Lysobacter pedocola sp. nov., a novel species isolated from Korean soil

Abstract

A Gram-negative, yellow-pigmented bacterial strain, designated IPC6T, was isolated from soil in an arid region of Goyang-si (Gyeonggi-do, South Korea). Cells were strictly aerobic, non-spore-forming, rod-shaped. The strain grew within a temperature range of 10–42°C (optimum, 30°C) and pH of 5.0–11.0 (optimum, pH 8.0) in the presence of 0–2% (w/v) NaCl. Phylogenetically, the novel strain was closely related to members of the Lysobacter genus based on 16S rRNA sequence similarity, and showed the highest sequence similarity to Lysobacter niastensis KACC 11588T (98.5%). The predominant fatty acids were iso-C15:0, iso-C16:0, and summed feature 9 (iso-C17:1ω9c), with Q-8 identified as the major ubiquinone. The polar lipid content included diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, an unknown aminophospholipid, and an unidentified phospholipid. DNA-DNA hybridization results indicated that the strain IPC6T was distinct from Lysobacter niastensis KACC 11588T (37.9 ± 0.14%), Lysobacter panacisoli KACC 17502T (56.4 ± 0.13%), Lysobacter soli KCTC 22011T (8.1 ± 0.04%), Lysobacter gummosus KCTC 12132T (9.6 ± 0.03%), and Lysobacter cavernae KCTC 42875T (37.5 ± 0.14%), respectively. The DNA G + C content of the novel strain was 71.1 mol%. Based on the collective phenotypic, genotypic and chemotaxonomic data, the IPC6T strain is considered to represent a novel species in the genus Lysobacter, for which the name Lysobacter pedocola sp. nov. (= KCTC 42811T = JCM 31020T) is proposed.

This is a preview of subscription content, access via your institution.

References

  1. Bowman, J.P. 2000. Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov. Int. J. Syst. Evol. Microbiol. 50, 1861–1868.

    Article  PubMed  CAS  Google Scholar 

  2. Buck, J.D. 1982. Nonstaining (KOH) method for determination of Gram reactions of marine bacteria. Appl. Environ. Microbiol. 44, 992–993.

    PubMed  PubMed Central  CAS  Google Scholar 

  3. Chen, W., Zhao, Y.L., Cheng, J., Zhou, X.K., Salam, N., Fang, B.Z., Li, Q.Q., Hozzein, W.N., and Li, W.J. 2016. Lysobacter cavernae sp. nov., a novel bacterium isolated from a cave sample. Antonie van Leeuwenhoek 109, 1047–1053.

    Article  PubMed  CAS  Google Scholar 

  4. Choi, J.H., Seok, J.H., Cha, J.H., and Cha, C.J. 2014. Lysobacter panacisoli sp. nov., isolated from ginseng soil. Int. J. Syst. Evol. Microbiol. 64, 2193–2197.

    Article  PubMed  CAS  Google Scholar 

  5. Christensen, P. and Cook, F.D. 1978. Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio. Int. J. Syst. Evol. Microbiol. 28, 367–393.

    Google Scholar 

  6. Collins, M.D. and Jones, D. 1981. Distribution of isoprenoid quinone structural types in bacteria and their taxonomic implication. Microbiol. Rev. 45, 316–354.

    PubMed  PubMed Central  CAS  Google Scholar 

  7. Felsenstein, J. 1985. Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.

    Article  PubMed  Google Scholar 

  8. Fitch, W.M. 1971. Toward defining the course of evolution: minimum change for a specific tree topology. Syst. Biol. 20, 406–416.

    Article  Google Scholar 

  9. Gonzalez, J.M. and Saiz-Jimenez, C. 2002. A fluorimetric method for the estimation of G + C mol% content in microorganisms by thermal denaturation temperature. Environ. Microbiol. 4, 770–773.

    Article  PubMed  CAS  Google Scholar 

  10. Hiraishi, A., Ueda, Y., Ishihara, J., and Mori, T. 1996. Comparative lipoquinone analysis of influent sewage and activated sludge by highperformance liquid chromatography and photodiode array detection. J. Gen. Appl. Microbiol. 42, 457–469.

    Article  CAS  Google Scholar 

  11. Kim, O.S., Cho, Y.J., Lee, K., Yoon, S.H., Kim, M., Na, H., Park, S.C., Jeon, Y.S., Lee, J.H., Yi, H., et al. 2012. Introducing EzTaxon-e: A prokaryotic 16S rRNA gene sequence database with phylotypes that represent uncultured species. Int. J. Syst. Evol. Microbiol. 62, 716–721.

    Article  PubMed  CAS  Google Scholar 

  12. Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120.

    Article  PubMed  CAS  Google Scholar 

  13. Komagata, K. and Suzuki, K.I. 1987. Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol. 19, 161–207.

    Article  CAS  Google Scholar 

  14. Kuykendall, L.D., Roy, M.A., O'Neill, J.J., and Devine, T.E. 1988. Fatty acids, antibiotic resistance and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int. J. Syst. Bacteriol. 38, 358–361.

    Article  CAS  Google Scholar 

  15. Loveland-Curtze, J., Miteva, V.I., Brenchley, J.E. 2011 Evaluation of a new fluorimetric DNA-DNA hybridization method. Can. J. Microbiol. 57, 250–255.

    Article  PubMed  CAS  Google Scholar 

  16. Minnikin, D.E., O’Donnell, A.G., Goodfellow, M., Alderson, G., Athalye, M., Schaal, A., and Parlett, J.H. 1984. An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J. Microbiol. Methods 2, 233–241.

    Article  CAS  Google Scholar 

  17. Oh, K.H., Kang, S.J., Jung, Y.T., Oh, T.K., and Yoon, J.H. 2011. Lysobacter dokdonensis sp. nov., isolated from soil. Int. J. Syst. Evol. Microbiol. 61, 1089–1093.

    Article  PubMed  CAS  Google Scholar 

  18. Park, J.H., Kim, R.M., Aslam, Z., Jeon, C.O., and Chung, Y.R. 2008. Lysobacter capsici sp. nov., with antimicrobial activity, isolated from the rhizosphere of pepper, and emended description of the genus Lysobacter. Int. J. Syst. Evol. Microbiol. 58, 387–392.

    Article  PubMed  CAS  Google Scholar 

  19. Saitou, N. and Nei, M. 1987. The neighbor-joining method: A new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    PubMed  CAS  Google Scholar 

  20. Siddiqi, M.Z. and Im, W.T. 2016. Lysobacter hankyongensis sp. nov., isolated from activated sludge and Lysobacter sediminicola sp. nov., isolated from freshwater sediment. Int. J. Syst. Evol. Microbiol. 66, 212–218.

    Article  PubMed  CAS  Google Scholar 

  21. Singh, H., Won, K., Du, J., Yang, J.E., Akter, S., Kim, K.Y., and Yi, T.H. 2015. Lysobacter agri sp. nov., a bacterium isolated from soil. Antonie van Leeuwenhoek 108, 553–561.

    Article  PubMed  CAS  Google Scholar 

  22. Smibert, R.M. and Krieg, N.R. 1994. Phenotypic characterization, pp. 607–654. In Gerhadt, P., Murray, R.G.E., Wood, W.A., and Krieg, N.R. (eds.), Methods for general and molecular bacteriology. American Society for Microbiology, Washington, DC, USA.

    Google Scholar 

  23. Srinivasan, S., Kim, M.K., Sathiyaraj, G., Kim, H.B., Kim, Y.J., and Yang, D.C. 2010. Lysobacter soli sp. nov., isolated from soil of a ginseng field. Int. J. Syst. Evol. Microbiol. 60, 1543–1547.

    Article  PubMed  CAS  Google Scholar 

  24. Stackebrandt, E. and Goebel, B.M. 1994. Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int. J. Syst. Evol. Microbiol. 44, 846–849.

    Article  CAS  Google Scholar 

  25. Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M., and Kumar, S. 2011. MEGA5: Molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731–2739.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997. The CLUSTAL X windows interface: Flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697–703.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Weon, H.Y., Kim, B.Y., Kim, M.K., Yoo, S.H., Kwon, S.W., Go, S.J., and Stackebrandt, E. 2007. Lysobacter niabensis sp. nov. and Lysobacter niastensis sp. nov., isolated from greenhouse soils in Korea. Int. J. Syst. Evol. Microbiol. 57, 548–551.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Taegun Seo.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

The GenBank accession number for the 16S rRNA gene sequence of strain IPC6T (= KCTC 42811T = JCM 31020T) is KT630892.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jang, J.H., Lee, D. & Seo, T. Lysobacter pedocola sp. nov., a novel species isolated from Korean soil. J Microbiol. 56, 387–392 (2018). https://doi.org/10.1007/s12275-018-8046-y

Download citation

Keywords

  • DNA-DNA relatedness
  • Lysobacter
  • taxonomy