Advertisement

Journal of Microbiology

, Volume 56, Issue 7, pp 507–515 | Cite as

Temporal and spatial impact of Spartina alterniflora invasion on methanogens community in Chongming Island, China

  • Xue Ping Chen
  • Jing Sun
  • Yi Wang
  • Heng Yang Zhang
  • Chi Quan He
  • Xiao Yan Liu
  • Nai Shun Bu
  • Xi-En Long
Article
  • 88 Downloads

Abstract

Methane production by methanogens in wetland is recognized as a significant contributor to global warming. Spartina alterniflora (S. alterniflora), which is an invasion plant in China’s wetland, was reported to have enormous effects on methane production. But studies on shifts in the methanogen community in response to S. alterniflora invasion at temporal and spatial scales in the initial invasion years are rare. Sediments derived from the invasive species S. alterniflora and the native species Phragmites australis (P. australis) in pairwise sites and an invasion chronosequence patch (4 years) were analyzed to investigate the abundance and community structure of methanogens using quantitative real-time PCR (qPCR) and Denaturing gradient gel electrophoresis (DGGE) cloning of the methyl-coenzyme M reductase A (mcrA) gene. For the pairwise sites, the abundance of methanogens in S. alterniflora soils was lower than that of P. australis soils. For the chronosequence patch, the abundance and diversity of methanogens was highest in the soil subjected to two years invasion, in which we detected some rare groups including Methanocellales and Methanococcales. These results indicated a priming effect at the initial invasion stages of S. alterniflora for microorganisms in the soil, which was also supported by the diverse root exudates. The shifts of methanogen communities after S. alterniflora invasion were due to changes in pH, salinity and sulfate. The results indicate that root exudates from S. alterniflora have a priming effect on methanogens in the initial years after invasion, and the predominate methylotrophic groups (Methanosarcinales) may adapt to the availability of diverse substrates and reflects the potential for high methane production after invasion by S. alterniflora.

Keywords

methanogens methyl-coenzyme M reductase A (mcrASpartina alterniflora Phragmites australis chronosequence priming effect 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Supplementary material

12275_2018_8062_MOESM1_ESM.pdf (741 kb)
Supplementary material, approximately 731 KB.

References

  1. Ashelford, K.E., Chuzhanova, N.A., Fry, J.C., Jones, A.J., and Weightman, A.J. 2006 New screening software shows that most recent large 16S rRNA gene clone libraries contain chimeras. Appl. Environ. Microb. 72, 5734–5741CrossRefGoogle Scholar
  2. Bai, J.H., Zhang, G.L., Zhao, Q.Q., Lu, Q.Q., Jia, J., Cui, B.S., and Liu, X.H. 2016 Depth-distribution patterns and control of soil organic carbon in coastal salt marshes with different plant covers. Sci. Rep. 6, 34835CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bonin, A.S. and Boone, D.R. 2006 The order methanobacteriales. Springer, New York, USA.CrossRefGoogle Scholar
  4. Bu, N.S., Qu, J.F., Li, Z.L., Li, G., Zhao, H., Zhao, B., Li, B., Chen, J.K., and Fang, C.M. 2015 Effects of Spartina alterniflora invasion on soil respiration in the Yangtze River Estuary, China. PLoS One 10, e0121571CrossRefPubMedPubMedCentralGoogle Scholar
  5. Buyantuyev, A., Xu, P.Y., Wu, J.G., Piao, S.J., and Wang, D.C. 2012 A Space-For-Time (SFT) substitution approach to studying historical phenological changes in urban environment. PLoS One 7, e51260CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cao, P., Zhang, L.M., Shen, J.P., Zheng, Y.M., Di, H.J., and He, J.Z. 2012 Distribution and diversity of archaeal communities in selected Chinese soils. FEMS Microbiol. Ecol. 80, 146–158CrossRefPubMedGoogle Scholar
  7. Chen, X.P., Ma, H., Zheng, Y., Liu, J.M., Liang, X., and He, C.Q. 2016 Changes in methane emission and methanogenic and methanotrophic communities in restored wetland with introduction of Alnus trabeculosa. J. Soil. Sediment. 17, 181–189CrossRefGoogle Scholar
  8. Chen, J.Q., Zhao, B., Ren, W.W., Saunders, S.C., Ma, Z.J., Li, B., Luo, Y.Q., and Chen, J.K. 2008 Invasive Spartina and reduced sediments: Shanghai’s dangerous silver bullet. J. Plant Ecol. 1, 79–84CrossRefGoogle Scholar
  9. Chmura, G.L., Anisfeld, S.C., Cahoon, D.R., and Lynch, J.C. 2003 Global carbon sequestration in tidal, saline wetland soils. Global Biogeochem. Cycles 17 Google Scholar
  10. Chung, C.H., Zhuo, R.Z., and Xu, G.W. 2004 Creation of Spartina plantations for reclaiming Dongtai, China, tidal flats and offshore sands. Ecol. Eng. 23, 135–150CrossRefGoogle Scholar
  11. Conrad, R., Klose, M., and Noll, M. 2009 Functional and structural response of the methanogenic microbial community in rice field soil to temperature change. Environ. Microbiol. 11, 1844–1853CrossRefPubMedGoogle Scholar
  12. Fan, L., Reynolds, D., Liu, M., Stark, M., Kjelleberg, S., Webster, N.S., and Thomas, T. 2012 Functional equivalence and evolutionary convergence in complex communities of microbial sponge symbionts. Proc. Natl. Acad. Sci. USA 109, E1878–E1887CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fernández-de Córdova, M.L., Ruíz-Medina, A., and Molina-Díaz, A. 1997 Solid phase spectrophotometric microdetermination of iron with ascorbic acid and ferrozine. Fresenius’ J. Anal. Chem. 357, 44–49CrossRefGoogle Scholar
  14. Fontaine, S., Mariotti, A., and Abbadie, L. 2003 The priming effect of organic matter: a question of microbial competition? Soil Biol. Biochem. 35, 837–843Google Scholar
  15. Galand, P.E., Juottonen, H., Fritze, H., and Yrjala, K. 2005 Methanogen communities in a drained bog: Effect of ash fertilization. Microb. Ecol. 49, 209–217CrossRefPubMedGoogle Scholar
  16. Ganzert, L., Jurgens, G., Munster, U., and Wagner, D. 2007 Methanogenic communities in permafrost-affected soils of the Laptev Sea coast, Siberian Arctic, characterized by 16S rRNA gene fingerprints. FEMS Microbiol. Ecol. 59, 476–488CrossRefPubMedGoogle Scholar
  17. Jonasson, S., Michelsen, A., Schmidt, I.K., Nielsen, E.V., and Callaghan, T.V. 1996 Microbial biomass C, N and P in two arctic soils and responses to addition of NPK fertilizer and sugar: Implications for plant nutrient uptake. Oecologia 106, 507–515CrossRefPubMedGoogle Scholar
  18. Kendall, M.M. and Boone, D.R. 2006 The order methanosarcinales. Springer, New York, USA.CrossRefGoogle Scholar
  19. Kotsyurbenko, O.R., Friedrich, M.W., Simankova, M.V., Nozhevnikova, A.N., Golyshin, P.N., Timmis, K.N., and Conrad, R. 2007 Shift from acetoclastic to H2-dependent methanogenes is in a West Siberian peat bog at low pH values and isolation of an acidophilic Methanobactetium strain. Appl. Environ. Microbiol. 73, 2344–2348CrossRefPubMedPubMedCentralGoogle Scholar
  20. Kuzyakov, Y., Friedel, J.K., and Stahr, K. 2000 Review of mechanisms and quantification of priming effects. Soil Biol. Biochem. 32, 1485–1498CrossRefGoogle Scholar
  21. Li, B., Liao, C.H., Zhang, X.D., Chen, H.L., Wang, Q., Chen, Z.Y., Gan, X.J., Wu, J.H., Zhao, B., Ma, Z.J., et al. 2009 Spartina alterniflora invasions in the Yangtze River estuary, China: An overview of current status and ecosystem effects. Ecol. Eng. 35, 511–520CrossRefGoogle Scholar
  22. Liao, C.Z., Luo, Y.Q., Jiang, L.F., Zhou, X.H., Wu, X.W., Fang, C.M., Chen, J.K., and Li, B. 2007 Invasion of Spartina alterniflora enhanced ecosystem carbon and nitrogen stocks in the Yangtze Estuary, China. Ecosystems 10, 1351–1361CrossRefGoogle Scholar
  23. Liu, D.Y., Ding, W.X., Jia, Z.J., and Cai, Z.C. 2012 The impact of dissolved organic carbon on the spatial variability of methanogenic archaea communities in natural wetland ecosystems across China. Appl. Microbiol. Biotechnol. 96, 253–263CrossRefPubMedGoogle Scholar
  24. Lu, Y., Wassmann, R., Neue, H.U., Huang, C., and Bueno, C.S. 2000 Methanogenic responses to exogenous substrates in anaerobic rice soils. Soil Biol. Biochem. 32, 1683–1690CrossRefGoogle Scholar
  25. Marschner, P., Yang, C.H., Lieberei, R., and Crowley, D.E. 2001 Soil and plant specific effects on bacterial community composition in the rhizosphere. Soil Biol. Biochem. 33, 1437–1445CrossRefGoogle Scholar
  26. McCulley, R.L., Archer, S.R., Boutton, T.W., Hons, F.M., and Zuberer, D.A. 2004 Soil respiration and nutrient cycling in wooded communities developing in grassland. Ecology 85, 2804–2817CrossRefGoogle Scholar
  27. Murrell, J.C., Millard, P., Baggs, L., Singh, B.K., and Nazaries, L. 2013 Methane, microbes and models: fundamental understanding of the soil methane cycle for future predictions. Environ. Microbiol. 15, 2395CrossRefPubMedGoogle Scholar
  28. Nahlik, A.M. and Mitsch, W.J. 2011 Methane emissions from tropical freshwater wetlands located in different climatic zones of Costa Rica. Glob. Change Biol. 17, 1321–1334CrossRefGoogle Scholar
  29. Narihiro, T., Hori, T., Nagata, O., Hoshino, T., Yumoto, I., and Kamagata, Y. 2011 The impact of aridification and vegetation type on changes in the community structure of methane-cycling microorganisms in Japanese wetland soils. Biosci. Biotechnol. Biochem. 75, 1727–1734CrossRefPubMedGoogle Scholar
  30. Norton, U., Mosier, A.R., Morgan, J.A., Derner, J.D., Ingram, L.J., and Stahl, P.D. 2008 Moisture pulses, trace gas emissions and soil C and N in cheatgrass and native grass-dominated sagebrushsteppe in Wyoming, USA. Soil Biol. Biochem. 40, 1421–1431CrossRefGoogle Scholar
  31. Parkes, R.J., Brock, F., Banning, N., Hornibrook, E.R.C., Roussel, E.G., Weightman, A.J., and Fry, J.C. 2012 Changes in methanogenic substrate utilization and communities with depth in a salt-marsh, creek sediment in southern England. Estuar. Coast. Shelf Sci. 96, 170–178CrossRefGoogle Scholar
  32. Rooney-Varga, J.N., Giewat, M.W., Duddleston, K.N., Chanton, J.P., and Hines, M.E. 2007 Links between archaeal community structure, vegetation type and methanogenic pathway in Alaskan peatlands. FEMS Microbiol. Ecol. 60, 240–251CrossRefPubMedGoogle Scholar
  33. Sakai, S., Conrad, R., and Imachi, H. 2014 The family Methanocellaceae. Springer, Heidelberg, Berlin, Germany.CrossRefGoogle Scholar
  34. She, C.X., Zhang, Z.C., Cadillo-Quiroz, H., and Tong, C. 2016 Factors regulating community composition of methanogens and sulfatereducing bacteria in brackish marsh sediments in the Min River estuary, southeastern China. Estuar. Coast. Shelf Sci. 181, 27–38CrossRefGoogle Scholar
  35. Smith, J.M., Castro, H., and Ogram, A. 2007 Structure and function of methanogens along a short-term restoration chronosequence in the Florida everglades. Appl. Environ. Microbiol. 73, 4135–4141CrossRefPubMedPubMedCentralGoogle Scholar
  36. Smith, D.L. and Johnson, L. 2004 Vegetation-mediated changes in microclimate reduce soil respiration as woodlands expand into grasslands. Ecology 85, 3348–3361CrossRefGoogle Scholar
  37. Tong, C., Morris, J.T., Huang, J., Xu, H., and Wan, S. 2017 Changes in pore-water chemistry and methane emission following the invasion of Spartina alterniflora into an oliogohaline marsh. Limnol. Oceanogr. 63, 384–396CrossRefGoogle Scholar
  38. Wang, J.X. and Wang, J. 2017 Spartina alterniflora, alters ecosystem DMS and CH4, emissions and their relationship along interacting tidal and vegetation gradients within a coastal salt marsh in Eastern China. Atmos. Environ. 167, 349–359Google Scholar
  39. Wang, R.Z., Yuan, L., and Zhang, L.Q. 2010 Impacts of Spartina alterniflora invasion on the benthic communities of salt marshes in the Yangtze Estuary, China. Ecol. Eng. 36, 799–806CrossRefGoogle Scholar
  40. Wei, D. and Wang, X.D. 2017 Uncertainty and dynamics of natural wetland CH4 release in China: Research status and priorities. Atmos. Environ. 154, 95–105CrossRefGoogle Scholar
  41. Xia, F., Zeleke, J., Sheng, Q., Wu, J.H., and Quan, Z.X. 2015 Communities of ammonia oxidizers at different stages of Spartina alterniflora invasion in salt marshes of Yangtze River estuary. J. Microbiol. 53, 311–320CrossRefPubMedGoogle Scholar
  42. Yang, W., An, S.Q., Zhao, H., Xu, L.Q., Qiao, Y.J., and Cheng, X.L. 2016a. Impacts of Spartina alterniflora invasion on soil organic carbon and nitrogen pools sizes, stability, and turnover in a coastal salt marsh of eastern China. Ecol. Eng. 86, 174–182CrossRefGoogle Scholar
  43. Yang, W., Jeelani, N., Leng, X., Cheng, X.L., and An, S.Q. 2016b. Spartina alterniflora invasion alters soil microbial community composition and microbial respiration following invasion chronosequence in a coastal wetland of China. Sci. Rep. 6, 26880CrossRefPubMedPubMedCentralGoogle Scholar
  44. Yang, L.H., Shi, C.P., Shang, Y., Zhang, J.L., Han, J.M., and Dong, J.G. 2014 The extraction, isolation and identification of exudates from the roots of Flaveria bidentis. J. Integr. Agric. 13, 105–114CrossRefGoogle Scholar
  45. Yang, W., Yan, Y.E., Jiang F., Leng X., Cheng X.L., and An, S.Q. 2016c. Response of the soil microbial community composition and biomass to a short-term Spartina alterniflora, invasion in a coastal wetland of eastern China. Plant Soil 408, 1–14CrossRefGoogle Scholar
  46. Yuan, J.J., Ding, W.X., Liu, D.Y., Kang, H., Xiang, J., and Lin, Y.X. 2016 Shifts in methanogen community structure and function across a coastal marsh transect: effects of exotic Spartina alterniflora invasion. Sci. Rep. 6, 18777CrossRefPubMedPubMedCentralGoogle Scholar
  47. Zeleke, J., Sheng, Q., Wang, J.G., Huang, M.Y., Xia, F., Wu, J.H., and Quan, Z.X. 2013 Effects of Spartina alterniflora invasion on the communities of methanogens and sulfate-reducing bacteria in estuarine marsh sediments. Front. Microbiol. 4, 243CrossRefPubMedPubMedCentralGoogle Scholar
  48. Zhang, Y., Ding, W., Cai, Z., Valerie, P., and Han, F. 2010 Response of methane emission to invasion of Spartina alterniflora and exogenous N deposition in the coastal salt marsh. Atmos. Environ. 44, 4588–4594CrossRefGoogle Scholar
  49. Zhang, Y., Ding, W., Luo, J., and Donnison, A. 2010 Changes in soil organic carbon dynamics in an eastern chinese coastal wetland following invasion by a C4 plant Spartina alterniflora. Soil Biol. Biochem. 42, 1712–1720CrossRefGoogle Scholar
  50. Zhang, J.H., Mao, Z.Q., Wang, L.Q., and Shu, H.R. 2007 Bioassay and identification of root exudates of three fruit tree species. J. Integr. Plant Biol. 49, 257–261CrossRefGoogle Scholar
  51. Zheng, Y., Bu, N.S., Long, X.E., Sun, J., He, C.Q., Liu, X.Y., Cui, J., Liu, D.X., and Chen, X.P. 2017 Sulfate reducer and sulfur oxidizer respond differentially to the invasion of Spartina alterniflora in estuarine salt marsh of China. Ecol. Eng. 99, 182–190CrossRefGoogle Scholar

Copyright information

© The Microbiological Society of Korea and Springer Nature B.V. 2018

Authors and Affiliations

  • Xue Ping Chen
    • 1
  • Jing Sun
    • 1
  • Yi Wang
    • 1
  • Heng Yang Zhang
    • 1
  • Chi Quan He
    • 1
  • Xiao Yan Liu
    • 1
  • Nai Shun Bu
    • 2
  • Xi-En Long
    • 3
  1. 1.School of Environmental and Chemical EngineeringShanghai UniversityShanghaiP. R. China
  2. 2.School of Environmental ScienceLiaoning UniversityShenyangP. R. China
  3. 3.Key Lab of Urban Environment and Health, Institute of Urban EnvironmentChinese Academy of SciencesXiamenP. R. China

Personalised recommendations