    Google Scholar 

  32. Shahryari, A., Nikaeen, M., Khiadani, M., Nabavi, F., Hatamzadeh, M., and Hassanzadeh, A. 2014. Applicability of universal Bacteroidales genetic marker for microbial monitoring of drinking water sources in comparison to conventional indicators. Environ. Monit. Assess. 186, 7055–7062.

    Article  PubMed  CAS  Google Scholar 

  33. Skerman, V.B.D. 1967. A guide to the identification of the genera of bacteria, with methods and digests of generic characteristics. 2nd ed. Williams & Wilkins Co., Baltimore, USA.

    Google Scholar 

  34. Snyder, B.B.A. 1970. A critical review of pitfalls in the Gram stain, with a proposed rapid technique. Lab. Med. 1, 41–44.

    Article  Google Scholar 

  35. Steffan, R.J. and Schaefer, C.E. 2016. Current and future bioremediation applications: bioremediation from a practical and regulatory perspective, pp. 517–540. In Adrian, L., and Löffler, F.E. (eds.), Organohalide-respiring bacteria. ed. 2016. Springer-Verlag, Heidelberg, Germany.

    Google Scholar 

  36. Tamaoka, J., Katayama-Fujimura, Y., and Kuraishi, H. 1983. Analysis of bacterial menaquinone mixtures by high performance liquid chromatography. J. Appl. Bacteriol. 54, 31–36.

    Article  CAS  Google Scholar 

  37. Thompson, J.D., Higgins, D.G., and Gibson, T.J. 1994. CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position–specific gap penalties and weight matrix choice. Nucleic Acids Res. 22, 4673–4680.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Ueki, A., Abe, K., Kaku, N., Watanabe, K., and Ueki, K. 2008. Bacteroides propionicifaciens sp. nov., isolated from rice-straw residue in a methanogenic reactor treating waste from cattle farms. Int. J. Syst. Evol. Microbiol. 58, 346–352.

    Article  PubMed  CAS  Google Scholar 

  39. van der Wielen, P.W.J.J. and Medema, G. 2010. Unsuitability of quantitative Bacteroidales 16S rRNA gene assays for discerning fecal contamination of drinking water. Appl. Environ. Microbiol. 76, 4876–4881.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Vierheilig, J., Farnleitner, A.H., Kollanur, D., Blöschl, G., and Reischer, G.H. 2012. High abundance of genetic Bacteroidetes markers for total fecal pollution in pristine alpine soils suggests lack in specificity for feces. J. Microbiol. Methods 88, 433–435.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Watanabe, Y., Nagai, F., Morotomi, M., Sakon, H., and Tanaka, R. 2010. Bacteroides clarus sp. nov., Bacteroides fluxus sp. nov. and Bacteroides oleiciplenus sp. nov., isolated from human faeces. Int. J. Syst. Evol. Microbiol. 60, 1864–1869.

    Article  PubMed  CAS  Google Scholar 

  42. Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697–703.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  43. Wexler, H.M. 2007. Bacteroides: the good, the bad, and the Nitty- Gritty. Clin. Microbiol. Rev. 20, 593–621.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Whitehead, T.R., Cotta, M.A., Collins, M.D., Falsen, E., and Lawson, P.A. 2005. Bacteroides coprosuis sp. nov., isolated from swine-manure storage pits. Int. J. Syst. Evol. Microbiol. 55, 2515–2518.

    Article  PubMed  CAS  Google Scholar 

  45. Whitman, R.L., Byappanahalli, M.N., Spoljaric, A.M., Przybyla- Kelly, K., Shively, D.A., and Nevers, M.B. 2014. Evidence for free-living Bacteroides in Cladophora along the shores of the Great Lakes. Aquat. Microb. Ecol. 72, 117–126.

    Article  Google Scholar 

  46. Xing, P., Guo, L., Tian, W., and Wu, Q.L. 2011. Novel Clostridium populations involved in the anaerobic degradation of Microcystis blooms. ISME J. 5, 792–800.

    Article  PubMed  CAS  Google Scholar 

  47. Xu, J., Bjursell, M.K., Himrod, J., Deng, S., Carmichael, L.K., Chiang, H.C., Hooper, L.V., and Gordon, J.I. 2003. A genomic view of the human-Bacteroides thetaiotaomicron symbiosis. Science 299, 2074–2076.

    Article  PubMed  CAS  Google Scholar 

  48. Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J. 2017. Introducing EzBioCloud: A taxonomically united database of 16S rRNA gene sequences and whole genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613–1617.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Yoshida, N., Asahi, K., Sakakibara, Y., Miyake, K., and Katayama, A. 2007. Isolation and quantitative detection of tetrachloroethene (PCE)-dechlorinating bacteria in unsaturated subsurface soils contaminated with chloroethenes. J. Biosci. Bioeng. 104, 91–97.

    Article  PubMed  CAS  Google Scholar 

  50. Yoshida, N., Miyata, Y., Doi, K., Goto, Y., Nagao, Y., Tero, R., and Hiraishi, A. 2016. Graphene oxide-dependent growth and selfaggregation into a hydrogel complex of exoelectrogenic bacteria. Sci. Rep. 6, 21867.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Yoshida, N., Ye, L., Baba, D., and Katayama, A. 2009. A novel Dehalobacter species is involved in extensive 4, 5, 6, 7-tetrachlorophthalide dechlorination. Appl. Environ. Microbiol. 75, 2400–2405.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  52. Yoshikawa, M., Zhang, M., and Toyota, K. 2017. Biodegradation of volatile organic compounds and their effects on biodegradability under co-existing conditions. Microbes Environ. 32, 188–200.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Zhou, X., Zhang, C., Zhang, D., Awata, T., Xiao, Z., Yang, Q., and Katayama, A. 2015. Polyphasic characterization of an anaerobic hexachlorobenzene dechlorinating microbial consortium with a wide dechlorination spectrum for chlorobenzenes. J. Biosci. Bioeng. 120, 62–68.

    Article  PubMed  CAS  Google Scholar 

  54. Zhuang, W.Q., Yi, S., Bill, M., Brisson, V.L., Feng, X., Men, Y., Conrad, M.E., Tang, Y.J., and Alvarez-Cohen, L. 2014. Incomplete wood-Ljungdahl pathway facilitates one carbon metabolism in organohalide respiring Dehalococcoides mccartyi. Proc. Natl. Acad. Sci. USA 111, 6419–6424.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Naoko Yoshida.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ismaeil, M., Yoshida, N. & Katayama, A. Bacteroides sedimenti sp. nov., isolated from a chloroethenes-dechlorinating consortium enriched from river sediment. J Microbiol. 56, 619–627 (2018). https://doi.org/10.1007/s12275-018-8187-z

Download citation

Keywords

  • Bacteroides sedimenti
  • chloroethenes
  • dechlorination
  • free-living Bacteroides