Skip to main content

Burkholderia alba sp. nov., isolated from a soil sample on Halla mountain in Jeju island

Abstract

A rod-shaped, round and white colony-forming strain AD18T was isolated from the soil on Halla mountain in Jeju Island, Republic of Korea. Comparative analysis of 16S rRNA gene sequence revealed that this strain was closely related to Burkholderia oklahomensis C6786T (98.8%), Burkholderia thailandensis KCTC 23190T (98.5%). DNA-DNA relatedness (14.6%) indicated that the strain AD18T represents a distinct species that is separate from B. oklahomensis C6786T. The isolate grew at pH 5.0–9.0 (optimum, pH 7.0), 0–3% (w/v) NaCl (optimum, 0%), and temperature 10–40°C (optimum 35°C). The sole quinone of the strain was Q-8, and the predominant fatty acids were C16:0, C17:0 cyclo, and C19:0 cyclo ω8c. The genomic DNA G + C content of AD18T was 65.6 mol%. Based on these findings, strain AD18T is proposed to be a novel species in the genus Burkholderia, for which the name Burkholderia alba sp. nov. is proposed (= KCCM 43268T = JCM 32403T). The type strain is AD18T.

This is a preview of subscription content, access via your institution.

References

  • Aizawa, T., Bao Ve, N., Vijarnsorn, P., Nakajima, M., and Sunairi, M. 2010. Burkholderia acidipaludis sp. nov., aluminum-tolerant bacteria isolated from Chinese water chestnut (Eleocharis dulcis) growing in highly acidic swamps in South-East Asia. Int. J. Syst. Evol. Microbiol. 60, 2036–2041.

    Article  CAS  PubMed  Google Scholar 

  • Aizawa, T., Vijarnsorn, P., Nakajima, M., and Sunairi, M. 2011. Burkholderia bannensis sp. nov., an acid-neutralizing bacterium isolated from torpedo grass (Panicum repens) growing in highly acidic swamps. Int. J. Syst. Evol. Microbiol. 61, 1645–1650.

    Article  CAS  PubMed  Google Scholar 

  • Brett, P.J., DeShazer, D., and Woods, D.E. 1998. Burkholderia thailandensis sp. nov., a Burkholderia pseudomallei-like species. Int. J. Syst. Bacteriol. 48 Pt 1, 317–320.

    Article  Google Scholar 

  • Elliott, G.N., Chen, W.M., Bontemps, C., Chou, J.H., Young, J.P., Sprent, J.I., and James, E.K. 2007. Nodulation of Cyclopia spp. (Leguminosae, Papilionoideae) by Burkholderia tuberum. Ann. Bot. 100, 1403–1411.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ezaki, T., Adnan, S., and Miyake, M. 1990. [Quantitative microdilution plate hybridization to determine genetic relatedness among bacterial strains]. Nihon Saikingaku Zasshi 45, 851–857.

    Article  CAS  PubMed  Google Scholar 

  • Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. J. Mol. Evol. 17, 368–376.

    Article  CAS  PubMed  Google Scholar 

  • Fischer, M. and Thatte, B. 2010. Revisiting an equivalence between maximum parsimony and maximum likelihood methods in phylogenetics. Bull. Math. Biol. 72, 208–220.

    Article  PubMed  Google Scholar 

  • Glass, M.B., Steigerwalt, A.G., Jordan, J.G., Wilkins, P.P., and Gee, J.E. 2006. Burkholderia oklahomensis sp. nov., a Burkholderia pseudomallei-like species formerly known as the Oklahoma strain of Pseudomonas pseudomallei. Int. J. Syst. Evol. Microbiol. 56, 2171–2176.

    Article  CAS  PubMed  Google Scholar 

  • Gonzalez, J.M. and Saiz-Jimenez, C. 2002. A fluorimetric method for the estimation of G + C mol% content in microorganisms by thermal denaturation temperature. Environ. Microbiol. 4, 770–773.

    Article  CAS  PubMed  Google Scholar 

  • Hu, H.Y., Fujie, K., and Urano, K. 1999. Development of a novel solid phase extraction method for the analysis of bacterial quinones in activated sludge with a higher reliability. J. Biosci. Bioeng. 87, 378–382.

    Article  CAS  PubMed  Google Scholar 

  • Kim, H.B., Park, M.J., Yang, H.C., An, D.S., Jin, H.Z., and Yang, D.C. 2006. Burkholderia ginsengisoli sp. nov., a β-glucosidaseproducing bacterium isolated from soil of a ginseng field. Int. J. Syst. Evol. Microbiol. 56, 2529–2533.

    Article  CAS  PubMed  Google Scholar 

  • Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16, 111–120.

    Article  CAS  PubMed  Google Scholar 

  • Koh, H.W., Hong, H., Min, U.G., Kang, M.S., Kim, S.G., Na, J.G., Rhee, S.K., and Park, S.J. 2015a. Rhodanobacter aciditrophus sp. nov., an acidophilic bacterium isolated from mine wastewater. Int. J. Syst. Evol. Microbiol. 65, 4574–4579.

    Article  CAS  PubMed  Google Scholar 

  • Koh, H.W., Song, H.S., Song, U., Yim, K.J., Roh, S.W., and Park, S.J. 2015b. Halolamina sediminis sp. nov., an extremely halophilic archaeon isolated from solar salt. Int. J. Syst. Evol. Microbiol. 65, 2479–2484.

    Article  CAS  PubMed  Google Scholar 

  • Kumar, S., Stecher, G., and Tamura, K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol. Biol. Evol. 33, 1870–1874.

    Article  CAS  PubMed  Google Scholar 

  • Liu, X.Y., Li, C.X., Luo, X.J., Lai, Q.L., and Xu, J.H. 2014. Burkholderia jiangsuensis sp. nov., a methyl parathion degrading bacterium, isolated from methyl parathion contaminated soil. Int. J. Syst. Evol. Microbiol. 64, 3247–3253.

    Article  CAS  PubMed  Google Scholar 

  • Lu, P., Zheng, L.Q., Sun, J.J., Liu, H.M., Li, S.P., Hong, Q., and Li, W.J. 2012. Burkholderia zhejiangensis sp. nov., a methyl-parathion-degrading bacterium isolated from a wastewater-treatment system. Int. J. Syst. Evol. Microbiol. 62, 1337–1341.

    Article  CAS  PubMed  Google Scholar 

  • Martinez-Aguilar, L., Salazar-Salazar, C., Mendez, R.D., Caballero-Mellado, J., Hirsch, A.M., Vasquez-Murrieta, M.S., and Estrada-de los Santos, P. 2013. Burkholderia caballeronis sp. nov., a nitrogen fixing species isolated from tomato (Lycopersicon esculentum) with the ability to effectively nodulate Phaseolus vulgaris. Antonie van Leeuwenhoek 104, 1063–1071.

    Article  PubMed  Google Scholar 

  • Rani, S., Koh, H.W., Kim, H., Rhee, S.K., and Park, S.J. 2017. Marinobacter salinus sp. nov., a moderately halophilic bacterium isolated from a tidal flat environment. Int. J. Syst. Evol. Microbiol. 67, 205–211.

    Article  PubMed  Google Scholar 

  • Saitou, N. and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol. Biol. Evol. 4, 406–425.

    CAS  PubMed  Google Scholar 

  • Sheu, S.Y., Chen, M.H., Liu, W.Y., Andrews, M., James, E.K., Ardley, J.K., De Meyer, S.E., James, T.K., Howieson, J.G., Coutinho, B.G., et al. 2015. Burkholderia dipogonis sp. nov., isolated from root nodules of dipogon lignosus in New Zealand and Western Australia. Int. J. Syst. Evol. Microbiol. 65, 4716–4723.

    Article  CAS  PubMed  Google Scholar 

  • Sheu, S.Y., Chou, J.H., Bontemps, C., Elliott, G.N., Gross, E., dos Reis Junior, F.B., Melkonian, R., Moulin, L., James, E.K., Sprent, J.I., et al. 2013. Burkholderia diazotrophica sp. nov., isolated from root nodules of Mimosa spp. Int. J. Syst. Evol. Microbiol. 63, 435–441.

    Article  CAS  PubMed  Google Scholar 

  • Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., and Higgins, D.G. 1997. The CLUSTAL_X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vandamme, P., De Brandt, E., Houf, K., Salles, J.F., Dirk van Elsas, J., Spilker, T., and Lipuma, J.J. 2013. Burkholderia humi sp. nov., Burkholderia choica sp. nov., Burkholderia telluris sp. nov., Burkholderia terrestris sp. nov. and Burkholderia udeis sp. nov.: Burkholderia glathei-like bacteria from soil and rhizosphere soil. Int. J. Syst. Evol. Microbiol. 63, 4707–4718.

    Article  CAS  PubMed  Google Scholar 

  • Weisburg, W.G., Barns, S.M., Pelletier, D.A., and Lane, D.J. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173, 697–703.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yabuuchi, E., Kosako, Y., Oyaizu, H., Yano, I., Hotta, H., Hashimoto, Y., Ezaki, T., and Arakawa, M. 1992. Proposal of Burkholderia gen. nov. and transfer of seven species of the genus Pseudomonas homology group II to the new genus, with the type species Burkholderia cepacia (Palleroni and Holmes 1981) comb. nov. Microbiol. Immunol. 36, 1251–1275.

    Article  CAS  PubMed  Google Scholar 

  • Yarza, P., Yilmaz, P., Pruesse, E., Glockner, F.O., Ludwig, W., Schleifer, K.H., Whitman, W.B., Euzeby, J., Amann, R., and Rossello-Mora, R. 2014. Uniting the classification of cultured and uncultured bacteria and archaea using 16S rRNA gene sequences. Nat. Rev. Microbiol. 12, 635–645.

    Article  CAS  PubMed  Google Scholar 

  • Yoon, S.H., Ha, S.M., Kwon, S., Lim, J., Kim, Y., Seo, H., and Chun, J. 2017. Introducing EzBioCloud: a taxonomically united database of 16S rRNA gene sequences and whole-genome assemblies. Int. J. Syst. Evol. Microbiol. 67, 1613–1617.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang, H., Hanada, S., Shigematsu, T., Shibuya, K., Kamagata, Y., Kanagawa, T., and Kurane, R. 2000. Burkholderia kururiensis sp. nov., a trichloroethylene (TCE)-degrading bacterium isolated from an aquifer polluted with TCE. Int. J. Syst. Evol. Microbiol. 50 Pt 2, 743–749.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soo-Je Park.

Additional information

Supplemental material for this article may be found at http://www.springerlink.com/content/120956.

The GenBank/EMBL/DDBJ accession number for the 16S rRNA gene sequence of strain AD18T is MF565845.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, JW., Kim, YE. & Park, SJ. Burkholderia alba sp. nov., isolated from a soil sample on Halla mountain in Jeju island. J Microbiol. 56, 312–316 (2018). https://doi.org/10.1007/s12275-018-8034-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12275-018-8034-2

Keywords